
EIGENCONNECTIVITIES OF DYNAMIC FUNCTIONAL NETWORKS:
CONSISTENCY ACROSS SUBJECTS

Nora Leonardi1,2, Dimitri Van De Ville1,2
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ABSTRACT

Functional connectivity (FC) measured using fMRI has provided
significant insights into brain function. However, increasing evi-
dence points towards continuously fluctuating FC across the duration
of a scan. Using unsupervised learning techniques, reproducible pat-
terns of dynamic FC (dFC) have been revealed. In particular, based
on principal component analysis, it has recently been proposed to
represent dFC as a linear combination of multiple “eigenconnectiv-
ities”. These group-level results were obtained by concatenating all
subjects’ timecourses of dFC. Here we investigate the consistency of
these results by introducing a subject-level and group-level PCA and
comparing the results with those obtained by concatenation.

Index Terms— functional MRI, dynamic functional connectiv-
ity, principal component analysis, canonical correlation analysis

1. INTRODUCTION

The use of functional magnetic resonance imaging (fMRI) to scan
subjects during resting state has opened many opportunities for new
advanced data processing techniques. The study of integration as an
organizational principle of brain function heavily relies upon func-
tional connectivity (FC), which is traditionally defined as Pearson
correlation between the time series of two brain regions, computed
over the whole scan (typically of several minutes). One recent av-
enue is to investigate non-stationarity of FC by introducing a sliding-
window variant and then explore FC fluctuations over time; the time-
dependent FC signal is referred to as dynamic FC (dFC).

Seminal work [1] has showed that fluctuations in dFC could be
observed between major hubs of resting-state networks such as the
default-mode network. The sliding-window approach should be used
with care as to avoid spurious fluctuations introduced by the estima-
tion method itself [2, 3, 4], which can be avoided by proper high-pass
filtering of the regional time series. Another difficulty for system-
atic whole-brain analysis is the number of connections that grows
quadratically with the number of regions. Therefore, multivariate
approaches such as clustering [5] or subspace decompositions [6, 7]
have been proposed to reduce the dimensionality and analyze dy-
namics in a much lower dimensional space.

Here we investigate the consistency across subjects of “eigen-
connectivities”, which have been proposed previously [6] by our
group to represent the group-level dFC data matrix by a limited num-
ber of “building blocks”. We first briefly summarize the original ap-
proach, and the introduce the canonical correlation analysis (CCA)
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and its generalization (gCCA) to study group-level eigenconnectivi-
ties that are driven by consistencies across subjects.

2. DYNAMIC FUNCTIONAL CONNECTIVITY

2.1. Data description

Subjects and MRI data were the same as in a previous study of our
group [8], including 14 healthy controls and 22 minimally-disabled
multiple sclerosis patients. The study was approved by the local in-
stitutional ethics committee and all subjects provided informed con-
sent. Data were acquired on a Siemens 3T TrioTIM using a 32-
channel head coil. Functional imaging data were acquired in one
session using gradient-echo planar imaging (TE = 27 ms, TR = 1.1
s, flip angle = 90◦, matrix = 64× 64, 21 transverse slices, voxel size
= 3.75× 3.75× 5.63 mm3, 450 volumes). Subjects were instructed
to lie still with their eyes closed and not to fall asleep (which was
confirmed in a debriefing after the scan).

2.2. Data preprocessing

Anatomical and functional data were preprocessed using SPM8 and
a combination of in-house MATLAB scripts and scripts from the
DPARSFA toolbox [9]. The first ten functional volumes were dis-
carded to allow for T1 equilibration effects. The other 440 functional
volumes were spatially realigned to the mean image, detrended (lin-
ear and quadratic trends) and bandpass filtered (0.02− 0.15 Hz). To
further minimise spurious changes in connectivity related to motion,
we “scrubbed” our data according to the procedure of Power et al.
[10] and the criteria we specified in [6]. We excluded 1 HC subject
and 7 RRMS patients with either maximal head motion above 3 mm
or 2◦.

The functional data were coregistered with each subject’s
anatomical data. The anatomical data were segmented (new seg-
mentation algorithm of SPM8 [11]) and regionally parcellated using
the automated anatomical labeling atlas, which divided the brain into
90 anatomical regions of interest [12]. The segmentation step pro-
vided a deformation field, which was used to warp the structural atlas
into the subject’s native space. We estimated regionally-averaged
time series by averaging the fMRI signal over all voxels in each
brain region. The time series from the bilateral globus pallidus were
discarded due to ventral signal dropout in some subjects, leaving
N = 88 brain regions. We regressed out nuisance variables from
the regional time series (6 head motion parameters, average cere-
brospinal fluid from ventricular masks and white matter signal from
white matter masks). The global signal was not regressed out.
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2.3. Dynamic FC estimation

We estimated dFC by calculating the pairwise Pearson correlation
between the residuals of all N brain regions’ time series using a
sliding-window technique yielding a N × N correlation matrix for
each window; i.e., sliding-window correlation between the time se-
ries x and y was given by ρxy(t) = corr(x[t, t+∆t], y[t, t+∆t]),
where ∆t was the window length in TRs and the window was shifted
by two TRs for each estimation. Correlations ρ were Fisher r-to-z
transformed (z = atanh(ρ)) to make them approximately normally
distributed.

We constructed a dFC data matrix Cs or each subject, where
each column contained the unfolded upper-triangular part of the cor-
relation matrix, resulting in a (N2 − N)/2 × Ts matrix, where Ts

the number of windows for subject s. We normalized each subject’s
dFC matrix by removing the global mean and dividing by its stan-
dard deviation (mean and standard deviation over all time points and
FC pairs). We used window length of 30 TRs covering 33 seconds.

3. FC PATTERNS ESTIMATED BY CONCAT-PCA

Following [6], we subtracted the row-wise means of Cs for each
subject s individually before we concatenated all subjects along the
temporal dimension to establish a group-level dFC data matrix:

X = [C1 −C1,C2 −C2, ...,CS −CS ].

Centering allows to remove inter-subject variability of mean correla-
tions, and thus to ensure that components are driven by fluctuations
of correlation only. We then applied SVD to X, which finds the
connection-wise and time-wise eigenvectors of the respective covari-
ance matrices of X; i.e., we have X = UΛVT , where the columns
of U are orthonormal eigenvectors termed “eigenconnectivities”.

By convention, the eigenconnectivities are ranked according to
decreasing explained variance (EV). Therefore, approximating the
data using only the K eigenconnectivities with the K largest eigen-
values results in a EV of

∑K
k=1 λ

2
k/

∑
λ2
k.

A subject’s dFC matrix can then be efficiently represented by
projecting it onto the top-K eigenconnectivities: Ws = UT

red(Cs −
Cs), where Ws is a matrix of size K × Ts containing the weights
of K eigenconnectivities at all Ts windows, and Ured contains only
the first K eigenconnectivities. These weights are comparable to
the time-dependent profiles of “eigenimages” [13] and conceptually
related to subject-dependent time series of independent component
analysis (ICA) [14].

4. FC PATTERNS ESTIMATED BY GENERALIZED
CANONICAL CORRELATION ANALYSIS

Here we propose to search for FC patterns that take commonali-
ties across datasets, but not aspects specific to individual subjects,
into account. A classical method to identify such common patterns
is CCA [15], and gCCA for more than two datasets [16]. gCCA
searches for a low-dimensional representation that takes statistical
dependencies between datasets, as measured by their correlations,
into account. If each dataset is whitened1 in a first step, gCCA,

1Whitening transforms a dataset X into a new dataset X̃ whose co-
variance is the identity matrix, that is it is decorrelated and has unit vari-
ance. For row zero-mean data, the whitening transform can be found
by solving the following eigenvalue decomposition: XTX = VΛVT .

Whitened data X̃ is then obtained as X̃ = XVΛ
−1/2

. Now X̃T X̃ =

Λ−1/2V
T
XTXVΛ−1/2 = I. X̃ can also be directly obtained from a

however, simplifies to PCA. This property has for example been ex-
ploited in the analysis of gene expression [17] or as a preprocess-
ing tool to enhance the reproducibility of ICA [18]. Specifically,
[18] proposed a two-level model for multi-subject fMRI data, which
is based on a subject-level PCA that reduces both the dimensional-
ity of the data and subject-specific variability, that is followed by a
group-level PCA (corresponding to a gCCA) capturing the remain-
ing variability and identifying a common subspace.

We derive the equivalence of applying gCCA or the two steps of
(i) whitening each subject’s dFC and (ii) a group-level PCA. In the
section thereafter we compare PCA and gCCA.

4.1. gCCA and its relation to PCA

We first introduce CCA, which is defined for two datasets [15]. For
S = 2 datasets X1(C × T1) and X2 (C × T2), which in our
case are two subject’s centered dFC matrices, CCA maximizes the
correlation between the projections X1A1 and X2A2 onto a K-
dimensional common subspace, with A1 (T1 ×K), and A2 (T2 ×
K). CCA can be solved using a generalized eigenvalue decomposi-
tion: [

0 C12

C21 0

] [
A1

A2

]
= Λ

[
C11 0
0 C22

] [
A1

A2

]
, (1)

where C11 = X1
TX1, and C22 = XT

2 X2 are the auto-covariance
matrices, C12 = XT

1 X2 = CT
21 is the cross-covariance matrix and

Λ contains the generalized eigenvalues on its diagonal.
For S > 2, we use a generalization for which the solution is

again given by a generalized eigenvalue decomposition [16, 18, 19]:


0 C12 C13 . . . C1S

C21 0 C23 . . . C2S

...
. . .

...
CS1 . . . . . . . . . 0



A1

A2

...
AS



= Λ


C11 0 . . . 0
0 C22 . . . 0
...

. . .
...

0 . . . . . . CSS



A1

A2

...
AS

 .

When all datasets are white, that is decorrelated and scaled to
unit-variance (XT

s Xs = I for all s = 1, . . . , S), the CCA solution
simplifies considerably:


0 C12 C13 . . . C1S

C21 0 C23 . . . C2S

...
. . .

...
CS1 . . . . . . . . . 0

A = ΛA, (2)

where A is the row-concatenated version of As.
We now add IA to both sides of (2) because this allows us to

express the cross-covariance matrix as the covariance matrix of the

SVD of X = USVT , where Λ = S2 and X̃ = U. The dimensional-
ity of the data can be reduced in the same step by retaining only the first D
eigenvectors of U.
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concatenated, whitened datasets:
I C12 C13 . . . C1S

C21 I C23 . . . C2S

...
. . .

...
CS1 . . . . . . . . . I

A

=


X1

T

X2
T

...
XS

T

 [
X1 X2 . . . XS

]
A = (Λ+ I)A

The addition of the identity matrix leaves the eigenvectors un-
changed and increases all eigenvalues by one. (3) describes a
conventional PCA, completing the derivation.

In the original approach, we solved XXT = UΛUT , while (3)
solves XTX = A(Λ+ I)AT . A is therefore similar to what we
previously called “weights”, and we obtain the eigenconnectivities
by projecting and normalizing: U = XA(Λ+ I)−1/2. Or, simpler,
by an SVD of the whitened data: X = U

√
(Λ+ I)A

T
. The eigen-

connectivities obtained from concatenated subject eigenconnectivi-
ties (instead of dFC data) thus correspond to a subspace common to
all subjects as obtained by gCCA.

4.2. gCCA eigenconnectivities

To compare PCA/SVD with gCCA, we applied SVD to each sub-
ject’s dFC matrix and (arbitrarily) retained the first 19 ± 2 or 5 ± 1
eigenvectors, corresponding to 90% and 50% of EV, respectively
(see Fig. 1b for an example spectrum of single subject’s dFC). In
Figs. 1c and e we show the first 10 eigenconnectivities obtained from
whitened data. The eigenconnectivities strongly resemble those ob-
tained without whitening (Figs. 1d and f), suggesting that the PCA
patterns are not driven by subject-specific noise or dFC spikes, which
would either not be retained after the subject-wise PCA or are un-
likely to be shared by subjects. The eigenconnectivities are well
preserved with as little as 50% of EV from the subject-level PCAs.
With 90% of EV the eigenconnectivities are still largely similar, but
less so than with 50% of EV, possibly because the whitening normal-
izes each subject’s data to unit variance, which means that the 19th

principal component has a weight equal to the first one.

5. CONCLUSION

We introduced an approach to extract eigenconnectivities that are
driven by inter-subject consistencies and provided first results. Fu-
ture work should investigate how decompositions such as gCCA or
agnostic CCA [20] would impact and potentially improve group dif-
ferences (e.g., patients versus controls).
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Fig. 1. (a) Eigenconnectivities obtained from concatenated dFC matrices. (b) Eigenvalues 1 to 70 out of 205 for a subject-wise PCA/SVD
of dFC, (c) eigenconnectivities obtained from a multi-subject PCA/SVD with 90% of EV for each subject’s decomposition, (d) Pearson
correlation r between the patterns shown in (a) and (c), the values of correlations r > 0.4 are indicated, (e) eigenconnectivities obtained from
a multi-subject PCA/SVD with 50% of EV for each subject’s decomposition, (f) Pearson correlation between the patterns from (a) and (e).

623


