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ABSTRACT

Graphs are extensively used to represent networked data. In many applications, especially when considering
large datasets, it is a desirable feature to focus the analysis onto specific subgraphs of interest. Slepian theory
and its extension to graphs allows to do this and has been applied recently to analyze various types of networks.
One limitation of this framework, however, is that the number of subgraphs of interest is typically limited to one.
We introduce an extended Slepian design that allows to consider an arbitrary number of subgraphs of interest.
This extension offers the possibility to encode prior information about multiple subgraphs in a two-dimensional
plane. As a proof of concept and potential application, we demonstrate that this framework allows to perform
time-resolved and spatio-temporal analyses of dynamic graphs.
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1. INTRODUCTION

The development of various research fields ranging from neurosciences to social interactions has brought a lot of
attention to the analysis of large networked data. In this context, graphs are extensively used to encode infor-
mation on irregular domains and spectral graph theory has played a central role to reveal network properties not
directly available in the nodal domain'. For example, the graph Laplacian eigenvector with the smallest nonzero
eigenvalue can be used to partition a graph?® 3 The Laplacian is also at the center of the graph Fourier transform
(GFT) that allows to transpose classical Fourier analysis tools, such as frequency-based filtering, to graphs® Fi-
nally, the problem of finding low-dimensional projections that maximally preserve distance relationships between
nodes. -a.k.a. graph embedding- also finds its solutions in the Laplacian eigenvectors®.

Slepian functions were defined by Slepian and colleagues in a series of seminal papers as bandlimited signals
that are maximally concentrated on a temporal interval® ®. Such functions allow to guide the analysis of datasets
by enforcing concentration of information in specific subsets of interests. The idea of balancing signal spread in
time and frequency can be transposed to functions defined on graphs, thereby allowing to define Slepian functions
on graphs'®!! or explore graph extensions of uncertainty principles'? Other variations of the original Slepian
design have been proposed, e.g., in order to get rid of the bandlimitedness constraint!® but these frameworks
only allow to consider a single interval of interest. One way to overcome this limitation is to allow for negative
and positive weights in the Slepian selection matrix, thereby allowing to consider two intervals of interest!4

In this contribution we propose an extended graph Slepian design that allows to consider an arbitrary number
of subgraphs. The next Sections provide basic theoretical background and definitions of the Slepian framework
(Sections 2.1-2.2). The modified concentration criterion on which the proposed Slepian extension is based is
presented in Section 2.3. We finally illustrate the potential benefits of the proposed framework on two -toy and
real- datasets, showing that the extended Slepian design allows to guide the analysis of dynamic graphs in both
the vertex and temporal domains (Section 3).
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2. THEORETICAL FRAMEWORK
2.1 Slepian functions on graphs

In seminal work, Slepian, Landau and Pollak solved the problem of optimally concentrating a signal in both
space and time® ®. While this original work considered continuous functions and concentration intervals, we here
review the graph case that is directly relevant to the extension we introduce and the applications we consider.

The structure of a weighted undirected graph containing N nodes is typically encoded in an N x N adjacency
matrix A, where A; ; indicates the (positive) edge weight between nodes ¢ and j for all 4,5 = 1,...,N. The
graph Laplacian is defined as L = D — A, where D is the diagonal degree matrix with elements D; ; = Zjvzl A j.
Beside the graph and its structure, a graph signal is defined as a mapping from the N nodes to a length-N vector
associating a scalar value with every node. Based on the spectral decomposition of L: L = UAU™!, the graph
Fourier transform (GFT) of a graph signal f has been defined by analogy with the the classical discrete Fourier

transform as £ = U™'f, and the entries of A are referred to as graph frequencies %

The graph Slepian problem is expressed as finding a bandlimited length-N graph signal g with maximal
concentration in a subgraph S. In other words, the aim is to maximize

> glklglk]

p=tr— (1)
32 gkl

for the bandlimited graph signal g. The spectral constraint is expressed as g = UWg, where U is an N x N

matrix encoding the inverse GFT and W is an N x Ny, matrix that selects the first Ny, Fourier components

g with smallest graph frequencies!’. Denoting S the N x N matrix with Sg, = 0/1 indicating the absence or

presence of k in S, Eq. (1) rewrites
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where C = WTUTSUW and .7 denotes the transpose operator. The solutions of the optimization problem (2)
are those of the following eigendecomposition problem: CSi = upSk, where pi is the energy concentration of
the Slepian vector s, = UWS in S. The eigenvalues of C range between 0 for Slepian vectors having all their
energy outside S and 1 for Slepian vectors being fully concentrated in S.

2.2 Augmented Slepians

One limitation of the classical Slepian framework is that it is not possible to define more than one interval of
interest. A first step to overcome this limitation was proposed by Demesmaeker and colleagues who introduced
augmented Slepians that allow for the presence of positive (1), zero, or negative (-1) entries in the selection matrix
S'4 This extension was proposed in the continuous domain and the corresponding criterion to be maximized for
a graph signal g writes:

kesSt kES— (3)

where ST (S7) is the subset corresponding to positive (negative) entries of S. As in the classic case, problem
(3) can be turned into an eigendecompostion problem in the spectral domain as in Eq. (2), the only difference
being that the selection matrix S has positive and negative entries. The eigenvalues of the concentration matrix
C = W/UTSUW now range between -1 for Slepian vectors fully concentrated in S~ and 1 for Slepian vectors
fully concentrated in S™.
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2.3 Towards an arbitrary number of intervals

Building upon the extension proposed by Demesmaeker and colleagues'?, we propose to populate the selection
matrix S with complex-valued entries, thereby allowing to consider an arbitrary number of subgraphs. More
precisely, when considering M subgraphs of interest S',...,SM, the diagonal entries of the selection matrix are
such that Sy, = p; - € if and only if k € %, and p; - e® is the complex weight associated to S°.

The corresponding concentration criterion to be maximized writes

5 (e 5 olblglh)
keS? ) (4)

It can be seen from Eq. (4) that Slepian vectors associated with eigenvalues of C distributed along the
[0, p; - €] complex segment are getting more and more concentrated in S* as the eigenvalue approaches p; - ei.
Therefore, the interval capturing the concentration of a given Slepian vector is determined from the phase of the
corresponding eigenvalue: if Z(uy) € [¢; — d, ¢; + J], where ¢ is a phase tolerance parameter to be defined, then
the corresponding Slepian vector is associated to the interval S?. Slepian vectors associated to the same interval
are then ranked based on their magnitude. We denote sy; the Slepian vector associated to interval S¥ having
the It largest magnitude. For example, s3; is the Slepian vector that is maximally concentrated in S? and sy
is the Slepian vector with the second highest concentration in S*. Finally, the concentration of a vector g in S°

. . _ N _
is given by 3, i g[k]g[k]/ > 25— 9[K]g[K].

In the applications presented in the next Section, we consider the simple case where the weights of the
selection matrix are the roots of unity, i.e., p; = 1 and ¢; = W fori=1,..., M. We note that in that case,

the criterion of Eq. (4) reduces to the case of augmented Slepians (Eq. (3)) when considering only two subgraphs
(M =2).

3. MATERIALS AND METHODS
3.1 Application to the chain graph

We first consider a chain graph which consists of a graph representation of a discrete timeline. Each time point
is represented by a node, and successive time points (as well as the first and the last time points) are connected
by edges in the graph adjacency matrix Acg:

0O 1 0 O 1
1 0 1 0 0
0 1 0 1 0
Ac=|. ' : (5)
0o ... 0 1 0 1
1 ... 0 O 1 0

The Laplacian of the chain graph is L = D — A, where D is the degree matrix. We consider a chain graph
of length 2000 (i.e., L is a square matrix of size 2000) and three intervals: S' = [400, 799], S? = [800, 1199] and
8% = [1200,1599]. The weights for these intervals were e=5"™ =1 for the entries of S corresponding to S, e
for the entries corresponding to S? and e™5" for the entries corresponding to S%. We use a bandlimit Ny = 20

and the phase tolerance § = 0.3.

Proc. of SPIE Vol. 11138 1113810-3

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



3.2 Application to a multivariate dynamic graph

The chain graph is univariate because a single node of the graph is associated to each time point. We now
consider a multivariate dynamic graph representing yearly commercial exchanges within the EU countries plus
Switzerland over 145 years, from 1870 to 2014!-16, For a given year, these exchanges are encoded in a symmetric
adjacency matrix A; of size 29 (28 EU countries plus Switzerland). The overall graph adjacency matrix A is then
built by (i) stacking the 145 successive yearly adjacency matrices A; on the main diagonal of A and (ii) filling
the secondary diagonals of A by identity matrices of size 29 in order to encode the graph temporal structure:

A, T 0 0 ... 0
I A, I 0O 0
0 I A; I 0
A= (6)
0 0 I Ay I
0 0 0 T Ay

The selection matrix S has the same size as A (29145 = 4205) and is built as follows. We define 5 temporal
intervals: S' = [1870,1900], S? = [1901,1930], S* = [1931,1960], S* = [1961,1990] and S°> = [1991,2014].
We also focus our analysis on six selected countries with largest GDP among the 29*: Switzerland, Spain,
France, Netherlands, United Kingdom (UK) and Italy. The entries of the selection matrix are Sy r = 0 when k
corresponds to an unselected country and Sg j = e/®+» otherwise, with s(k) the index of the temporal interval

associated to k and ®; = @ fori=1,...,5. We use a bandlimit Ny = 500 and the phase tolerance § = 0.3.

4. RESULTS AND DISCUSSION
4.1 Proof of concept
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Figure 1. Extended Slepian design on the chain graph of Eq. (5). (A) Top-2 Slepian vectors in each selected interval (S,
S? or §*). (B) Eigenvalues of the extended concentration matrix are attributed to an interval and color-coded based on
their phases: green for S', orange for S? and blue for S3. Unclassified eigenvalues are shown in grey. (C) Concentration
curves of the eigenvalues attributed to the three intervals with same color-coding as in (A-B).

*We did not select Germany because its different partitions in the last two centuries did not allow a consistent analysis
through the time period covered by the dataset.
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Figure 1 shows the results on the chain graph described in Eq. (5) with three intervals of interest. The
Ny = 20 complex eigenvalues of C are shown in Figure 1B and attributed to S', S? or S based on their phases.
The Slepian vectors corresponding to the two eigenvalues with largest magnitude in each interval are shown in
Figure 1A. It can be seen that the Slepian vectors are concentrated in the interval selected by their corresponding
eigenvalue. We note that only the real part of the Slepian vectors are shown because in this case the imaginary
part is negligible. Figure 1C shows the concentration curve of the successive Slepian vectors in each interval. As
in the original Slepian decomposition'!, we observe that in each interval a sharp phase transition occurs between
highly concentrated Slepian vectors and poorly concentrated Slepian vectors.

Figure 2 shows the results of the extended Slepian decomposition of the multidimensional dynamic graph
of Eq. (6). Figure 2A shows the Ny = 500 complex eigenvalues of C and are distributed along 5 segments
corresponding to the 5 temporal intervals described in Section 3.2. In each temporal interval, the two corre-
sponding Slepian vectors with highest magnitudes are averaged and used to build the embeddings of Figure
2B-F. Within each of these panels, selected countries -Switzerland, Spain, France, Netherlands, United Kingdom
(UK) and Italy- are represented with red dots while remaining 23 countries are represented with blue dots. We
only represent the amplitudes of Slepian vector entries in order to simplify visualization of the results.
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Figure 2. Extended Slepian design on the multivariate dynamic graph of Eq. (6). (A) Eigenvalues of the extended
concentration matrix. (B-F) 2-D embedding of the 29 countries using the two Slepian vectors with highest magnitude in
each interval, averaged within each interval. Selected countries are represented with red dots and unselected countries are
represented with blue dots.

It can be seen from Figure 2A that the eigenvalues of the extended concentration matrix C are distributed
in the complex plane along radial segments with phases corresponding to the weights of the 5 selected temporal
intervals in the selection matrix S. This suggests that the proposed decomposition allows to specifically guide the
concentration of the Slepian vectors within these temporal intervals. The time-resolved 2-D embedding shown
in Figures 2B-F offers an original representation of the evolution of the commercial organization between the 29
countries considered here, with a focus on the 6 selected countries. For example, we observe that in the first
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temporal segments (late 19th - early 20th century) the selected countries are scattered in the space spanned by
the two first Slepian vectors. In contrast, the 5 selected EU countries (Spain, France, Netherlands, UK and Italy)
seem to cluster apart from Switzerland (non-EU country) in later temporal intervals which might be explained
by the development of EU commercial agreements.

4.2 Conclusion and future work

We introduced an extension of the graph Slepian framework that theoretically allows to consider an arbitrary
number of subgraphs. The potential of this extension is illustrated on two dynamic datasets. For example we
show that after building an adjacency matrix encoding the temporal structure of the data (e.g., Eq. (6)), different
subgraphs can be chosen so as to capture portions of the adjacency matrix corresponding to successive temporal
intervals. Different graph spectral embeddings in these temporal intervals are then computed, thereby providing
a novel way to perform time-resolved analyses of dynamic graphs. More generally, this versatile tool could be
adapted to guide graph analyses in multiple dimensions but further work is needed to assess its potentialities
and limitations.

First, the nature of the graph Slepian eigenvectors associated to eigenvalues that were not attributed to any
interval should be clarified (e.g., grey dots in Figure 1B). Second, in the two toy examples that we present, the
temporal resolution is based on the partition of the data along its temporal dimension into segments of similar
lengths. In order to zoom into specific time periods, we might explore the possibility of changing this temporal
partition. Alternatively, an irregular distribution of the weights of the selection matrix S on the complex unit
circle might also be considered to achieve the desired temporal partitioning. In general, these approaches should
be compared to other types of dynamic graphs analyses such as the ones based on sliding windows, autoregressive
models, multilayer networks or topological properties'” 2. Third, we restricted our analyses to the real parts
(Figure 1) or amplitudes (Figure 2) of the results and future work is needed to explore the complex nature of
the extended graph Slepian vectors. Finally, one could consider applying the proposed complex weighting of
the selection matrix on the combined Slepian criterion introduced by Petrovié¢ and colleagues'®. This criterion
combines maximization of energy concentration as defined in Eq. (1) with minimization of a modified embedded
distance'!, thereby leading to a stable spectral decomposition with no bandlimitedness constraint. One challenge
of this extension will be to deal with the negative eigenvalues of the combined Slepian criterion that might
make the match between eigenvalues of the concentration matrix and selected intervals harder than in the case
presented here.
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