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ABSTRACT

Patterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be
related. In SC-FC comparisons, FC has classically been evaluated from correlations between
functional time series, and more recently from partial correlations or their unnormalized
version encoded in the precision matrix. The latter FC metrics yield more meaningful
comparisons to SC because they capture ‘direct’ statistical dependencies, that is, discarding
the effects of mediators, but their use has been limited because of estimation issues. With
the rise of high-quality and large neuroimaging datasets, we revisit the relevance of different
FC metrics in the context of SC-FC comparisons. Using data from 100 unrelated Human
Connectome Project subjects, we first explore the amount of functional data required to
reliably estimate various FC metrics. We find that precision-based FC yields a better match
to SC than correlation-based FC when using 5 minutes of functional data or more. Finally,
using a linear model linking SC and FC, we show that the SC-FC match can be used to further
interrogate various aspects of brain structure and function such as the timescales of functional
dynamics in different resting-state networks or the intensity of anatomical self-connections.

INTRODUCTION

The way brain function is shaped by the underlying anatomical substrate is far from under-
stood. Taking advantage of the increasing amount of high-quality anatomical and functional
neuroimaging data that has become available in the last decade, various models were pro-
posed to explore this question. The spectrum of models linking brain anatomy and function
ranges from simple linear models (Gu et al., 2017, 2015; Honey et al., 2009) to more biolog-
ically realistic frameworks involving neural-mass modeling (Deco et al., 2014; Fernández Galán
& Galán, 2008; Hansen, Battaglia, Spiegler, Deco, & Jirsa, 2015; Honey, Thivierge, & Sporns,
2010; Messé, Rudrauf, Giron, & Marrelec, 2015; Schirner, McIntosh, Jirsa, Deco, & Ritter,
2018; Wang et al., 2019), stochastic processes (Deco, Jirsa, & McIntosh, 2011; Deco, Senden,
& Jirsa, 2012; Deligianni et al., 2011), or advanced dynamical systems tools such as mul-
tistability and ghost attractors (Breakspear, 2017; Deco & Jirsa, 2012). The functional con-
nectivity matrix (FC), which encodes the statistical dependencies between brain function in
different regions (Friston, 2011), and the structural connectivity matrix (SC), which encodes
the strength of anatomical connections between brain regions, were also compared without
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Exploring anatomical relevance of functional connectivity measures

relying on a model of the interaction between brain structure and function. Beyond observ-Functional connectivity (FC):
Statistical dependencies between
brain function in different brain
regions.

Structural connectivity (SC):
Strength of anatomical connections
between brain regions.

ing that the entries of SC and FC matrices are correlated (e.g., Honey et al., 2009; Sporns,
Tononi, & Edelman, 2000), it was also found that these matrices share graph-theoretic features
(Bullmore & Sporns, 2009; Meunier, Lambiotte, & Bullmore, 2010; Mišić et al., 2016) and that
the SC-FC match exhibits temporal fluctuations (Liégeois, Mishra, Zorzi, & Sepulchre, 2015).
Recent advances in graph signal processing (Sandryhaila & Moura, 2013; Shuman, Narang,
Frossard, Ortega, & Vandergheynst, 2013) have also allowed one to question this relationship
from a network theory perspective by linking spectral properties of SC and FC matrices. For ex-
ample, it was shown that brain function is primarily shaped by anatomical modes computed
from the spectral properties of the SC matrix (Abdelnour, Dayan, Devinsky, Thesen, & Raj,
2018; Atasoy, Donnelly, & Pearson, 2016; Huang et al., 2018; Preti & Van De Ville, 2019;
Robinson, 2012). Finally, as most studies use functional magnetic resonance imaging (fMRI)
data to evaluate FC because of its high spatial resolution, other functional modalities such as
electro- or magneto-encephalography were also considered to explore the link between brain
anatomy and function (Amico et al., 2017; Finger et al., 2016; Steinmann et al., 2018).

Functional connectivity is classically estimated from the correlation between functional
time series (Biswal, Yetkin, Haughton, & Hyde, 1995; Buckner et al., 2009; Dosenbach et al.,
2007; Power et al., 2011; B. T. Yeo, Krienen, Chee, & Buckner, 2014; Zalesky, Fornito, &
Bullmore, 2010). Importantly, the correlation matrix captures both ‘direct’ and ‘indirect’ sta-
tistical dependencies. This is in contrast with the precision matrix, defined as the inverse of
the correlation matrix (Dawid, 1979), that captures only ‘direct’ statistical dependencies byCorrelation matrix:

Matrix encoding Pearson correlation
values between pairs of variables in a
multivariate setting.

discarding the effects of mediators, as illustrated in Box 1.

Box 1. Direct and indirect measures of statistical dependence

To illustrate the distinction between ‘direct’ and ‘indirect’ measures of statistical dependence,
consider the example of Figure 1 consisting of three masses connected by springs and subject
to random excitation.

Figure 1. Conceptual difference between the precision and correlation matrices, adapted
fromMacKay (2006). The mass-spring system represents a set of three coupled masses whose
positions along themain axis are denoted by x1, x2, and x3. A non-zero statistical dependence
between x1 and x3 is encoded in the correlation matrix but not in the precision matrix which
encodes conditional, or ‘direct’, statistical dependencies.

Denoting x1, x2, and x3 their positions along the main axis, the correlation matrix Σx of
x = [x1, x2, x3] encodes the classical linear dependence between variables, and every pair
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Exploring anatomical relevance of functional connectivity measures

of variables exhibits a nonzero correlation. In contrast, the precision matrix, defined as the
inverse of the correlation matrix, encodes conditional dependencies (Dawid, 1979). For ex-
ample, (Σ−1

x )1,3 encodes the dependence between x1 and x3 conditioned on the value of
x2, which corresponds to fixing the mass represented by x2, and hence its value is zero. In
other words, the precision matrix captures ‘direct’ statistical dependencies between variables
and discards dependencies arising from intermediate connections captured in the correlation
matrix.

The precision matrix, or partial correlations which can be considered as a normalized ver-Precision matrix:
Inverse of the correlation matrix; its
entries only encode ‘direct’ statistical
dependencies.

Partial correlation:
Normalized version of the precision
matrix entries thereby only encoding
‘direct’ statistical dependencies.

sion of the precision matrix entries (see Equation 4 in the Methods for details), have been
used to estimate FC (Fransson & Marrelec, 2008; Marrelec et al., 2006; Ryali, Chen, Supekar,
& Menon, 2012) and were shown to provide better prediction scores than correlation-based
FC in some cases (Dadi et al., 2019; Pervaiz, Vidaurre, Woolrich, & Smith, 2020; S. M. Smith
et al., 2013). In the context of SC-FC comparisons, FC has also classically been evaluated from
the correlation between functional time series (e.g., Honey et al., 2009). However, since SC
matrices encode ‘direct’ anatomical connections, the precision matrix, or partial correlations,
appears as a more natural metric than the correlation matrix to estimate FC when comparing
the properties of SC and FC matrices. For example, M. van den Heuvel, Mandl, Luigjes, &
Hulshoff Pol (2008) and Lefort-Besnard et al. (2018) estimated FC from partial correlations
(resp., the precision matrix) to explore the SC-FC link within the default mode network, and
Huang and Ding (2016) interrogated this link in a network composed of four nodes using dif-
ferent FC estimates such as correlation, partial correlations, and Granger causality (Wu, Liao,
Stramaglia, Chen, & Marinazzo, 2013). While the theoretical advantage of using ‘direct’ FC
measures of statistical dependencies when exploring the SC-FC link has been documented
(Deligianni et al., 2011), their use remains limited, a potential reason for this being that their
estimation involves a matrix inversion that yields noisy estimates when a limited amount of
functional data is available (S. M. Smith, Vidaurre, et al., 2013).

Considering the recent improvements in structural and functional neuroimaging data qual-
ity, we propose to revisit the use of different FC metrics in the context of SC-FC comparisons.
We first recall the theoretical arguments supporting the use of ‘direct’ measures of statistical
dependencies to evaluate FC. We then compute the match between SC and four different esti-
mates of FC computed from varying lengths of fMRI data: correlation-based FC, which captures
direct and indirect statistical dependencies; precision-based FC, which captures only directIndirect statistical dependencies:

Statistical dependencies that arise
from the presence of shared
connections.

statistical dependencies; regularized precision-based FC, which allows more stable precision

Direct statistical dependencies:
Statistical dependencies that discard
the effect of mediators.

matrix estimation; and autoregressive-based FC, which captures dynamic statistical depen-
dencies (Liégeois, Laumann, Snyder, Zhou, & Yeo, 2017). We finally explore the SC-FC link in
different resting-state networks and discuss how a simple brain structure-function model can
be adapted to better interpret the nature of this link in terms of functional dynamics as well
as the underlying brain anatomy. Overall, beyond recalling the theoretical advantage of ‘di-
rect’ FC measures, our work provides empirical evidence of this advantage and shows how the
nature of the SC-FC link can be used to better characterize both brain anatomy and function.

METHODS

Data

We used data from 100 unrelated subjects from the Human Connectome Project (HCP) 1200-
release comprising resting-state functional magnetic resonance imaging (fMRI) and diffusion-
weighted scans of young (ages 22–35) and healthy participants (Van Essen et al., 2013). Data
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Exploring anatomical relevance of functional connectivity measures

were acquired on a 3-T Siemens Skyra scanner using a multiband sequence. Functional im-
ages have a repetition time (TR) of 0.72 sec and a 2-mm isotropic spatial resolution. For each
subject, four 14.4 min runs (1,200 frames) of functional time series were acquired (S. M. Smith,
Beckmann, et al., 2013). Functional volumes underwent a spatial smoothing by a 5-mm isotropic
Gaussian kernel using SPM8 and the first 10 volumes were discarded, resulting in 1,190 time
points for each run. The fMRI time series were detrended, and we regressed out six motion
parameters, average cerebrospinal fluid signal, and white matter signal. From these voxel-level
time series, we computed the average signal in N = 360 regions of interest (ROIs) using the
multimodal parcellation of Glasser et al. (2016). Starting from these ‘original’ time series, we
also generated ‘filtered’ time series by performing a 0.01–0.15 Hz band-pass filtering. Finally,
‘deconvolved’ time series were generated following Gaudes, Karahanoğlu, Lazeyras, and Ville
(2012) and λ1 = 4 in order to explore the impact of the hemodynamic response function on
our results. For each run, all time series were individually centered and normalized to unit
variance in order to allow concatenation of time series from different runs or subjects. We
used MRtrix3 (http://www.mrtrix.org) to analyze diffusion-weighted scans and applied mul-
tishell multitissue response function estimation with constrained spherical deconvolution. A
tractogram with 107 streamlines was generated using the second-order integration over Fiber
Orientation Distributions (iFOD2) probabilistic algorithm and was then filtered using SIFT such
that the streamline densities match the FOD lobe integrals (R. E. Smith, Tournier, Calamante, &
Connelly, 2013). Finally, we computed the number of fibers connecting every pair of the 360
ROIs defined in Glasser et al. (2016), normalized by the volumes of the connected ROIs (i.e.,
departing and ending ROIs), to generate individual structural connectivity matrices. The group
structural connectivity matrix (Supporting Information Figure S7) was obtained by averaging
the subjects’ structural connectivity matrices.

Four FC Measures

We computed four multivariate measures of statistical dependencies from the fMRI time series
parcellated into 360 ROIs. The first FC metric is the classical Pearson correlation matrix be-Pearson correlation:

Common correlation measure that
encodes both ‘direct’ and ‘indirect’
statistical dependencies.

tween fMRI time series that encodes direct and indirect statistical dependencies (Figure 1). The
second FCmetric consisted of the precision matrix, that is, the inverse of the correlation matrix,
which captures conditional, or ‘direct’ statistical dependencies (Dawid, 1979). Since inverting
the correlation matrix might be an unstable operation, especially when it is computed from few
time points (Brier, Mitra, McCarthy, Ances, & Snyder, 2015), we also considered a regularized
version of the precision matrix. Specifically, we used the Tikhonov regularization that consists
in adding a full-rank regularization term to the correlation matrix before performing the inver-
sion. The regularization term is γ · I, where I is the identity matrix and γ is a parameter that
was optimized by minimizing the distance between regularized subject precision matrices and
the unregularized group precision matrix as in Pervaiz et al. (2020) (see details in Supporting
Information Methods). Finally, in order to explore whether including dynamical properties of
fMRI time series in FC could improve the match with SC, we considered a fourth FC metric
relying on a first-order multivariate autoregressive model of the fMRI time series, as this model
was found to concisely capture fMRI dynamics (Liégeois et al., 2017). Autoregressive-based
FC, or AR-based FC, is defined as the symmetric part of this autoregressive model parameter
in order to make the comparison with SC, which is by definition symmetric, more meaning-
ful. When data from different runs or subjects are concatenated, the autoregressive model is
identified from the concatenated time series, neglecting points corresponding to transitions
between different runs or subjects (Casorso et al., 2019). Group-level matrices corresponding
to these FC metrics are shown in Supporting Information Figure S7.
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Exploring anatomical relevance of functional connectivity measures

Computing the Match Between SC and FC

Followingmethodology in previousworkexploring the linkbetween brain function and anatomy
(e.g., Honey et al., 2009), the match between SC and FCmatrices, denoted by ρ, was evaluated
from the correlation between their vectorized upper triangular parts:

ρ = corr(FC⊲, SC⊲), (1)

where the operator ⊲ transforms a matrix into a vector containing its upper triangular entries.
The diagonal entries of FC and SC matrices are not used by this operator as the diagonal
entries of some FC measures do not encode relevant information (e.g., they are all equal to
1 for correlation-based FC). The SC-FC match ρ was computed using all off-diagonal SC and
FC entries. Supporting Information Figure S3 shows that our main findings still hold when the
SC-FC match is computed using only nonzero SC (and corresponding FC) entries (Supporting
Information Figure S3A-C), or when SC entries are not normalized by the corresponding ROIs’
volumes (Supporting Information Figure S3D). Finally, we used absolute values of FC matrices
to compute the match with SC in Equation 1 because, in the same way SC cannot be negative,
the sign of FC entries is not meaningful in terms of ‘strength’ of a statistical dependence.

In order to evaluate the SC-FC match when using more data than what is available for a
single subject (i.e., ∼1 hour), we concatenated data of different subjects (e.g., S. M. Smith,
Vidaurre, et al., 2013). More precisely, in order to evaluate the SC-FC match when using sev-
eral hours of data, we concatenated functional time series coming from K randomly chosen
subjects where K is chosen so as to match the required number of hours. FC metrics are com-
puted from these concatenated time series and the SC matrix is the average of the SC matrices
of these K subjects. This procedure is repeated 100 times in order to estimate the mean and
standard deviation of the match between SC and FC using several hours of functional time
series (e.g., Figure 2C). Note that when considering, for example, 20 hours of time series, the
corresponding 100 samples are not independent as the total amount of data available to gen-
erate 100 samples of 20 hours is approximately 92 hours. In that case, the sample standard
deviation of the SC-FC match underestimates the true standard deviation and we used the
Jackknife framework to correct for this in Figure 2C (Efron & Tibshirani, 1986).

Beyond Intuition: A Model of Brain Structure-Function Interactions

Intuition that the SC matrix should be compared to precision-based FC rather than correlation-
based FC can be theoretically supported by relying on an Ornstein–Uhlenbeck based model
(Timme& Casadiego, 2014; Uhlenbeck &Ornstein, 1930) to represent brain structure-function
interactions (Fernández Galán & Galán, 2008; Gilson, Moreno-Bote, Ponce-Alvarez, Ritter, &
Deco, 2016; Gu et al., 2017):

ẏt = B · yt + xt, (2)

where yt is a vector encoding the functional signal measured in all ROIs, xt is a vector en-
coding the driving input noise in all ROIs, and B is a negative semidefinite matrix encoding
the connections between all pairs of ROIs. It can be shown that when the driving noise xt can
be represented by white Gaussian noise, we have Σ ∝ B−1, or equivalently Σ

−1
∝ B, where

Σ is the correlation matrix of the signal yt (e.g., Oku & Aihara, 2018). In other words, in a
system where the link between the dynamics encoded in yt and the underlying structure B is
governed by Equation 2, the entries of the structural matrix B and the precision matrix of yt

are perfectly correlated.
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Exploring anatomical relevance of functional connectivity measures

Figure 2. Structural connectivity is best reflected by functional connectivity (FC) evaluated from the (regularized) precision matrix, that is,
precision-based FC. (A) Structural connectivity (SC) encodes the strengths of the anatomical links (i.e., white matter tracks) between pairs of
cortical regions. Functional connectivity (FC) encodes the statistical dependence between functional activity in pairs of cortical regions. (B)
Correlation between SC and FC evaluated using Equation 1 and estimating FC from the precision matrix (dark blue), the regularized precision
matrix (‘R-precision’, light blue), the correlation matrix (red), and the autoregressive matrix (green) in original, filtered, and deconvolved fMRI
time series using the four runs for each subject (∼1 hour of scanning). Bar plots represent distributions over the 100 subjects. (C) Mean and
standard deviation of correlation between SC and FC as a function of the duration of the original time series used to build FC.

The model of Equation 2 assumes linearity of brain structure-function interactions and is
therefore not expected to fully reflect the complex nature of functional dynamics (e.g., Deco,
Jirsa, Robinson, Breakspear, & Friston, 2008; Stephan et al., 2008). Yet, it can be used to further
characterize the nature of functional dynamics and the underlying anatomy. We show in the
Supporting InformationMethods that when the timescale of driving dynamics xt is significantly
slower than the information exchange through the underlying anatomical backbone (in that
case xt cannot be modeled by white noise), we have Σ ∝ B−2, and the optimal estimator of
the underlying graph structure B is Σ

−
1
2 (Supporting Information Equation S6). More precisely,

the exponent value β giving the best match between Σ
β and B encodes information about the

relative timescales of internal driving noise and information exchange on the structural back-
bone in Equation 2. In Figure 4 we show the optimal value of β at the whole-brain level and in
different resting-state networks. To this end we computed the match between the correspond-
ing SC and FC matrices, where FC is evaluated from Σ

β, Σ is the functional correlation matrix,
and β is varied between −3 and 3. The case β = 1 corresponds to using correlation-based
FC, and β = −1 corresponds to using precision-based FC. Finally, note that in the case where
the structure-function link can be represented by an Ising model, the optimal estimator of the
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Exploring anatomical relevance of functional connectivity measures

underlying graph structure is obtained by thresholding the entries of the empirical correlation
matrix Σ (Montanari & Pereira, 2009, Theorem 1.1).

Model 2 can also be used to further characterize brain anatomy. Indeed, the structural
matrix B can be expressed as:

B
∆
= D + S, (3)

where D is a diagonal matrix and S contains only zeros on its diagonal. Following Equation 2,
it can be seen that the entries of D are proportional to the diagonal entries of the precision
matrix Σ

−1, which allows one to estimate the relative intensity of anatomical self-connections
within each ROI (Figure 5).

Finally, note that the precision matrix and partial correlations are linked as follows:

σi,j = −

(Σ−1)i,j

(Σ−1)i,i(Σ−1)j,j
, (4)

where σi,j is the partial correlation between variables i and j. Hence, partial correlations also
encode ‘direct’ connections between the variables and can be seen as a standardized, or nor-
malized, version of the information contained in the precision matrix (Whittaker, 2009). We
preferred using the precision matrix as a measure of ‘direct’ statistical dependencies mainly be-
cause the diagonal entries of this matrix encode information on the anatomical self-connections
within each variable, as explained here above (see Discussion for more details).

RESULTS

Precision-Based FC Best Captures SC

We first explore the correlation between SC and FC evaluated from four metrics of fMRI time
series: (i) correlation, (ii) precision, (iii) regularized precision, and (iv) autoregressive matrices.

It can be seen from Figure 2B that (regularized) precision-based FC has the best match with
the underlying anatomy encoded by the SC matrix. Using the original (i.e., unfiltered) fMRI
time series, the correlation between SC and precision-based FC is 0.39 on average over the 100
subjects and 0.44 in the regularized case, whereas it is 0.24 and 0.23 when using correlation-
based FC and AR-based FC, respectively. A similar trend is observed when using filtered fMRI
time series or when the four FC metrics are computed from deconvolved time series. Note
that the SC-FC match using correlation-based FC (0.24) is smaller than what was observed
in other studies using the same FC metric (e.g., Honey et al., 2009) found SC-FC coupling
values between 0.3 and 0.5). This difference might result from the way the SC-FC match is
computed: for example, considering only non-zero SC entries to evaluate the SC-FC match, as
in Honey et al. (2009), yields coupling values around 0.37 (Supporting Information Figure S3B
and S3C). Then, the poor performance of AR-based FC in the filtered case is expected because
autoregressive models perform poorly on filtered time-series, as observed in previous work
(e.g., Casorso et al., 2019). Finally, the results in the ‘deconvolved’ case suggest that removing
the effect of the hemodynamic response function does not affect the advantage of precision-
based FC over the two other FC metrics.

Figure 2C shows the SC-FC correlation as a function of the duration of the fMRI time se-
ries used to compute the four FC metrics. When few samples are available, AR-based and
precision-based FC measures perform poorly because they both involve the inversion of a ma-
trix that is close to rank deficiency (Stoica & Moses, 2005). In that case, the best match to SC
is provided by the regularized precision matrix, which performs better than correlation-based
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FC even when using 5 minutes of functional data (with a TR of 0.72 sec). When increasing the
amount of data to estimate FC metrics, the impact of regularizing the precision matrix estimate
decreases, and when 1 hour of data is used both regularized and unregularized precision-
based FC outperform correlation-based FC (p < 10−6, two-tailed t test). This case corresponds
to using the four runs for each subject and is detailed in Figure 2B. More important is the fact
that when concatenating data from different subjects for an increasing number of hours, the
match between (regularized) precision-based FC and SC keeps increasing to reach values of
ρ > 0.60, which confirms the fact that the precision matrix is a more meaningful measure of
FC for SC-FC comparisons. When using AR-based FC, the match to SC follows a similar trend
even if ρ is systemically smaller than for precision-based FC. On the contrary, the average
match between correlation-based FC and SC tends to plateau around ρ = 0.28 when a few
hours of functional data are used, while ρ = 0.20 when using 5 minutes of data. We finally
note that using the same number of fMRI time points but with a larger repetition time (TR),
precision-based FC and correlation-based FC estimates have a better match to SC, whereas
AR-based FC is less correlated with SC (Supporting Information Figure S5). This is explained
by the fact that fMRI time points carry less redundant information when the sampling period TR
increases, which is beneficial for the estimation of the correlation and precision matrices, but
penalizes the estimation of the AR-based metric because it exploits autocorrelation of time se-
ries. Obviously, considering longer repetition times also comes at the price of longer scanning
sessions for a given number of time points.

SC-FC Match is Stronger in Primary Sensory and Motor Networks

In Figure 3, we explore the nature of the SC-FC correlation in seven resting-state networks
defined in B. T. T. Yeo et al. (2011) using four runs for each subject. In the visual network
the group-averaged correlation between SC and precision-based FC is 0.57, whereas it is 0.19
in the limbic network. Networks are shown from left to right with decreasing values of the
match between SC and precision-based FC. It can be seen that primary sensory and motor net-
works exhibit a better SC-FC match than networks that are involved in more abstract cognitive
functions such as the default mode network.

On the Nature of SC-FC Dynamics

In previous results we have considered the match between SC and correlation-based FC, which
uses the correlation matrix of fMRI time series as an FC marker, and precision-based FC, which
relies on the inverse of the fMRI correlation matrix. In other words, we compute the match
between SC and FC using two different exponents of the fMRI correlation matrix (1 and −1,
respectively) to estimate FC. In Figure 4, we explore the SC-FC match when FC is evaluated
using various exponents of the fMRI correlation matrix.

It can be observed from Figure 4A that at the whole-brain level, the exponent value of the
fMRI matrix that provides the best match to SC is around −0.7. This optimal value is also
found to be different for different resting-state networks, which also finds an interpretation in
terms of timescales of the driving functional dynamics happening in different networks. Indeed,
following Supporting Information Equations S5–S7 and Figure S1, results of Figure 4B suggest
that internal driving dynamics in the visual network happen at faster timescales than internal
dynamics in other networks because the optimal exponent in the visual network is the closest to
−1. Note that these properties seem to be reproduced at the subject level when using a typical
acquisition time around 15 minutes (Supporting Information Figure S6). Finally, we explored
the link between the whole-brain optimal exponent of each subject and behavioral measures
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Figure 3. Correlation between SC and precision-based FC (dark blue), regularized precision-based
FC (‘R-precision’, light blue), correlation-based FC (red) and the AR-based FC (green) computed
from unfiltered fMRI time series in seven resting-state networks of B. T. T. Yeo et al. (2011): visual
(VIS), somato-motor (SM), dorsal-attentional (DA), fronto-parietal (FP), limbic (LIM), and default
mode networks (DMN). Bar plots represent distributions over the 100 subjects; mean (median) is
represented by the circle (horizontal) line, rectangles cover the first to third quartiles, dotted lines
cover 1.5 times the rectangle range, and elements out of this range are represented by gray triangles.

Figure 4. Correlation between SC and FC evaluated from various exponents of the correlation
matrix of fMRI time series concatenated over the 100 HCP subjects. (A) When using whole-brain
data, the optimal exponent is around−0.7. (B) Optimal exponent when using only data in the seven
resting-state networks of B. T. T. Yeo et al. (2011).

including bodily, cognitive, and task performance measures but did not find significant links
(Supporting Information Figure S4).

Intensity of Anatomical Self-Connections

When we compare SC and FC matrices, we only use the upper triangular parts of the corre-
sponding matrices, neglecting their diagonal entries. We note from Equation 3 that the diago-
nal entries of the structural matrix are accessible from the diagonal entries of the FC estimator.
These values are shown in Figure 5 when the precision matrix is used to estimate FC (similar
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Figure 5. Diagonal entries of the precision matrix of fMRI timeseries suggest that stronger anatom-
ical self-connections (i.e., ‘self-loops’) take place within the visual and sensory-motor regions.

results are obtained when the optimal FC estimator is used, i.e., Σ
−0.7). It can be seen that

visual and motor areas exhibit stronger anatomical self-connections.

DISCUSSION

The match between FC, usually evaluated from the correlation matrix of fMRI time series,
and SC has been highlighted in various studies (e.g., Honey et al., 2009; Messé et al., 2015;
M. P. van den Heuvel, Mandl, Kahn, & Hulshoff Pol, 2009). We show that estimating FC from
the precision matrix allows more meaningful SC-FC comparisons, while also providing further
insights into the nature of functional dynamics.

Conditions to Estimate the Precision Matrix

We have seen that the precision matrix provides a more natural FC estimate for SC-FC compar-
isons than correlation. Precision-based FC was also shown to provide better prediction scores
than correlation-based FC for some diseases and phenotypic measures (Dadi et al., 2019;
Pervaiz et al., 2020; S. M. Smith, Vidaurre, et al., 2013). However, one important drawback
of the precision matrix as compared to the correlation matrix is its estimation. Indeed, the
precision matrix relies on the inversion of the correlation matrix which might be an unstable
operation when not enough time points, as compared to the number of variables, are available
to estimate the correlation matrix (Brier et al., 2015; S. M. Smith, Vidaurre, et al., 2013). This
results in poor precision matrix estimates when using few data points (e.g., dark blue curve in
Figure 2C). To overcome this limitation we used Tikhonov regularization, which allows for bet-
ter precision matrix estimates, especially when using few data points (light vs. dark blue curve
in Figure 2C). Our results suggest that the advantage of using (regularized) precision-based FC
over correlation-based FC appears when using at least as many time points as variables, that
is, ROIs or voxels. This precludes using the precision matrix in voxel-based studies, while
in atlas-based studies a few hundred time points should be sufficient to estimate precision-
based FC matrices having a better match to SC than correlation-based FC. Note that other
regularization approaches have been proposed such as L1 regularization (Friedman, Hastie, &
Tibshirani. 2008; S. M. Smith et al., 2011; Varoquaux, Gramfort, Baptiste Poline, & Thirion,
2010), Ledoit–Wolf shrinkage (Deligianni, Centeno, Carmichael, & Clayden, 2014), or
population-based shrinkage (Rahim, Thirion, & Varoquaux, 2019). Future work will explore
whether such approaches provide better precision matrix estimates, and would ideally also
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need to account for the type of noise inherent to fMRI signals (Liu, 2016; Niazy, Xie, Miller,
Beckmann, & Smith, 2011). Then, similar limitations apply to the estimation of autoregressive
models from fMRI time series as this identification also relies on a matrix inversion (Stoica &
Moses, 2005). The fact that the match between AR-based FC and SC is systematically lower
than when using precision-based FC (Figure 2B and 2C) suggests that while AR-based FC cap-
tures behaviorally relevant functional dynamics (Liégeois et al., 2019), these dynamics might
be too complex to be reflected by the underlying brain anatomy. Finally, quite intriguing is the
fact that the match between SC and (regularized) precision-based FC keeps increasing even
when using up to 50 hours of functional time series by concatenating data from several sub-
jects (Figure 2C). Besides further supporting precision-based FC as a more meaningful metric
to be compared to SC, this observation raises other questions. First, it is unclear whether this
trend results from averaging effects that remove individual specificities or only from improved
precision matrix estimates. One way to test this is to compute the match between precision-
based FC and SC using 10, 20, or 50 hours of functional data acquired on a single subject
and compare these results to the ones presented in Figure 2C. Such amounts of functional data
are not available in the HCP dataset for a single subject, hence we performed this experiment
using 1 hour of functional data. Our results suggest that averaging structural and functional
connectomes indeed slightly increases the SC-FC match (Supporting Information Figure S8).
Second, the nature of the SC-FC coupling when using more than 50 hours of data could be fur-
ther explored. When concatenating data from all 100 subjects (∼92 hours, results not shown
in Figure 2C) the match between precision-based FC and SC is 0.655, as compared to 0.643
when using 50 hours of data and 0.619 when using 25 hours of data (Figure 2C, dark blue
curve). In other words, while the match between precision-based FC and SC keeps increasing
when using more than 50 hours of functional data, the rate of increase gets lower, which might
indicate the presence of an upper bound to this match.

Related Metrics and Methods

The precision matrix and partial correlations are linked through Equation 4. We preferred
using the precision matrix for two reasons. Most importantly, unlike the partial correlation
matrix, the diagonal entries of the precision matrix are in general different from one, which
might carry information on the nature of the internal properties of each variable, as illustrated
in Figure 5. Then, the signs of the entries of the precision and partial correlation matrices
are opposite, but we believe that this sign is not meaningful in terms of the strength of a
statistical dependence, which is why we use the absolute values of FC entries when comparing
SC and FC matrices. We note that when not taking the absolute values of the entries in the FC
matrices, the SC-FC match is strongest when FC is evaluated from −Σ

−1, as suggested from
Supporting Information Equation S5. Our results also find a deeper echo in recent work using
graph signal processing tools to show that correlation-based FC can be expressed as a sum
of anatomical ‘modes’ derived from SC eigenvectors (Abdelnour et al., 2018; Atasoy et al.,
2016). Indeed, since the inversion operation amounts to invert the eigenvalues of a matrix
while preserving its eigenvectors, finding a strong match between precision-based FC and SC
matrices suggests that both precision-based and correlation-based FC can be approximated by
a weighted sum of eigenvectors derived from SC. Similarly, finding an optimal SC-FC match
using an exponent of the correlation matrix around −0.7 is coherent with the inverse squared
relationship found between eigenvalues of SC and correlation-based FC in Robinson, Sarkar,
Pandejee, andHenderson (2014) or the negative exponential relationship identified in Abdelnour
et al. (2018).
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Graph theory metrics have also been widely used to characterize organization of FC matri-
ces as well as their links to SC (Bullmore & Sporns, 2009; Meunier et al., 2010; Mišić et al.,
2016). This is done by building a graph whose edges are defined by the entries of FC matri-
ces that are again most often estimated from the correlation between time series (Hallquist &
Hillary, 2019). However, most graph metrics were defined and are meaningful only if applied
on graphs with edges encoding conditional or ‘direct’ statistical connections (e.g., Koller &
Friedman, 2009; Whittaker, 2009). As an illustration, consider computing a path-length met-
ric on graphs defined from the mass-spring example of Figure 1. We expect this metric to
be largest between variables representing the first and the third mass. This is the case when
building the graph from the corresponding precision matrix, but might not be the case when
using the correlation matrix. Therefore, beyond being more relevant to explore the SC-FC link,
precision-based FC might also be considered in other cases such as the definition of functional
graphs.

What SC-FC Interactions Tell Us About Brain Function and Structure

Results of Figure 3 show that the SC-FC match is higher in primary sensory and visual networks
and lower in networks involved in more complex cognitive functions such as the default mode
network. In other words, the simple linear model linking brain anatomy and function presented
in Equation 2 better explains brain structure-function interactions happening in primary sen-
sory networks than in the default mode network where functional dynamics are likely to be
more complex. Beyond being characterized by a better SC-FC match, sensory networks were
also found to exhibit faster functional dynamics (Figure 4) which might reflect the nature of
sensory inputs processing. These results are consistent with recent findings showing that the
degree of decoupling between structure and function in a brain region reflects the complex-
ity of the cognitive functions in which the region is involved (Preti & Van De Ville, 2019).
Then, when ordering resting-state networks following a decreasing value of SC-FC match as in
Figure 3, the sequence of networks almost perfectly matches the main gradient of functional
cortical organization identified by Margulies et al. (2016), suggesting that the underlying brain
anatomy plays a key role in shaping this functional gradient. Finally, in Figure 5 we show that
precision-based FC can also be used to infer the intensity of anatomical self-connections within
each ROI. The distribution of these connections shown in Figure 5 strongly resembles the one
found byWang et al. (2019) who identified them, among other parameters, by inverting a non-
linear large-scale circuit model, thereby further supporting the relevance of precision-based
FC to explore SC-FC interactions.

Limitations and Future Directions

Using the precision matrix to evaluate FC allows moremeaningful comparisons with the under-
lying anatomy. This measure relies on the inversion of the correlation matrix and therefore only
captures linear statistical dependencies. Evaluating FC using nonlinear measures of statisti-
cal dependencies (Chai, Walther, Beck, & Fei-Fei, 2009; David, Cosmelli, & Friston, 2004;
Marinazzo, Liao, Chen, & Stramaglia, 2011) could help further bridge the gap between SC
and FC matrices. Alternative measures of functional dependencies could also exploit the spec-
tral structure—or equivalently the autocorrelation structure because of the Wiener–Khintchine
theorem (Wiener, 1930)—of the time series. While the autoregressive metric used in this work
only captures first-order autocorrelation information on the time series, one might exploit the
whole time series correlation structure from their power spectral density whose inverse also
captures conditional statistical dependencies (Brillinger, 2001). In this case the estimation is-
sue would be magnified by the fact that the entries of the matrix to be inverted are functions
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of the frequency instead of scalars (Liégeois et al., 2016), thereby also making the compar-
ison to SC less straightforward. Then, we proposed an FC metric that only captures ‘direct’
statistical dependencies in order to make the comparison to SC more relevant. Another way
to explore the SC-FC coupling would be to derive anatomical communication measures from
the structural connectome (e.g., using shortest path or percolation measures) that encode both
direct and indirect connections (Avena-Koenigsberger, Misic, & Sporns, 2017; Goñi et al.,
2014), thereby making the comparison with correlation-based FC more relevant. Finally, we
have focused in this work on FC metrics derived from fMRI time series. While the theoreti-
cal arguments presented here are general and do not rely on fMRI specificities, further work
is required to explore the extent to which our results also apply when FC is evaluated from
alternative functional neuroimaging modalities such as electro- or magnetoencephalography.

CONCLUSION

This work revisits the use of ‘direct’ statistical dependencies metrics such as partial correlations
or the precision matrix to evaluate FC when exploring the SC-FC match and provides practical
guidelines on the amount of data required to reliably estimate these metrics. For classical
atlas-based approaches, our results suggest that the advantage of (regularized) precision-based
FC over correlation-based FC is significant when the functional timeseries used to compute
these metrics contain more time points than variables (i.e., ROIs), which typically corresponds
to a 5-minutes acquisition. Moreover, the SC-FC match can be used to further characterize
functional dynamics and the underlying anatomical backbone. Overall, our work presents a
theoretical and practical motivation for using (regularized) precision-based FC in the context
of SC-FC comparisons, while also providing tools to interpret the nature of this link.
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