
TECHNICAL DEVELOPMENT

The recent development of radiomics has raised hope 
for improving the diagnostic, prognostic, and predic-

tive accuracy of radiologic examinations (1,2). Although 
several studies have reported improvement in diagnostic 
procedures and patient treatment using radiomics and sta-
tistical methods, such as machine learning (ML) (3), con-
cerns have arisen over the reproducibility of quantitative 
radiomic features (RFs) extracted from radiologic images 
(4). Numerous studies have revealed RFs to vary depend-
ing on the manufacturer, reconstruction algorithm, or even 
image characteristics, potentially resulting in the nonrepro-
ducibility of RFs (5–8).

RF reproducibility is an essential aspect of radiomic 
studies because the nonreproducibility of RFs may add 
noise to the data and thus dampen the studies’ statistical 
power, possibly resulting in false-negative findings (ie, type 

II statistical errors). Another worrisome consequence of RF 
nonreproducibility may consist in introducing confound-
ing factors in statistical models (eg, if all patients undergo 
chest radiography using a machine from a given manufac-
turer, and all controls without disease undergo radiography 
performed using a machine from another manufacturer), 
potentially resulting in false-positive findings (ie, type I 
statistical errors). However, the sources of the RF nonre-
producibility are likely to be difficult to control in clinical 
studies, especially when using a large multicenter design or 
retrospective cohorts, as is often the case in radiomic stud-
ies. Moreover, although concern about the potential lack of 
reproducibility due to intermanufacturer variability arose 
with respect to radiomic studies, this may similarly apply 
to deep learning research, as these algorithms are sensitive 
to subvisual patterns in images (9,10). Thus, a method that 
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Purpose:  To assess the contribution of a generative adversarial network (GAN) to improve intermanufacturer reproducibility of ra-
diomic features (RFs).

Materials and Methods:  The authors retrospectively developed a cycle-GAN to translate texture information from chest radiographs ac-
quired using one manufacturer (Siemens) to chest radiographs acquired using another (Philips), producing fake chest radiographs with 
different textures. The authors prospectively evaluated the ability of this texture-translation cycle-GAN to reduce the intermanufacturer 
variability of RFs extracted from the lung parenchyma. This study assessed the cycle-GAN’s ability to fool several machine learning 
(ML) classifiers tasked with recognizing the manufacturer on the basis of chest radiography inputs. The authors also evaluated the 
cycle-GAN’s ability to mislead radiologists who were asked to perform the same recognition task. Finally, the authors  tested whether 
the cycle-GAN had an impact on radiomic diagnostic accuracy for chest radiography in patients with congestive heart failure (CHF).

Results:  RFs, extracted from chest radiographs after the cycle-GAN’s texture translation (fake chest radiographs), showed decreased 
intermanufacturer RF variability. Using cycle-GAN–generated chest radiographs as inputs, ML classifiers categorized the fake chest 
radiographs as belonging to the target manufacturer rather than to a native one. Moreover, cycle-GAN fooled two experienced radiolo-
gists who identified fake chest radiographs as belonging to a target manufacturer class. Finally, reducing intermanufacturer RF vari-
ability with cycle-GAN improved the discriminative power of RFs for patients without CHF versus patients with CHF (from 55% to 
73.5%, P < .001).

Conclusion:  Both ML classifiers and radiologists had difficulty recognizing the chest radiographs’ manufacturer. The cycle-GAN im-
proved RF intermanufacturer reproducibility and discriminative power for identifying patients with CHF. This deep learning approach 
may help counteract the sensitivity of RFs to differences in acquisition.
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intermanufacturer reproducibility. We first developed a cycle-
GAN model to transfer the texture of chest radiographs among 
manufacturers. Then, we assessed the cycle-GAN’s ability to 
improve RF reproducibility, mislead both ML algorithms and 
radiologists into misclassifying the manufacturer of counterfeit 
(or fake) images, and modify the diagnostic performance of 
RFs in classifying disease on a heterogeneous dataset.

Materials and Methods
The study protocol was approved by the ethics committee of 
the Geneva State, with the reproducibility analysis pipeline dis-
played in Figure 1.

Training and Testing Datasets
A training dataset was retrospectively built by retrieving and pre-
processing 6528 consecutive upright frontal chest radiographs, 
both with normal and abnormal findings, obtained in 2017 at 
our institution using two different radiographic unit manufac-
turers: the Philips DigitalDiagnost (DD) (Best, the Netherlands) 
and the Siemens Fluorospot Compact FD (FCFD) (Erlangen, 
Germany). After developing our GAN model, an initial inde-
pendent testing dataset of 914 consecutive chest radiographs 
(including those with normal and pathologic findings, with 457 
chest radiographs from each manufacturer) was retrospectively 
collected for the same two manufacturers (see Appendix E1 
[supplement]). A second testing dataset of 200 chest radiographs 
was also retrospectively collected after GAN model development 
(see Appendix E1 [supplement]) to evaluate the hypothesis that 
cycle-GAN improves the classification of patients with or with-
out congestive heart failure (CHF) using RFs.

GAN Model
To perform texture translation between manufacturers, we used 
a cycle-GAN model adapted from Zhu et al (15). After train-
ing the cycle-GAN with  architecture similar to that of Zhu et 
al (15) (Fig 2 and Appendix E1 [supplement] for details), we 
obtained two generator networks that could translate chest ra-

counteracts changes in image texture at the image level due to 
differences in acquisition using platforms developed by differ-
ent manufacturers could improve the quality of both radiomic 
and deep learning studies, thereby dampening the risks of false-
positive and false-negative findings.

Recently, generative adversarial networks (GANs) have 
emerged with the ability to learn to mimic any kind of data 
distribution (11,12). They have been employed to transform 
an image from one source domain to a target domain, thereby 
generating, on the basis of photography, counterfeit images 
from a renowned painter (13,14). A specific kind of GAN 
called a cycle-GAN has been developed to translate texture 
at the image level (15). Here, we aim to leverage the recent 
development of GANs to perform texture translation at the 
image level on radiologic images acquired with units from 
different manufacturers with the objective to improve RF 

Abbreviations
CCC = concordance correlation coefficient, CHF = congestive 
heart failure, DD = Philips DigitalDiagnost, FCFD = Siemens 
Fluorospot Compact FD, fDD = fake DD image, fFCFD = fake 
FCFD image, GAN = generative adversarial network, ML = ma-
chine learning, nDD = native DD image, nFCFD = native FCFD 
image, RF = radiomic feature

Summary
A generative adversarial network accurately translates texture between 
manufacturers at image level on chest radiographs, reduces the 
intermanufacturer variability of radiomic features, and improves 
radiomic diagnostic accuracy, allowing for improving retrospective 
and multicenter radiomic studies.

Key Points
	n Image texture translation using a generative adversarial network re-

duces the intermanufacturer variability of radiomic features (RFs) 
extracted from chest radiographs and has the potential to improve 
radiomic diagnostic accuracy.

	n This texture translation, applied before RF extraction, may damp-
en the risk of systematic biases and improve the statistical power of 
retrospective and multicenter radiomic studies.

Figure 1:   Radiomic feature (RF) reproducibility analysis pipeline. A, A cycle-GAN was first trained to translate textures between manufacturers: Philips DigitalDiagnost 
(DD) and Siemens Fluorospot Compact FD (FCFD). B, Following texture translation, 92 RFs were extracted from lung parenchyma for each native and fake chest radiograph 
of an independent testing dataset. C, The intermanufacturer RF variability was compared between pairs of native and translated chest radiographs in this independent dataset 
computing the concordance correlation coefficient for each RF. fDD = fake DD image, fFCFD = fake FCFD image, GAN = generative adversarial network, nDD = native DD 
image, nFCFD = native FCFD image.
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Figure 2:  GAN model. A, An nDD is fed into a generator (GDDtoFCFD), which translates its texture to 
match the FCFD type, producing an fFCFD image, based on the discriminator feedback (DFCFD). B, The 
inverse translation is similarly performed on the basis of a second generator and discriminator pair (GFCFDtoDD 
and DDD, respectively). The two discriminators (DFCFD and DDD) are trained to identify native and fake im-
ages produced by their corresponding generators (GDDtoFCFD and GFCFDtoDD, respectively), providing quality 
feedback concerning the counterfeit images to their corresponding generator. The cycle-GAN network 
architecture is similar to the one used by Zhu et al (15), except for image input and output shape (here, 512 
× 512 pixels). DD = Philips DigitalDiagonost, DDD = DD discriminator, DFCFD = FCFD discriminator, FCFD = 
Siemens Fluorospot Compact FD, fDD = fake DD image, fFCFD = fake FCFD image, GAN = generative 
adversarial network, GDDtoFCFD = generator translating DD to FCFD, GFCFDtoDD = generator translating FCFD 
to DD, nDD = native DD image, nFCFD = native FCFD image.

after the GAN texture translation. We com-
puted RFs from the entire lung parenchyma 
of each chest radiograph using pyradiomics, 
extracting 92 default features (ie, without im-
age filtering or shape features; see Appendix 
E1 [supplement]) (16) and tested for a re-
duction in RF intermanufacturer variability 
before and after the GAN texture translation 
using the concordance correlation coefficient 
(CCC), as defined by Lin (17) (see Appendix 
E1 [supplement]). An RF with a CCC greater 
than or equal to 0.85 was considered a repro-
ducible feature, which was similar to the ap-
proach of Choe et al (18). As our GAN would 
translate the texture from one manufacturer 
to the other, we hypothesized that CCC 
would be improved when comparing one 
type of native chest radiograph with its paired 
fake cycle-GAN–generated chest radiograph 
(ie, nDD vs fDD; nFCFD vs fFCFD), as 
compared with the CCC between pairs of na-
tive or fake images (ie, nDD vs nFCFD or 
fDD vs fFCFD, respectively).

ML classification of the manufacturer.—
Given that GAN is likely to reduce the in-
termanufacturer difference between RFs, we 
hypothesized that ML classifiers trained to 
recognize the manufacturer of native chest 
radiographs would be misled when trying 
to identify the manufacturer of fake chest 
radiographs. Thus, we trained five common 
ML classifiers to enable them to identify the 

manufacturer using native chest radiographs based on the pre-
viously extracted 92 RFs. We then assessed the performance of 
these five ML classifiers in distinguishing the manufacturers of 
native and fake chest radiographs, using 10-fold cross valida-
tion (see Appendix E1 [supplement]). Correct manufacturer 
recognition was defined as the original manufacturer for na-
tive chest radiographs and target manufacturer for fake chest 
radiographs (eg, FCFD class for original DD image translated 
to FCFD by the GAN). Thus, if ML classifiers identified fake 
chest radiographs as belonging to the target manufacturer class 
instead of the original one, they would be considered to have 
been misled by the GAN texture translation.

Radiologic classification of the manufacturer.—Given that 
chest radiograph characteristics are likely to depend on im-
age features specific to each manufacturer, we hypothesized 
that experienced radiologists would accurately distinguish 
the manufacturer of native chest radiographs, yet be misled 
by GAN texture translation in recognizing the manufac-
turer of fake chest radiographs. To test this hypothesis, we 
asked two radiologists (S.P.M. and X.M., 12 and 19 years 
of experience) to review native and fake chest radiographs 
and to identify their manufacturer. The two radiologists 
were not involved in GAN model development and read 

diograph texture from a source manufacturer to a target one. The 
first generator translated a texture from the DD to the FCFD 
manufacturer by transforming an original chest radiograph from 
the DD set (native DD images [nDDs]) to match the FCFD 
type, producing a fake FCFD image (fFCFD) (Fig 2, A); the 
other generator performed the inverse texture translation, from 
FCFD to DD, producing fake DD images (fDDs) based on na-
tive FCFD images (nFCFDs) (Fig 2, B). We used these two gen-
erator networks to produce the fDDs and fFCFDs from chest 
radiographs of the testing set and to assess the quality of chest 
radiograph texture translation. Thus, we obtained two sets of 
457 fake chest radiographs using each manufacturer (fDDs and 
fFCFDs), paired with their respective sets of 457 images from 
the original dataset (nFCFDs and nDDs, respectively). We com-
puted a structural similarity index measure with 95% confidence 
intervals for all images of the testing set as a general indicator of 
the GAN cycle’s consistency (see Appendix E1 [supplement]). 
This similarity measure was calculated between each input and 
its reconstructed version (ie, the same image after passing se-
quentially through the two generators).

Reproducibility of RFs
We used original and fake chest radiographs from the first inde-
pendent testing set to compare RF reproducibility before and 
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parietal structures) by a senior resident in radiology (J.H., 4 
years of experience). We then assessed the performance of a 
support-vector-machine classifier in distinguishing chest ra-
diographs from patients with and those without CHF based 
on these 92 RFs, before (native RFs) and after (translated 
RFs) GAN texture translation, also using 10-fold cross vali-
dation. We also assessed the performance of the same clas-
sifier on the same 92 RFs after feature harmonization with 
ComBat (publicly available at https://github.com/Jfortin1/
ComBatHarmonization/tree/master/R), following methods 
described in the study by Orlhac et al (19), with manufac-
turer as a batch variable. Finally, we compared the classifica-
tion performance between native, translated, and ComBat 
RFs using the McNemar test. The study’s aim was to assess 
changes in CHF classification depending on the nature of 
the RFs (native RFs, translated RFs, or ComBat RFs) and 
was not a comparison between radiologist versus RF clas-
sification performance.

chest radiographs together to reach a consensus on manu-
facturer. During this task, radiologists were asked to identify 
the manufacturer, regardless of whether the image was pro-
cessed by the GAN or not (see Appendix E1 [supplement]). 
As for ML classifiers, the correct manufacturer recognition 
was defined as the original manufacturer for native chest 
radiographs and the target manufacturer for fake chest ra-
diographs. If radiologists identified fake chest radiographs 
as belonging to the target manufacturer type, they would be 
considered to have been misled by the GAN.

Improvement of Diagnostic Performance of RFs
We used native and fake chest radiographs from the sec-
ond independent testing set to compare the discriminative 
power of RFs before and after the GAN texture translation. 
We computed the same default 92 RFs from the first testing 
set, from a region of interest manually placed in the apex of 
the right lung (30-mm radius, not covering mediastinal or 

Figure 3:  Texture translation between radiographs from different manufacturers. A, Texture translation from the Philips 
DigitalDiagonost (DD) to the Siemens Fluorospot Compact FD (FCFD) with the original (left) and its corresponding fake (right) 
chest radiograph, shows between-manufacturer changes occurring at high spatial frequencies, with global thoracic structures 
hardly altered. B, Texture translation from the FCFD to the DD. fDD = fake DD image, fFCFD = fake FCFD image, nDD = native 
DD image, nFCFD = native FCFD image.
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radiographs during training. All 
ML classifiers showed good accu-
racy for identifying the manufac-
turer of native chest radiographs, 
with accuracies exceeding 95% 
(Table E2A [supplement]) and 
performed above chance level (P < 
.001; Wilcoxon signed rank tests). 
Interestingly, these ML classifiers 
were similarly accurate at distin-
guishing the manufacturer for fake 
chest radiographs but recognized 
the target manufacturers instead 
of the original ones. Thus, ML 
classifiers were misled by GAN 
texture translation as hypoth-
esized, providing further evidence 
that GAN accurately translates 
texture between manufacturers.

Radiologic Evaluation
As our GAN accurately translated texture between manufac-
turers, we hypothesized that radiologists would be misled by 
GAN texture translation when trying to identify the manufac-
turer of fake chest radiographs but would accurately identify 
the manufacturer of native chest radiographs. As hypothesized, 
we found that although radiologists correctly identified the 
manufacturer of native chest radiographs with 85.0% accuracy, 
they identified the target manufacturer for fake chest radio-
graphs 88.3% of the time for fDDs (vs nFCFDs) and 74.6% 
of the time for fFCFDs (vs nDDs) (Table E2B [supplement]). 
All of these classifications were performed above chance level 
(P < .001; permutation testing).

Improving Disease Classification
The discriminative power of RFs was compared before and after 
the GAN texture translation, as well as with the ComBat har-
monization method. Thus, a support-vector-machine classifier 
trained on native RFs showed an accuracy of 55% in discrimi-
nating CHF from non-CHF chest radiographs (sensitivity: 54%, 
specificity: 56%). This accuracy rose to 64.5% (sensitivity: 64%, 
specificity: 65%) for RFs after ComBat harmonization and to 
73.5% (sensitivity: 77%, specificity: 70%) for RFs after texture 
translation with GAN. Radiomic discriminative performance 
was significantly better when comparing native to translated RFs 
(x2: 18.78, P < .001) and native RFs to ComBat RFs (x2: 7.90, P 
= .005). Interestingly, diagnostic accuracy was significantly bet-
ter after GAN texture translation (translated RFs) as compared 
with ComBat RFs (x2: 4.01, P = .045).

Discussion
As RFs are sensitive to acquisition settings and protocols, they 
may be nonreproducible between different manufacturers. To 
counteract this issue, we developed a texture-translation deep 
learning algorithm that improves the intermanufacturer re-
producibility of RFs. By using three independent cohorts of 

Results

GAN Cycle Consistency
After GAN training, we observed a very high structural simi-
larity index measure for the independent testing set, support-
ing accurate intermanufacturer texture translation by the GAN 
(95% confidence intervals: DD manufacturer: 0.9943, 0.9947; 
FCFD manufacturer: 0.9947, 0.9950). As GAN focuses on 
texture translation, changes between the manufacturers mostly 
occurred at high spatial frequencies, whereas the objects’ global 
structures (eg, thorax shape) were hardly altered (see illustrative 
cases in Fig 3).

Reproducibility of RFs
RF reproducibility was assessed by measuring the CCC be-
tween RFs before and after GAN texture translation. A sum-
mary of the result groups by class of RF is available in Table 1, 
and a graphical representation of CCC for all RFs is available 
in Figures 4 and 5. Detailed results for all RFs are available in 
Table E1 (supplement). Among the 92 RFs, none were con-
sidered reproducible before texture translation (native chest 
radiographs), whereas 72.8% were considered reproducible 
after texture translation from nFCFDs to fDDs (alternative 
CCC threshold: 0.80: 83.7%, 0.85: 72.8%, and 0.90: 52.2%), 
and 79.3% of RFs were considered reproducible after texture 
translation from nDDs to fFCFDs (alternative CCC thresh-
old: 0.80: 85.9%, 0.85: 79.3%, and 0.90: 66.3%) (see Table 
2 for details).

Classification Using RFs
Given that the GAN model reduced the intermanufacturer 
difference of RFs, we tested the hypothesis that ML classifiers, 
trained to recognize the manufacturer based on RFs extracted 
from native chest radiographs, would be misled when trying 
to identify the manufacturer of fake chest radiographs, de-
spite their having never been explicitly exposed to fake chest 

Table 1: Concordance Correlation Coefficient between Manufacturers before and 
after Texture Translation

Radiomic Feature Class nDD vs nFCFD nDD vs fDD nFCFD vs fFCFD

First-order features 0.36 ± 0.07 0.82 ± 0.16 0.74 ± 0.24
GLCM 0.34 ± 0.07 0.91 ± 0.07 0.93 ± 0.04
GLDM 0.33 ± 0.06 0.91 ± 0.05 0.91 ± 0.04

GLRLM 0.31 ± 0.07 0.91 ± 0.06 0.91 ± 0.05
GLSZM 0.34 ± 0.08 0.87 ± 0.10 0.88 ± 0.10
NGTDM 0.32 ± 0.07 0.93 ± 0.05 0.93 ± 0.04

Note.—Data are means ± standard deviations of the concordance correlation coefficient of 
radiomic feature classes, for the comparison between manufacturers before and after texture 
translation. DD = Philips DigitalDiagonost, FCFD = Siemens Fluorospot Compact FD, fDD 
= fake DD images (ie, FCFD images translated into DD image texture type), fFCFD = fake 
FCFD images (ie, DD images translated into FCFD texture type), GLCM = gray-level co-
occurrence matrix, GLDM = gray-level dependence matrix, GLRLM = gray-level run length 
matrix, GLSZM = gray-level size zone matrix, nDD = native DD images, nFCFD = native 
FCFD images, NGTDM = neighboring gray tone difference matrix.
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patients for model development and 
evaluation, we have shown that GAN 
texture translation can reduce the in-
termanufacturer variability of RFs and 
improve the discriminative power of 
RFs for specific diseases as compared 
with other methods for improving RF 
reproducibility.

The nonreproducibility of RFs, due 
to intermanufacturer variability, is an 
essential concern in radiomic studies 
and, possibly, in deep learning research 
(20,21). Large multicenter studies are 
often performed using different radio-
logic materials or in a clinical setting, 
restricting the use of standardized im-
aging materials or protocols. This non-
reproducibility of RFs may result in 
studies with lower statistical power and 
potentially false-negative findings or, 
on the contrary, to systematic biases in 
statistical models and potentially false-
positive findings. Herein, we have pro-
vided evidence that GANs can translate 
texture between the manufacturers of 
chest radiographs, that this texture 
translation significantly improves the 
intermanufacturer reproducibility of 
RFs, and that it improves disease clas-
sification accuracy based on RFs, as 
compared with other methods for correcting RF variability. This 
texture translation even managed to mislead both radiologists 
and ML classifiers trying to identify the manufacturer, as based 
on the visual image inspection or RFs, respectively. The latter 
is of particular interest because many radiomic studies use ML 
methods based on RFs to make predictions from radiologic im-
ages. Finally, we showed that RFs after texture translation have 
higher discriminative power for identifying patients with CHF, 
as compared with both native RFs and RFs harmonized with 
compensation methods. Altogether, texture translation, using 
GANs, can reduce the intermanufacturer RF variability and im-
proves diagnostic accuracy, which may improve retrospective or 
multicenter radiomic studies by dampening their risk of system-
atic biases and improving their statistical power.

An essential advantage of texture translation using GANs lies 
in its ability to work at an image level; it is thus agnostic to the 
kind of processing performed at a later time point on radiologic 
images. This contrasts with other methods developed to improve 
RF reproducibility by acting directly on individual RFs, such as 
compensation methods (19,22,23). This way, we anticipate that 
texture translation using GANs may be valuable for image analy-
sis methods beyond radiomics, such as deep learning, because it 
directly corrects potential biases at an image level. Indeed, deep 
learning algorithms are susceptible to subvisual image features, 
which can bias the classification process (9,10).

Several important limitations should be noted. One of the 
major GAN drawbacks lies in the technical requirement needed 

to develop a model and in its potential failure cases (15). These 
failure cases can make the model incapable of generating a wide 
variety of images after training (model collapse) or they may pre-
vent the generator and discriminator from reaching equilibrium 
during training (convergence failure), thus preventing proper 
texture translation. Because of the growing interest in radiomics, 
deep learning, and other qualitative imaging techniques, manu-
facturers could readily implement the development of texture-
translation GAN models (eg, with translation toward a common 
texture type). We also did not observe failure cases in our two 
testing datasets, which might be due to the fact that chest radio-
graphs are less prone to failure, thanks to their better homoge-
neity compared with images typically used to train GANs (eg, 
the natural images used in Zhu et al’s study [15]). Second, chest 
radiograph resolution was downsampled to 512 × 512 pixels 
because of the computational resources of GAN development 
on large images. This is likely to result in loss of information 
and performance degradation during the GAN evaluation we 
performed. Third, our study focused on standard radiography, 
whereas most radiomic studies employ either CT or MRI. This 
constraint was due to the current difficulty in developing GAN 
models on large three-dimensional images, notably because of 
computational resources. Fourth, reproducibility of the RFs was 
assessed over the entire lung parenchyma, whereas these fea-
tures are usually extracted from well-defined lesions. In a future 
study, we wish to apply our method on a cohort with benign and 
malignant lung lesions to evaluate the contribution of texture 

Figure 4:  Distribution of the concordance correlation coefficient between the two manufacturers before and after 
texture translation. fDD = fake Philips DigitalDiagonost image, fFCFD = fake Siemens Fluorospot Compact FD image, 
nDD = native Philips DigitalDiagonost image, nFCFD = native Siemens Fluorospot Compact FD image.  
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Figure 5:  Concordance correlation coefficient (CCC) heatmap for all radiomic features (RFs) before and after texture translation. The heatmaps 
display the CCC of all RF groups by classes of RF. In each RF class, the left column (framed in orange) compared native RFs (ie, nDDs to nFCFDs). The 
two other columns (framed in red) compared native to translated RFs (ie, nDDs to fDDs and nFCFDs to fFCFDs). Numerical values of CCC for all RFs 
are available in Table E1 (supplement). DD = Philips DigitalDiagonost, FCFD = Siemens Fluorospot Compact FD, fDD = fake DD image, fFCFD = fake 
FCFD image, GAN = generative adversarial network, GLCM = gray-level co-occurrence matrix, GLDM = gray-level dependence matrix, GLRLM = 
gray-level run length matrix, GLSZM = gray-level size zone matrix, nDD = native DD image, nFCFD = native FCFD image, NGTDM = neighboring 
gray tone difference matrix.

translation in a clinical diagnostic task. Fifth, the evaluation of 
our GAN model to improve diagnosis of CHF is preliminary, 
and the reported performance is suboptimal in a clinical con-
text. Further studies are therefore needed to evaluate how texture 
translation leads to diagnostic improvement. Given the interest 
in and rapid development of deep learning and GANs in par-
ticular, we anticipate that sufficient computational resources will 
be made rapidly available to perform texture translation on CT 
and MR images, based on our work on two-dimensional radio-
logic images.

In conclusion, a GAN is capable of translating textures be-
tween manufacturers and improving intermanufacturer RF 
reproducibility. By working directly at the image level, this 
technique improves the intermanufacturer concordance of 
RFs extracted from chest radiographs and has the potential to 

improve radiomic diagnostic accuracy. Our work on two-di-
mensional radiologic images could serve as a basis for developing 
three-dimensional texture translation GANs aimed at improv-
ing statistical models in retrospective or multicenter quantitative 
radiologic studies.
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Table 2: Number of Radiomic Features Meeting Criteria for Reproducibility before and after Texture Translation

CCC Threshold

nDD vs nFCFD nDD vs fDD nFCFD vs fFCFD

0.80 0.85 0.90 0.80 0.85 0.90 0.80 0.85 0.90

First-order features 0 0 0 50 50 50 50 50 50
GLCM 0 0 0 91.3 78.3 60.9 100 91.3 73.9
GLDM 0 0 0 100 78.6 42.9 100 85.7 78.6
GLRLM 0 0 0 100 87.5 56.2 100 87.5 62.5
GLSZM 0 0 0 75 68.8 37.5 75 75 62.5
NGTDM 0 0 0 100 80 80 100 100 80

Note.—The table displays the proportion of radiomic features (%) meeting criteria for reproducibility before and after texture trans-
lation, with several alternative CCC thresholds (80%, 85%, and 90%) for the comparison between manufacturers before and after 
texture translation. CCC = concordance correlation coefficient, DD = Philips DigitalDiagonost, FCFD = Siemens Fluorospot Compact 
FD, fDD = fake DD images (ie, FCFD images translated into DD image texture type), fFCFD = fake FCFD images (ie, DD images 
translated into FCFD texture type), GLCM = gray-level co-occurrence matrix, GLDM = gray-level dependence matrix, GLRLM = gray-
level run length matrix, GLSZM = gray-level size-zone matrix, nDD = native DD images, nFCFD = native FCFD images, NGTDM = 
neighboring gray tone difference matrix.
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