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ABSTRACT

Recently, we proposed a two-step adaptive strategy for
the statistical analysis of brain connectivity that is based on
a first screening at the subnetwork level and a filtering at the
connection/node level. The method was shown to guaran-
tee strong control of type-I error through rigorous statistical
proofs. In addition, the gain of power obtained by this method
is considerable especially with an appropriate decomposition
of the global network. Here, we discuss the extension of the
two-step methods to multivariate statistics and we compare
its performance against both standard methods and univari-
ate two-step methods. We present as well a practical example
of detecting topological nodal differences between functional
connectivity matrices of resting state and movie-watching, re-
spectively.

Index Terms— Neuroimaging, brain networks, func-
tional connectivity, type-I error control, graph theory.

1. INTRODUCTION

Statistical inference and graph theory are two important el-
ements of the emerging field of neuroscience called connec-
tomics, in which brain connectivity is represented by a net-
work (a weighted graph), where nodes represent brain regions
and edge weights represent a certain measure of the strength
of connectedness between pairs of nodes [2, 3, 4]. When com-
paring brain networks at the node/edge level, a large number
of tests has to be performed and the type-I error rate, such as
the family-wise error rate or the false discovery rate, has to
be controlled by applying a multiple testing procedure. One
important aspect that should be considered when comparing
brain networks is the data structure and the positive depen-
dence that might be present between tests. Connected brain
regions (nodes) are reported to behave coherently [5, 6]. Fur-
thermore, prior information about the dependence structure
between tests could be available in some situations. In re-
cent work, we developed two-step procedures that exploit the
data structure and prior information of positive dependence
between tests [7, 8, 9, 1]. The proposed procedures work
as the following. First, we group the global set of tests into
subsets either by respecting the data structure or according

This work was supported in part by the Swiss National Foundation (grant
number PPO0P2-146318), and in part by the Center for Biomedical Imaging
(CIBM) of the Geneva-Lausanne Universities and the EPFL, as well as the
Leenaards and Louis-Jeantet foundations.

978-1-4673-1961-4/14/$31.00 ©2014 IEEE

to prior information, and we apply a first screening at a pre-
defined threshold using the mean as a summary statistic for
each subset. This screening results in two types of subsets;
positive subsets and negative subsets. According to this typ-
ing, the original p-values are modified such that they can be
used with any multiple comparison procedure to control the
desired type-I error rate. We investigated the performances
of the new procedures using different screening thresholds in
different simulation scenarios in which the new procedures
showed great improvements in terms of power.

In this paper, we discuss the extension of the two-step meth-
ods to the multivariate case, that is, in situations where p-
values are computed on the basis of a vector of values for
each node instead of a single value. The multivariate tests
exploit the hidden dependence between the different univari-
ate measures. The extension is proposed for both paired and
non-paired multivariate tests. We also present an application
of univariate and multivariate two-step methods to compare
functional brain networks computed within subjects in two
different mental states; i.e., resting state and movie-watching.

2. METHODS

2.1. Description of the study

The study consists in detecting topological differences in
functional connectivity between two mental states; i.e., rest-
ing state (RS) and movie-watching (MW). The study is car-
ried out on functional brain connectivity matrices of healthy
subjects [10]. A functional connectivity matrix is a square
matrix where rows/columns correspond to brain regions (i.e.,
90 regions from the AAL atlas [11]) and each element repre-
sents a value of the functional connectivity between the pair
of brain regions, typically Pearson correlation between the
associated timecourses [12]. This value is situated between
—1 and +1, and is estimated by the correlation between
functional time series measured on each brain region. In our
study, we only considered values that are larger than a prede-
fined positive threshold U = 0.1 or U = 0.2. Although the
choice of these values is somehow arbitrary but it permits to
highlight the influence of thresholding on the inference. For
more discussion see [9].

2.2. Nodal graphical measures

Here, we consider multivariate nodal measures, that is, for
each node in the brain network, a vector of g nodal topological
measures is estimated. A quite different nodal approach based
on classification has been proposed in [13]. One could also



use multivariate connection measures.

In our study, we used two nodal measures (¢ = 2). The first
measure is the nodal strength (NS), which is defined as the
sum of the weights of the edges connected to that node. It is
computed by the sum of row/column values corresponding to
that node in the connectivity matrix. The second measure is
the nodal efficiency (NE), which is the inverse of the average
minimum weighted path length from that specific node to the
other nodes.

2.3. Inference for paired multivariate inference

Suppose that the global set of nodes is indexed by 7 € J =
{1,...,M}. When comparing two populations of sizes n;
and ng respectively, we modal the original data in the follow-
ing form. Let x;i be a vector of length g, which represents
the nodal measures of node j and for subject k = 1,...,n,
in the first group, and similarly, let y;x be a vector of size
q, that represents the nodal measures of node j, for subject
k =1,...,n9 in the second group.

For both paired and non-paired multivariate tests, the hypoth-
esis testing p-values are computed with the Fisher distribution
F, according to the Hotelling theorem.

In the paired case, we have n; = ny = n and we consider the
differences

Djx = Xjx —yjk, forj=1,...,Mandk=1,...,n.

Suppose that E(Dji) = &; and Cov(Djk) = ¥;. The j** null
hypothesis is that the measures have the same mean, that is,
d; = 0 and the alternative is that there is a difference for at
least one measure among the ¢ measures. In addition, if we
assume for each j = 1,..., M that Djy,...,Dj, are inde-
pendent multivariate normal random variables with mean 0;
and covariance X;, then

T} = n(D; — &)"'S; (D — 4), ¢))

vxihere D; = _% > r—; Djk, and S;j ﬁ > he1(Dji —
D;)(Djx — D;)T, is distributed as an ((n — 1)g/(n —
q))Fy.n—q random variable. Hence, the ;" null hypothe-

ses is rejected at level « if the observed score T]-Q satisfies

2 (n—1)g
Y > Sy Fam—al@). 2
or equivalently, if the associated p-value
pj=P <T2 > Tf) 3)

is less than «, where T2 is distributed as an ((n — 1)g/(n —
q))Fy,n—q random variable.

We compute the z-score Z;, associated to the p-value p; us-
ing the transformation Z; = ®~1(1 — p;), where ® denotes
the standard normal cumulative distribution function.

The p-values corresponding to the null hypotheses are dis-
tributed as (or stochastically larger than) the uniform distri-
bution 2/(0, 1) and those corresponding to the alternative are
stochastically smaller than {(0, 1). The null hypotheses be-
come p; < 0 and the alternative hypotheses become p; > 0.
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2.4. Two-step methods

We group the M tests (or nodes) into m subsets Ji,..., Jm,
such that | J, J; = J. The decomposition is based on prior
information about the positive dependence between tests or is
obtained by using a data-driven decomposition method.

The two-step methods work as follows. The information in
each subset is summarised by a summary statistic; the stan-
dardised mean S; = > jes Zi /oi, where o; is the standard

deviation of the subset test scores {Z; : j € J;}. We com-
pute the p-values P;(i = 1, ..., m) corresponding to the sum-
mary statistics by P, = 1 — ®(.5;),i = 1,..., m. The central
limit theorem allows us to make this approximation especially
when the subset sizes become quite large.

The first step consists in applying a multiple testing proce-
dure to the subset p-values P; (¢ = 1,...,m) at a predefined
level. This screening results in two classes of subsets: posi-
tive subsets and negative subsets. Based on the results of the
first step, we perform a multiple testing procedure to control
the type I error rate at the level of single hypotheses. This
consists of the second step of two-step methods.

2.5. Relaxed two-step methods

The two-step procedures proposed in [8] do not require the
estimation of the conditional p-values. These two-step proce-
dures work as follows: we divide the original p-values inside
the positive (negative) subsets by a positive number called
the relaxation (tightening) coefficient and then perform a new
multiple testing procedure to the modified p-values. For a
fixed value of the tightening coefficient, the relaxation coef-
ficient is chosen sufficiently small such that the type-I error
rate is controlled at a predefined level a.

Concerning the screening in the first step of the relaxed meth-
ods, we used either a multiplicity correction or no correc-
tion. We call these methods Relaxed Method With Correction
(RMWC) and Relaxed Method with No Correction (RMNC)
respectively. In these two cases, we consider only positive
subsets in the second step. In a third case, we also investigate
inside the negative subsets. We call this the Relaxed Method
In/Out (RMIO). In this case, the tightening coefficient was set
to be 0.5 and we used a multiplicity correction in the first step.

2.6. Decomposition of the global set of nodes

We use two kinds of decompositions. The first one is a prior
decomposition based on brain lobes. The second is data-
driven decomposition in which the global set of nodes is par-
titioned into communities (subsets of nodes) by applying two
adaptive algorithms based on modularity maximisation. The
first one is the leading eigenvector (LEV) in which the mod-
ularity function is rewritten in matrix terms which leads to
express the optimisation task as a spectral problem in linear
algebra [14]. The second algorithm is called walktrap (WT)
which is based on the fact that random walks on graph tend to
get trapped into densely connected subgraphs corresponding
to communities [15]. The data-driven algorithms were only
applied to the control group (resting state group in our case)
average matrix to avoid any influence on the statistical infer-
ence.
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Fig. 1. Ilustration of the pipeline of the proposed strategy.

2.7. Correction for multiplicity

We use two different type-I error metrics; the expected num-
ber of false positives E(FP) and the false discovery rate
FDR = E (FP/R), where R is the number of rejections.
These two type-I error metrics are particular cases of the
scaled error rate E (FP/s(R)), where s is any non-deacrising
function [16]. To control the expected number of false posi-
tives, we used the Bonferroni procedure which performs each
single test at level ot/ M. The false discovery rate is controlled
by applying the linear step-up procedure (LSU) proposed in
[17]. The procedure consists in ordering the p-values from
smallest to largest and choose as a significance threshold the
largest p-value situated under the increasing line with slope
a/M.

The different steps of the proposed strategy are illustrated in
Fig. 1.

3. RESULTS AND DISCUSSION

We compared the performance of two-step methods (RMWC,
RMNC and RMIO) with the standard methods (SM) (that do
not consider positive dependence and data structure and per-
forms the multiple testing procedure on the original p-values)
in terms of significant results by considering three statistics:
nodal strength (NS), nodal efficiency (NE) and a combination
of both as a bi-variate statistic (BV). In tables 1 and 2, we re-
port the number of nodes declared to be significantly different
between RS and MW brain networks for two different val-
ues of the threshold U, using two multiple testing procedures,
Bonferroni and LSU. In each table, we report the number of
significant nodes either by using the SM or the two-step meth-
ods RMWC, RMNC and RMIO. For the relaxed methods we
give a value for each decomposition method: Lobes, WT and
LEV.

The results show the gain of the power of detecting real
differences when using two-step methods. This is because the
information of the data structure is exploited and not ignored.
The bi-variate statistic gives less significant results in almost
all cases. Nevertheless, when the two network measures NS
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and NE are tested separately, one should have to correct for
multiplicity for 2M tests and not only M tests. This is not
the case for the bi-variate case in which the number of tests
performed is M. In addition, the multivariate statistic catches
nodes where the difference is a combined effect between NS
and NE.

&e- &
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Fig. 2. Nodes declared as significantly different between the two
cognitive states RS and MW using the two-step method RMWC with
the Bonferroni procedure. Three nodal statistics are used: nodal
strength (NS) (a and b), nodal efficiency (NE) (c and d) and a com-
bination of both as a bi-variate statistic (BV) (e and f). Blue nodes
are the only ones detected by the standard method. For each statistic
we show two plots that correspond to two thresholds U = 0.1 and
U = 0.2. MOG=Medial orbital gyrus, IOG=Inferior orbital gyrus,
FFG=Fusiform gyrus, SPG=Superior parietal gyrus, SMG=Supra
marginal gyrus, PCUN=Precuneus, CAU=Caudate, STG=Superior
temporal gyrus, MTG=Medial temporal gyrus, TPOmid=Medial
temporal pole, ITG=Inferior temporal gyrus.



SM

Lobes LEV WT

RMWC

Lobes LEV WT

RMNC

NS 1 8 7 6,5 5 6,5 65
NE 23 4,10 4,7 47 4,6 4,7 47
BV 1,2 4,5 5 4,5 3,5 45 45

RMIO
Lobes LEV WT
5 6,5 6,5
4,6 4,7 4,7
3,5 4,5 4,5

Table 1. The number of nodes declared to be significantly different using SM, RMWC, RMNC and RMIO under the strong control of false
positives (Bonferroni). For the relaxed methods, we give three values that correspond to the different decompositions: Lobes, LEV and WT.
Three different nodal measures are used: NS, NE and BV. Two values are reported if there is a difference in the number of significant nodes
when using the two different values of the threshold U = 0.1 and U = 0.2.

SM RMWC RMNC RMIO
Lobes LEV WT Lobes LEV WT Lobes LEV WT
NS 13 21,22 40,39 35,33 22 34,33 35,33 21 27 25
NE 4,19 28,32 51,45 52,57 34,28 51,42 52,57 23,22 32,35 32,39
BV 5 33,27 41,48 41,48 33,27 41,48 41,48 21 22,25 2225

Table 2. The number of nodes declared to be significantly different using SM, RMWC, RMNC and RMIO under false discovery control

(LSU). Details are the same as in Table 1.

In Fig. 2, we show the brain regions that are significantly

different between RS and MW using the two-step method
RMWC with the Bonferroni procedure. We used the Brain
Net viewer tool [18] for this visualisation. In panels (a) and
(b), we present the significant nodes in terms of NS. In all
these nodes, the nodal strength is larger for RS brain net-
works. In panels (c) and (d), we represent the significant
nodes in terms of NE. In all these nodes, the nodal efficiency
is larger for MW brain networks. In panels (e) and (f), we rep-
resent the significant nodes using the bi-variate statistic (BV).
The bi-variate statistic may detect nodes that are not detected
by the univariate statistics. One could use ¢ > 2 measures to
benefit more from the multivariate case. However, the inter-
pretation of the results becomes much harder.
Also in previous analysis we found that functional connec-
tivity is strongly increased during RS [12]. In particular, the
medial temporal gyrus (MTG) becomes more independently
active when processing information during MW. We observe
an opposite trend for NE, which might indicate that although
nodal strength is increased during RS, the average path length
is decreased as some nodes are not part of large RS networks.
However, we also found that the results are less robust for NE
when changing the threshold value, which might also explain
why results do not improve for the bivariate case.
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