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Detecting local differences between groups of connectomes is a great challenge in neuroimaging, because the
large number of tests that have to be performed and the impact onmultiplicity correction. Any available informa-
tion should be exploited to increase the power of detecting true between-group effects. We present an adaptive
strategy that exploits the data structure and the prior information concerning positive dependence between
nodes and connections, without relying on strong assumptions. As a first step, we decompose the brain network,
i.e., the connectome, into subnetworks and we apply a screening at the subnetwork level. The subnetworks are
defined either according to prior knowledge or by applying a data driven algorithm. Given the results of the
screening step, a filtering is performed to seek real differences at the node/connection level. The proposed strategy
could be used to strongly control either the family-wise error rate or the false discovery rate.We show bymeans of
different simulations the benefit of the proposed strategy, and we present a real application of comparing
connectomes of preschool children and adolescents.

© 2014 Elsevier Inc. All rights reserved.
Introduction

The study of brain connectivity has become an important aspect of
neuroscience as it can help to understand brain organization and function
(Fornito et al., 2013; Sporns, 2011). Moreover, the metrics of brain con-
nectivity, assessed through neuroimaging methods, have been recog-
nized as an important marker indicating the level of brain maturation
or psychopathology. Through recent innovations in medical imaging
and image analysis, the determination of interregional brain connectivity
became feasible. Different types of connectivity can be obtained de-
pending on the imaging modality and measure of connectivity,
e.g., structural connectivity from diffusion-weighted MRI and fiber
tracking (Cammoun et al., 2012;Hagmann et al., 2008), or functional con-
nectivity from functional MRI and statistical dependence on time (Smith
et al., 2013; Friston, 2011; van den Heuvel and Hulsoff-Pol, 2010; Achard
et al., 2006).
gy and Medical Informatics,

dji).
Global brain connectivity can bemodeled by a network (a weighted
graph) called connectome (Sporns et al., 2005), where theN nodes stand
for brain regions of interest (ROIs), and each edge weight characterizes
a measure of connectivity between pairs of ROIs.

Investigating differences in connectivity between distinct populations
based on connectivitymatrices is attractive, but also comeswith a certain
number of problems (Fornito et al., 2013; Varoquaux and Craddock,
2013), among them, the high number of multiple comparisons.

Effectively,when the comparisonbetweenbrainnetworks are studied
at the level of nodes (vertices) (O(N)) that represent brain ROIs, or con-
nections (edges) (O(N2)) that link brain ROIs, a huge number of tests
have to be performed on the same data, especially, in the case of testing
at the level of connections, in which the number of tests basically grows
quadratically with the number of nodes. If the multiplicity of tests is ig-
nored, the risk of committing false discoveries increases. As a conse-
quence, erroneous conclusions are frequently drawn (Meskaldji et al.,
2013a). On the other hand, considering multiplicity could dramatically
decrease the chance of detecting real between-group effects. This is a
fact that is commonly reported by researchers especially when the con-
ventional Bonferroni procedure is used for the multiplicity correction
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and the strong control on the number of false discoveries is exerted. For
example, if N = 100 nodes, the Bonferroni threshold for significant p-
values is of order 10−4 when testing at the level of nodes and 10−6

when testing at the level of connections.
Depending on the field of application and the nature of the data,

many strategies have been adopted in order to face the multiplicity
challenge in the presence of positively correlated test statistics. These
strategies consist in exploiting the data structure and positive depen-
dence that could be present between tests. This can have an important
impact on the power of detecting true alternatives. For example,
this concept was adopted in the widely recognized software package
for analyzing fMRI data, the Statistical Parametric Mapping (SPM)
(Friston et al., 1995; Frackowiak et al., 1997) and in its extensions such
as wavelet extensions (Van De Ville et al., 2004, 2007), based on the
idea that voxels of a neurological type belonging to a unique anatomical
region will usually exhibit positively correlated behavior (Penny and
Friston, 2003; Genovese et al., 1999). In this case, the data is supposed
to be smooth and follow a multi-dimensional Gaussian distribution. For
this reason, a smoothing has to be applied to the data (Nichols and
Hayasaka, 2003). A permutation approach is performed to define active
clusters.

The same concept has been followed to derive specific statistical
methods in the brain connectivity context. Zalesky et al. (2010) proposed
the network based statistic (NBS) as a method to correct for the FWER
(the probability of having at least one false positive connection), in the
framework of multiple testing applied to the brain network connections.
The method relies on a first identification of connected components (in
the graph theoretical sense), by thresholding the set of p-values at an
arbitrary threshold. An iterative procedure based on permutation testing
allows thereafter identifying connected components that carry a
between-group effect. These methods have, however, some limitations.
First, the inference is obtained at the level of connected components
and only exerts a weak FWER control, that is, once a component is
declared to be significantly different, nothing could be said at the level
of individual nodes or connections belonging to the component. In
other words, the type I error metric controlled at the level of nodes/
connections is unknown. Second, the results strongly depend on the
arbitrary choice of the threshold. The same can be said about the spatial
pairwise clustering (SPC), proposed by the same authors, where the
definition of components is based on geometrical distance in addition
to the connectedness in the graph theoretical sense (Zalesky et al.,
2012).

It is commonly admitted that most mental diseases or cognitive trait
exhibit changes not in the entire brain uniformly, but rather specific in
functional systems or brain regions and this to a different extent.
Meskaldji et al. (2011a) proposed an adaptive strategy that exploits
the network structure of the brain connectivity by considering brain
subnetworks, which results in reducing the number of tests and a
considerable improvement in power. The strategywas applied to detect
differences in both structural and functional brain connectivities (Owen
et al., 2013a, 2013b; Meskaldji et al., 2011a). However, besides the gen-
erality of this strategy in terms of summary statistics that could be used,
and in terms of the diversity of the brain decomposition methods that
could be applied, it suffers from the same drawback as the NBS and
the SPC, that is, nothing could be said concerning the statistical evidence
of nodes and connections that constitute the significant subnetworks.
Nevertheless, the subnetworks could be chosen as small as possible to
obtain statistical evidence at finer scales. We will give throughout this
paper some highlights on the differences between these weak control
methods.

The question that wewill investigate in this paper is to go beyond the
cluster/subnetwork level and investigate the differences at the single
node/connection level. Inspired by Benjamini and Heller (2007), we pro-
pose a screening–filtering strategy that exploits the data structure and
positive dependence that could exist between connections/nodes. The
advantage of the proposed strategy is that it exerts a strong control of
type I error rates under weak assumptions (i.e., weaker than as-
sumptions needed by SPM, NBS and SPC). We study the performance
of the screening–filtering approach on simulated networks and on
structural brain connectivity matrices. In particular, we examine
the influence of the network decomposition and the screening
threshold on the statistical inference. We also discuss the conceptual
differences between our proposed strategy and some of existing
methods in the literature.

As far as we know, this method is the first adaptive strategy that
guarantees the strong control of type I error rate at the level of nodes
or connections. For this reason, the performances of the proposed strat-
egywill only be compared to the standard node/connection-wise infer-
ence, that is, methods that exert a strong control, but do not consider
neither data structure nor positive dependence between tests.

The paper is organized as follows. We first give the general pro-
cessing pipeline and the mathematical formulation of the screen-
ing–filtering approach. Then, we show by simulations, the benefit
of using the proposed strategy. Finally, we present a practical appli-
cation on real data, from children and adolescents, which consists in
comparing structural human brain connectomes between these
populations.

Methods

We present in this section the different steps of local procedures
that exert a strong false positives control. In particular, we outline
two strategies: the standard methods and the screening and filtering
methods.

Local network-based measures

Since the imagingmeasures of connectivity can be used tomodel the
brain as a network, it is worth to locally compare populations not only
cell by cell of the connectivity matrices, but also by estimating the
network measures that characterize the topological properties of the
brain network (Fornito et al., 2013; Meskaldji et al., 2013a; Bassett
et al., 2008). The combination of the local and the global inferences
gives a better understanding of the network organization (Meskaldji
et al., 2013a). In this paper, we focus on the local measures. Sporns
(2011); Rubinov and Sporns (2010) among others are good sources
for a comprehensive list of important measures with their interpreta-
tions in the brain connectivity context.

For non-homogeneous populations, it is strongly recommended to
correct for covariables such as the age or the gender of the subjects, by
taking the residuals of a regression as the new observations (Meskaldji
et al., 2013a).

This step ends up with a vector of local observations for each node/
connection and for each subject.

Testing and p-value computation

Let us assume that the aim of a brain connectivity study is to com-
pare different groups of connectomes. Comparing two populations at
the level of nodes or connections or any local unit that we call atom,
usually consists in performing a (univariate or multivariate) two-
sample test for each node/connection (Meskaldji and Van De Ville,
2014). When more than two groups are compared, an analysis of vari-
ance (ANOVA) is performed with a predefined contrast. This ends up
with M p-values, where M is of the order (O(N)) when testing at the
level of nodes, and M goes like (O(N2)) when testing at the level of
connections.

Let pj denotes the p-value of atom j=1,…,M. The standardmethod
(SM) consists in performing amultiple testing procedure to the set of
p-values to control a type I error metric. For example, one could
apply the Bonferroni procedure to the p-values {p1,…, pM} by declaring
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significant p-values that satisfy pj ≤ α/M. This guarantees the strong
control of the family-wise error rate (FWER).

The SM does not exploit the data structure nor the positive depen-
dence between atoms and typically results into poor sensitivity.

The screening and filtering strategy: a general sketch

The screening–filtering (SF) approach takes as an input the raw
p-values and consists in the following. First, we group the family of
atoms intom subsets. For each subset, we compute the standardized
mean of the z-scores within the subset. Based on thesemean scores, we
perform a screening at a predefined threshold. In other words, we com-
pare the m p-values corresponding to the mean scores to a predefined
threshold. This step results in two classes: positive subsets, that is, the
subsets with mean score p-value less than the screening threshold,
and negative subsets (the remaining subsets). This step is a particular
case of the subnetwork analysis proposed in Meskaldji et al. (2011a),
since we are using here a particular case of summary statistics, which
is the mean.

Note that if the threshold in the screening step corresponds to a
multiplicity correction, then theweak control is guaranteed. For example,
using the Bonferroni threshold α/m, in the screening step guarantees the
weak control of the FWER, that is, at the level of subsets.We compare the
screening step performances to other methods that guarantee the weak
control in the application section.

Based on the results of the screening step, the practitioner can per-
form a multiple testing procedure at the level of atoms by computing
the p-values conditioned by the statistical results at the first step (see
Benjamini and Heller, 2007). However, this solution is time consuming
in large data and the control of the FP is not guaranteed for small
samples. We propose a procedure where we do not need to estimate
the unknown parameters neither to compute the conditional p-values,
i.e., we work directly with the unconditioned (original) p-values. We
modify the original M p-values such that the modified p-values can be
used with any multiple testing procedure to control the desired type I
Fig. 1. The different steps of a complete local analysis using the screening–filtering algorithm
compared, as well as a prior decomposition of the brain network. If the latter is not availa
screening–filtering ends up with a set of modified p-values that could be corrected by a multipl
errormetric. Themodification consists in dividing the p-values belonging
to the positive subsets by a coefficient larger then 1, called the relaxation
coefficient, i.e., the modified p-values are always smaller then the original
p-values in the positive subsets. The remaining p-values (that belong to
negative subsets), are set to 1. The filtering step follows by applying a
multiple testing procedure to the modified p-values, which results in
the statistical inference at the level of atoms. The general pipeline of
performing group comparison with the screening and filtering strategy
is summarized in Fig. 1.

The intuition behind this strategy is that the p-value weights
(Benjamini andHochberg, 1997) thatwereuniform(all equal to1) before
the screening step, are redistributed. The p-value weights in negative
subsets are given to positive subsets to enrich p-values therein. The con-
trol of the type I error rate is based on conditional probability theory, and
hence, the choice of the relaxation coefficient depends on the screening
threshold. The relaxation coefficient is chosen such that it guarantees
the control of false positives and it becomes largerwhen the screening co-
efficient becomes smaller. Amathematical formulation of the algorithm is
presented in the following section.

Mathematical formulation

Consider a set of M tests with their corresponding p-values. We
group the M tests into m subsets J1, …, Jm (not necessarily disjoint)
such that ∪ i = 1

m Ji = J and | Ji| = si, i = 1, …, m. The hypotheses hji
are indexed by two indices: the subset index i and the atom index j.
The p-values associated with the tests are pji, j ∈ J and are related to
the corresponding z-scores by pji ¼ Φ Z ji

� �
, where Φ ¼ 1−Φ, and Φ is

the Gaussian cumulative distribution function.

Proposition 1. Under the null hypothesis (no real difference), the
z-scores follows a normal distribution N 0;1ð Þ.

The proof of this proposition is in the Appendix A.
Let μ ji ¼ E Z ji

� �
. Without loss of generality, we consider one-sided

tests hji = 1, if μ ji N 0, and hji = 0, otherwise.
. The algorithm takes as an input, two (or more) groups of connectivity matrices to be
ble, a decomposition is obtained by applying a data-driven decomposition algorithm. The
e testing procedure to obtain the statistical inference.
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We consider the following mixture effect model (Benjamini and
Heller, 2007). Null subsets are subsets that only contain null hypoth-
eses. Otherwise, the subset is called affected. Let I0 ¼
i : 1;…;m ∑ j∈ Ji h ji ¼ 0

�� on
and I1 ¼ i : 1;…;m ∑ j∈ Ji h jiN0

�� on
the indi-

ces of null subsets and affected subsets, respectively. The number of
null subsets is |I0| = m0 and the number of affected subsets is |I1| =
m1. The proportion of non-null hypotheses in the subset Ji is πi ¼ s−1

i
∑ j∈ Ji h ji.

The information in each subset is summarized by a summary
statistic Ti ¼

ffiffiffiffi
si

p −1∑ j∈ Ji Z ji: To model the dependence inside each
subset Ji, let ρji = corr(Ti; Zji) be the correlation between each test
Zji∈ Jiwith its corresponding subset summary statistic. We assume
thatρ jiN

ffiffiffiffi
si

p −1, which corresponds to corr(Zji, Zli) N 0 for (j, l)∈ Ji
2, i∈ I1

and ∈ j ≠ l. We also assume that ρ ji ¼
ffiffiffiffi
si

p −1 for (j, l) ∈ Ji
2, i ∈ I0 and

j ≠ l. Note that in practice, random variables are replaced by their
estimators.

Proposition 2. According to this model, for a null subset, Ti∼N 0;1ð Þ.
The proof of this proposition is in the Appendix A.
Suppose that the p-values corresponding to the summary statistics are

Pi(i=1,…,m), that is, Pi ¼ Φ Tið Þ. The central limit theorem allows us to
make this approximation especially when the size si becomes large.

The screening step consists in comparing the subset p-values
Pi (i = 1, …, m) to a predefined threshold U. This screening results in
two classes of subsets. Let I+ = {i : Pi ≤ U} be the positive subsets.

We divide the original p-values inside the positive subsets by the re-
laxation coefficient r and we apply a filtering using a multiple testing
procedure.

Proposition 3. Under the mixture model described above, if the
Bonferroni procedure is used in the filtering step at level α, then the
expected number of false positives after the filtering step is

E FPð Þ ¼ E
X
i∈Iþ

si

Z ∞

c

m0Φ C0ð Þ þm1 1−πið ÞΦ Cμ i

� �
m0U þm1Φ Φ−1 1−Uð Þ−μ i

� �φ zð Þdz
0
@

1
A;

where φ is the probability density function of the normal distribution,

C0 ¼ Φ−1 1−Uð Þ−ρ jizffiffiffiffiffiffiffiffiffiffi
1−ρ2

ji

p , Cμ i
¼ Φ−1 1−Uð Þ−μ i−ρ jiσ iz

σ i

ffiffiffiffiffiffiffiffiffiffi
1−ρ2

ji

p , c = Φ−1(1 − rα/M), μ i ¼ E

Tið Þ and σ i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Tið Þp

≤1:
The proof of this proposition is in the Appendix A.
The relaxation coefficient r is chosen sufficiently small such that the

expected number of false positives E FPð Þ≤α; for all possible values of
the unknown parameters, that is,

r̂ ¼ min argmax r : E FPð Þ≤ αf g;m0; πi; μ i;σ i;ρ ji

n o
:

We still increase the value of the relaxation coefficient r as long as
the type I error rate is below the level α. This condition guarantees the
strong control of the FWER byMarkov's inequality. Consider the partic-
ular case as in the upcoming simulations, where μji = Δ for atoms with
effect and πi= π for all i∈ I1. In this case, μi= πsi for all i∈ I1.We give an
approximation algorithm to estimate the relaxation coefficient in this
case. Let s=1/m∑{i= 1,…,m}si be the average subset size.We set the pa-
rameterρji to the least favorable value of1=

ffiffi
s

p
, which corresponds to the

case where the atoms inside the same subset are independent. For the
parameter Δwe chose either ∞, which corresponds to themore conser-
vative lower bound, or the mean of them1s largest values of the scores.
The latter is the one used in the simulations and the applications
presented in this paper. Finally, we approximate the parameter σi by 1
for all i∈ I1. Algorithm 1 gives an approximated upper bound for the re-
laxation coefficient r.
Matlab and R scripts that implement this algorithm are available at:
http://miplab.epfl.ch/software.

Simulations presented in this paper show that the FDR is controlled
if themodified p-values are used in the BHprocedure. However, a rigor-
ous proof of the FDR control is presented in Meskaldji (2013) and
Meskaldji et al. (2013b).
Application to simulated data

We compare the performance of the SF approach with the SM, by
considering different simulation settings and one experimental dataset.
We also discuss the influence of the different parameters on the statis-
tical inference.

First, we consider simulating brain networks inwhichwe integrate a
positive contrast that represents the between-group effect. In this sim-
ulation setting, we suppose that we have prior information about the
positive dependence between tests. This prior information is available
as a predefined decomposition of the global set of tests. We compared
the relaxed methods to the SM in terms of average power and average
number of false positives.

We simulated a set of M hypotheses (corresponding to M atoms),
which we divided intom subsets with different sizes si ≥ 1, i= 1,…,m,
randomly chosen. Among them subsets, we randomly choosem1 subsets
to contain the effect. We call these subsets partially-affected subsets. In
each of these subsets we randomly selected a set of hypotheses for
which we simulated a test score Z as a random realization of the shifted
standard normal distribution with mean Δ, that is, Z∼N Δ;1ð Þ. These
atoms contain the contrast, the between-group effect. The average
proportion of atoms with effect in the m1 partially-affected subsets is π.
For all the remaining hypotheses, either in the m1 subsets (containing
the effect) or in the remainingm−m1 subsets (without effect), the test
scores are random normal N 0;1ð Þ realizations. Positive dependence

http://miplab.epfl.ch/software
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was modeled by the proportion of affected atoms in each partially-
affected subset.

We simulated global sets withM=200, 1000 and 2000 atoms, with
m=20 or 50 subsets, andm1=2, 5 or 10 partially-affected subsets. The
average proportion of atoms with effect within partially-affected sub-
sets was either π = 0.25, 0.5 or 0.75.

The value of M = 200 represents a moderate number of atoms
in brain connectivity studies at the nodal level. However, for
connection-wise studies, the number of atoms to be considered is of
order O(N(N − 1)/2) for an undirected network with N nodes. For
example, a network with 90 nodes and density of 0.25 or 0.5 has ap-
proximately 1000 or 2000 connections, respectively. This situation is
highlighted by the values M = 1000 and 2000. For M= 200, the num-
ber of subsets is 20, which corresponds to an average subset size of 10.
Among the 20 subsets, only two of them contain the contrast. However,
when m = 1000 or 2000 the number of subsets is the same m = 50,
which gives two different average subset sizes of 20 and 40, respectively.
Although the number of subsets is the same in the two latter cases, the
number of partially-affected subsets is 10 and 5, respectively. Tomeasure
the influence of the quality of the decomposition on the performance of
the proposed strategy, we considered three different values of the aver-
age number of affected atomswithin partially-affected subsets (in them1

subsets) π=0.25, 0.5 or 0.75. It is not impossible to have almost a perfect
decomposition in practice, however, we did not consider the case where
π≈ 1,which expected to givemore advantage to the SF strategy over the
standard method.

We applied the SM and the SF algorithm to detect the positive con-
trast.We carefully evaluated the influence of the choice of the screening
threshold. In this simulation and in the next application, we used two
different screening thresholds. The first choice is based on amultiplicity
correction. For example, if the Bonferroni procedure is used for the
screening, the threshold is α/m. The second choice is simply to perform
a screening at threshold α. Based on this choice, we obtain two specific
SF algorithms that we term hard thresholding SF (HTSF) and soft
thresholding SF (STSF) algorithms, respectively, see Table 1. Of course,
the estimated relaxation coefficient with the HTSF algorithm is always
larger than the one estimated with the STSF algorithm for the same
data and the same decomposition.

We used two different type-I error metrics; the expected number of
false positivesE FPð Þ (which closely relates to the FWER viaMarkov's in-
equality) and the false discovery rate FDR ¼ E FP=Rð Þ, where R is the
number of rejections (atoms declared to be significant). These two
type-I error metrics are particular cases of the general family E
FP=s Rð Þð Þ, proposed by Meskaldji et al. (2011b), where s is any non-
decreasing function. To control the expected number of false positives,
we used the Bonferroni procedure that performs each single test at
level α/M, that is, it compares each single p-value to the threshold α/M.
The false discovery rate is controlled by applying the Benjamini
and Hochberg (1995) (BH) procedure, which consists in ordering the
p-values from smallest to largest and chose as a significance threshold
the largest p-value situated under the increasing line with slope α/M.
Since the thresholds form a line, this procedure is called the linear
step-up procedure. Note that to control the E FP=s Rð Þð Þ, the ordered
p-values pi, i = 1, …, M, are compared to the sequence s(i)α/M
Meskaldji et al. (2011b).
Table 1
The different steps of the local methods that are compared in this paper. Th SM has only
one step.

Name Screening Filtering

SM – Bonferroni/BH
STSF α (No correction) Bonferroni/BH
HTSF Bonferroni/BH Bonferroni/BH
Figs. 2 and 3 show the ratio of the average power of the relaxed
methods over the average power of the SM, in different situations,
when using the Bonferroni or the BH procedures, respectively, both
used with α = 0.05. On the other hand, Table 2 gives the estimated
expected number of false positive E FPð Þ in the Bonferroni case, and
the estimated FDR in the BH case.

The simulations illustrate the power gain obtained by using the re-
laxed methods. The SF methods almost always perform better than
the usual SM. The gain is realized even though less false positives are
committed. The only case in which the relaxed methods does not
seem to perform better than SM, especially the HTSF, is when the num-
ber of tests is moderate and the proportion of affected atomswithin the
partially-affected subsets is relatively small. This issue rapidly disap-
pears when the proportion becomes larger and the gain obtained by
the SF methods reaches more than 5 times the power of the SMwhen
the raw effect Δ is small. This corresponds to situations with small
between-group effect or small sample size. When Δ becomes large,
all methods, including the SM are equivalent. We can also observe
when comparing the panels corresponding to M = 1000 and 2000,
that the gain increases as the size of the subsets increases. Other sim-
ulations (not shown here) indicate that the advantage of the SF
methods over the SM increases with the number of partially-affected
subsets, m1. This is because the screening will detect more positive
subsets on average. Finally, the relaxed methods behave almost in a
similar way when using either the Bonferroni procedure or the BH
procedure.

To conclude this simulation study, we can say that the STSF is more
stable in terms of gain because small proportions are easily detected.
The HTSF seems to performwell when the proportion π becomes larger,
which is directly related to the appropriate choice of the decomposition.
The HTSF should be chosen when we have more confidence on the net-
work decomposition. Otherwise, STSF is preferable, as it has a less strict
screening in the first step. The choice of the decomposition and the
screening threshold are discussed in more details in the application
section.

Application to brain connectomes

The screening and filtering strategy could be applied to anymodality
of brain connectivity or any complex networks in general.

Here we present a comparison study of whole-brain structural con-
nectivity matrices derived from diffusion MRI tractography.

Description of the data

We consider two groups of brain connectivitymatrices based on the
dataset used in Hagmann et al. (2010b), which consists of 30 connectiv-
ity matrices. We define two groups based on the age of the subjects: 16
pre-school children and 14 adolescent children.

The connectivity matrices are derived from diffusion-weighted MRI
acquisitions and well-established algorithmic procedures as described
in Hagmann et al. (2008); Cammoun et al. (2012). These matrices
have been normalized by eliminating the linear bias towards longer
fibers introduced by the tractography algorithm, and by dividing the
fiber density between two ROIs by the average of their areas to account
for brain volume normalization (Hagmann et al., 2010b).

Local measures

Many possible nodal and connection measures could be used to
compare brain connectomes. In this study, we use one connection mea-
sure: connection weight (CW); and two nodal measures: nodal strength
(NS) and nodal efficiency (NE). The CWmeasures the strength of connec-
tivity between two nodeswhich is related to the capacity of transfer of in-
formation between two ROIs. The NS is defined as the sum of weights of
edges connected to a specific node. It is computed by the sum of row/



1

2

1 2 3 4
Δ

P
ow

er
 r

at
io

Strategy

SM

HTSF

STSF

M = 200 , m = 20 , m1 = 2 ,  π = 0.25

1

2

1 2 3 4
Δ

P
ow

er
 r

at
io

Strategy

SM

HTSF

STSF

M = 1000 , m = 50 , m1 = 10 ,  π = 0.25

1

2

1 2 3 4
Δ

P
ow

er
 r

at
io

Strategy

SM

HTSF

STSF

M = 2000 , m = 50 , m1 = 5 ,  π = 0.25

1

2

3

4

5

1 2 3 4
Δ

P
ow

er
 r

at
io

Strategy

SM

HTSF

STSF

M = 200 , m = 20 , m1 = 2 ,  π = 0.5

1

2

3

4

5

1 2 3 4
Δ

P
ow

er
 r

at
io

Strategy

SM

HTSF

STSF

M = 1000 , m = 50 , m1 = 10 ,  π = 0.5

1

2

3

4

5

1 2 3 4
Δ

P
ow

er
 r

at
io

Strategy

SM

HTSF

STSF

M = 2000 , m = 50 , m1 = 5 ,  π = 0.5

2

4

6

1 2 3 4
Δ

P
ow

er
 r

at
io

Strategy

SM

HTSF

STSF

M = 200 , m = 20 , m1 = 2 ,  π = 0.75

0

2

4

6

1 2 3 4
Δ

P
ow

er
 r

at
io

Strategy

SM

HTSF

STSF

M = 1000 , m = 50 , m1 = 10 ,  π = 0.75

2

4

6

1 2 3 4
Δ

P
ow

er
 r

at
io

Strategy

SM

HTSF

STSF

M = 2000 , m = 50 , m1 = 5 ,  π = 0.75

Fig. 2. Ratio of average power of the SF methods over the average power of the SM against the raw effect, using the Bonferroni procedure. The HTSF (dashed line) and the STSF (dashed-
points line). The number of atoms is eitherM=200, 1000 or 2000. The number of subsets ism=20whenM=200 and 50 whenM=1000 and 2000. The number of partially-affected
subsets ism1 = 2, 10 and 5 for M = 200, 1000 and 2000, respectively. In each situation the proportion π of affected atoms within partially-affected subsets is either 0.25, 0.5 or 0.75 as
indicated. The number of simulations performed to obtain each panel is 1000.
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column values corresponding to that node in the connectivity matrix of
subject k, that is,

NSki ¼
XN
j¼1

wk
i j;

where wij
k is the weight of the connection between nodes i and j in

matrix (subject) k. The NS can be interpreted as the capacity of transfer
between not only two nodes, but the capacity of transfer from a specific
node to its neighbors. Finally, the NE of a node is the inverse of the
average minimum weighted path length from that specific node to all
other nodes, that is,

NEki ¼
1

N−1

XN
j¼1; j≠i

dki j

8<
:

9=
;

−1

;

where dij
k is the weighted distance; i.e., the length of the weighted

shortest path between node i and node j for subject k. Note that in
this case, the value of each cell is inverted because the distance between
two connected nodes is supposed to be the inverse of the connection
weight (Rubinov and Sporns, 2010). The nodal efficiency represents
the speed and the capacity of transfer of information from a node not
only to its neighbors but also to all other nodes in the network. The
nodal efficiency is related to the nodal strength because the first step
of shortest paths from a specific node starts by its neighbors.
Decomposition of the brain network

There are many ways to decompose a network into subnetworks.
For example, one could group connections that share the same node
as a subnetwork. In doing so, the number of subnetworks will be the
number of nodes in the brain network. The choice is very large and
studying all possibilities exceeds the scope of this paper. Here we
choose decomposing a network based on the node communities, that
is, subnetworks are defined on the basis of groups of nodes. Once groups
of nodes (communities) are specified, subnetworks are defined either
by connections between nodes of the same community (the intra-
community connections) or the connections between two communities
(inter-community connections) (Meskaldji et al., 2011a).

Here we present the different network community decomposition
methods that we used in our application study. Our choice is large
because we would like to study the robustness of the method against
the network decomposition misspecification.

We used two different prior decompositions of the global set of
nodes. The first one corresponds to the decomposition of the brain
into lobes (LO). The second is based on a recent study (Chen et al.,
2012), which uses a different approach to cortical localization, we call
it Chen decomposition (CH).

To highlight the large range of applicability of the screening and
filtering strategy, we also decompose the set of nodes into communities
using different data-driven algorithms, that is, algorithms based only on
the data without any prior grouping information. A large number of
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Fig. 3. Ratio of average power of the SF methods over the average power of the SM against the raw effect, using the BH procedure. The setting is the same as in Fig. 2.
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decomposition methods are based on the optimization of the quantity
known as modularity. Modularity is a quantity that measures the good-
ness of decomposition of a network into communities. A good communi-
ty decomposition will have many edges within communities and a few
between them (Newman and Girvan, 2004).

The four decomposition methods we used in this study are the
following. The first one is called walktrap (WT), which is based on the
fact that randomwalks on a graph tend to get trapped into densely con-
nected subgraphs corresponding to communities (Pons and Latapy,
2005). The second one is the fast greedy algorithm (FG), which is
based on the greedy optimization of the modularity (Clauset et al.,
2004). The third algorithm is the edge betweenness algorithm (EB). It
is based on iterative removal of edges from the network and edge
betweenness recalculation (Newman and Girvan, 2004). Finally, the
leading eigenvector (LE) in which the modularity function is rewritten
in matrix terms which leads to express the optimization task as a spec-
tral problem in linear algebra (Newman, 2006).

Fig. 1, in supplementary information (SI) illustrates the result of the
six decomposition methods on the average group 1 (the pre-school
Table 2
The estimated expected number of false positives E FPð Þ in the Bonferroni case and the
estimated FDR in the BH case, for the different methods SM, HTSF and STSF. The number
of simulations is 1000 for each case.

SM HTSF STSF

E FPð Þ 0.046 0.035 0.044
FDR 0.057 0.053 0.055
children group) connection matrix. The decompositions obtained and
the number of communities discovered by data-driven algorithms are
not the same (Table 3). Nevertheless, the communities discovered are
almost always situated within the same hemisphere. The variety of de-
compositions will afford a careful study of the influence of the decom-
position on the final statistical inference.

Note that, depending on the application, the inference could be
performed only on the intra-connectivity within communities which
results in reducing the number of hypotheses tested. However, in our
study, we keep all the connections.
Statistical inference

To compare the two groups of connectomes,we applied the SMwith
the Bonferroni and the BH procedures, the NBS and the permutation
testing FDR (NBS and permutation FDR are implemented in NBSMatlab
Software downloaded from: http://www.nitrc.org/projects/nbs/), and
Table 3
The first line represents number of the so-defined subnetworks based on the node commu-
nity decomposition methods. The remaining lines give the number of positive subnetworks
obtained at the screening step for each of the SF methods for the different decompositions.

LO CH WT FG EB LE

Number of subnetworks 91 91 45 28 10 28
HTS–Bonf 30 36 23 17 9 19
HTS–BH 62 72 38 25 9 23
STS 65 72 38 25 9 24

http://www.nitrc.org/projects/nbs/


Table 5
The number of connections declared as significantly different between the two groups
using different weak control strategies and different decomposition methods (when it's
applicable). Concerning the PFDR case, the number of permutation was set to 5000.

LO CH WT FG EB LE

SM–BH 432 432 432 432 432 432
PFDR 348 348 348 348 348 348
HTS–Bonf 1329 1486 1911 2328 3458 2330
HTSF–BH 747 780 847 854 875 858
STSF–BH 737 761 828 852 867 843
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the screening and filtering methods, i.e., HTSF and STSF, both with
Bonferroni and BH procedures. We distinguish between two types of
control: the weak control of the FWER and the strong control of the
FWER. The weak control is guaranteed by the SM with BH procedure
(SM-BH), the permutation testing FDR (PFDR), the screening step of
the HTSF with the Bonferroni procedure (HTS-Bonf), and the filtering
step of both HTSF and STSF with the BH procedure (HTSF–BH and
STSF–BH, respectively). The strong control, however is guaranteed by
the SM with the Bonferroni procedure (SM–Bonf) and both HTSF and
STSF with the Bonferroni procedure (HTSF–Bonf and STSF–Bonf,
respectively).

Results and discussion

Weak control of false positives

Table 3 gives the number of so-defined subnetworks obtained on the
basis of the different decompositionmethods. It gives aswell the number
of positive subsets after the screening step for each decomposition
method. In Table 4, we report the relaxation coefficients estimated by
Algorithm 1 for different SF methods and different decompositions.
The number of significantly different connections under weak con-
trol is reported in Table 5 for SM–BH, PFDR, HTS–Bonf, HTSF–BH
and STSF–BH. The number of connections within the component detect-
ed by the NBS method for different threshold values is reported in
Table 6.

According to these results, we comment some important points.
First, we observe in Table 5 the improvement gained by the screening
andfilteringmethods against the SM, almost twice thenumber of signif-
icant connections. Second, although the different number of positive
subnetworks obtained in the screening step corresponding to different
decompositions and two different screening thresholds (HTSF–BH and
STSF–BH, Table 3) and different relaxation coefficients, the improvement
seems to be stable. This does not hold in the case of the HTS–Bonf for the
different decompositionmethods. The same could be said concerning the
NBS results, which dramatically depend on the arbitrary threshold
(Table 6). It is important to mention a fundamental difference between
the NBS and HTS–Bonf, and PFDR, SM–BH, HTSF–BH and STSF–BH. All
these methods guarantee the weak control of the FWER. However,
PFDR, SM–BH, HTSF–BH and STSF–BH guarantee as well the strong con-
trol of the FDR, whereas the strong control exerted by the NBS and the
HTS–Bonf is completely unknown. For all the reasons mentioned above,
we suggest for the weak control of false positives, either the HTSF–BH
or the STSF–BH.

Note that the NBS method ends up with one single p-value for the
whole detected componentwhereas the screening step of the SFmethods
ends up with different p-values corresponding to the subnetworks.

Strong control of false positives

In the case of strong control of the false positives, we used the
Bonferroni procedure and we compared the SF methods (HTSF–Bonf
and STSF–Bonf) with the SM–Bonf in terms of the number of connec-
tions/nodes declared to be significantly different between the two
Table 4
The relaxation coefficient estimated using Algorithm 1 in different situations for different
SF methods. The relaxation coefficients corresponding to the HTSF are always lager than
the STSF case.

LO CH WT FG EB LE

HTSF–Bonf 7.22 7.22 7.21 7.18 7.01 7.18
STSF–Bonf 3.66 3.66 4.25 4.55 5.00 4.55
HTSF–BH 4.20 3.99 4.50 4.72 5.16 4.85
STSF–BH 3.66 3.66 4.25 4.55 5.00 4.55
compared groups, whichwe reported in Table 7. For each of the relaxed
methods, STSF and HTSF, we give two values that correspond to the
prior decompositions: Lobes (LO) and Chen (CH) as well as the number
of common results obtained when using these two prior decomposi-
tions (∩p); four values that correspond to the different data-driven
decompositions: Walk trap (WT), Fast greedy (FG), Edge betweenness
(EB) and Leading eigenvector (LE). We also report the number of com-
mon rejections between the results obtained with the four data-driven
algorithms (∩dd), and, finally, the common rejections by all the decom-
position methods (∩). The last column corresponds to the common re-
sults between the common ones obtained by the HTSF and the common
ones obtainedby the STSF (∩∩). The commonvalues∩p,∩dd and∩high-
light the dependence of the SF methods on the choice of the decompo-
sition and the common values ∩∩ indicate the influence of the
screening threshold.

The results show the potential gain due to the SF algorithm and its
relevance in brain connectivity analysis; i.e., a considerable improve-
ment under the same control exerted, the strong control of the FWER.
The results are in accordance with the performances obtained by simu-
lations, but in this case, one cannot determine the number of false
positives since the ground truth effect is unknown. For example, in the
nodal case (NS and NE), the number of tests is M = 83 (a moderate
number) and the SM already detects many nodes as being significantly
different between the two groups, especially, when using the NE as
nodal topological measure. This means that the between-group effect
is strong, which corresponds to a high raw effect Δ. The between-
group effect seems to be weaker in the NS case than in the NE case
and the advantage of the SFmethods ismore remarkable. Now, if we ob-
serve the results of the connection-wise analysis inwhich the number of
tests is much larger, we see that the advantage of the SF methods is
more pronounced. The number of significant connections is almost
twice in all cases. The STSF behaves almost in the same way as the
HTSF with a slightly small advantage for the HTSF, which indicates
that the decomposition methods are quite appropriate. Moreover,
the common detections ∩p, ∩dd and ∩ indicate that both the HTSF
and the STSF have a non-negligible dependence on the choice of
the decomposition. In addition, the SF methods seem to be influ-
enced by the screening threshold in the Bonferroni case more than
in the BH case. This is because the number of positive subsets detect-
ed by the BH procedure in the screening step is almost the same as
the one obtained with no multiplicity correction corresponding to
the screening step of the STSF.

Fig. 4 shows the common significant connections obtained by both
the STSF and the HTSF, corresponding to the last column of Table 7. A
detailed list of the significant nodes and connections is available as sup-
plementary information.

A permutation based evaluation

We present here an experimental study that could be seen as an in-
termediate evaluation between simulations and the previous practical
example. Our comparison consists of the following. Among the 16 pre-
school children and the 14 adolescent children, we randomly select 5
or 10 subjects from each group, apply the different methods (SM,



Table 6
The number of connections within the component detected by the NBS method for different values of the first screening threshold. The number of permutations was set to 5000.

Threshold 0.05 0.25 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Nb. of connections 1051 1024 966 841 677 508 368 260 171 101 66 31 5 1 1 2 0
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HTSF and STSF) and then estimate the number of significant connec-
tions obtained with the different decompositions. The operation is re-
peated 1000 times.

In Fig. 5, we show the average number of significant connections for
each method, using two different multiple testing procedures: the
Bonferroni procedure and the BH procedure. For the relaxed methods,
we give different values that correspond to the different decomposi-
tions. We also reported the average number of the common rejections
between the rejections obtained by each method (SM, HTSF and STSF)
and the rejections obtained by the SMwhen using the complete sample
(the dark bars in the figure).

Fig. 5 clearly shows the advantage of the SF methods, especially,
when the between-group effect is weak. It also indicates that the STSF
and the HTSF are quite equivalent. According to the simulation results,
this is due to a moderate quality of the decomposition of the global
brain network which is based on node communities, and a decomposi-
tion based on the global set of connections may improve the results of
the HTSF in practice. We plan to investigate this specific question in a
future work. In addition, the data-driven decompositions lead to better
performances and may outperform the prior decompositions. This
increases the degree of applicability and validation of the proposed
strategy.

Besides these observations concerning the performance of the SF
methods, we clearly see the difference between the Bonferroni pro-
cedure and the BH procedure. The latter, by the definition of the
FDR, detects much more connections but at the price of a considerable
number of false positives, whereas the expected number of false posi-
tives in the Bonferroni case is always majored by α. Meskaldji et al.,
(2011b, 2013c) studied this specific issue in an optimality framework
and proposed to use either a truncated version of the FDR or a concave
threshold curve instead of the linear thresholds of the BH procedure.
These choices limit the number of false positives without losing much
power.

Neurological substrate of adolescence and childhood

Childhood, adolescence and maturation of brain connections

The life-history stages of postnatal human development are divided
into infancy (first three years), childhood (2 to 4 years), juvenile (3 to 4
years), adolescence (3 to 5 years) and youth stage (3–4 years), respec-
tively. Each one of these stages marks a unique set of human character-
istics, biological as well as behavioral, required for gradual transition
into adulthood.

Profound differences in cognitive skills, as well as behavior, between
preschool children (Piaget, 1964), adolescents (Spear, 2000) and adults
Table 7
The number of nodes/connections declared to be significantly different using SM, HTSF and STS
sitions: LO, CH,WT, FG, EB and LE, the common rejections obtained by the prior decompositions
positions (∩). ∩∩ represents the global intersection of all cases. Three different network measu
both cases, the Bonferroni procedure is used to control the FWER.

SM HT

LO CH ∩p WT FG EB LE ∩dd ∩

NS 61 67 64 64 69 68 69 69 66 64
NE 80 83 83 83 83 83 83 83 82 82
CW 52 91 86 82 97 99 102 101 95 81
have been studied extensively. Moreover, modern neuroimaging tech-
niques allowed the identification of specific biomarkers related to
each life-history stage. To give an example, while the brain reaches its
final size during the juvenile stage (White, 1996) the gray matter and
white matter still continue to mature. From infancy trough childhood,
juvenile, adolescence and the youth stage volume of the cerebral
white matter exponentially increases while gray volume decreases line-
arly (Lebel and Beaulieu, 2011). This increase in cerebral white matter
volume parallels the increase in white matter density (Paus et al.,
1999) and is most likely caused by an increase of axonal diameter and
myelin sheet thickness. Our results are in agreements with these find-
ings (SI. Tables 1–3). When comparing adolescents with preschool chil-
dren we have identified microstructural differences in fiber pathways.
All of the connections (69 connections reported in Fig. 4) found to be sig-
nificantly different in adolescent subjects and had significantly stronger
structural connectivity strength (SI. Tables 1–3).

Certain cerebral regions (ROIs) were associated with increased
number of significantly stronger connections (SI. Tables 1–3, red)
allowing us to anatomically and qualitatively analyze these results.

Prefrontal cortex

Among these regions were thalamus and superior frontal gyrus of
the right hemisphere and dorsolateral prefrontal cortex (rostral part of
middle frontal gyrus) of both hemispheres (SI. Tables 1–2). Although
our results corroborate the results reported by Lebel and Beaulieu
(2011) and are in agreement with reports on prolonged maturation of
frontal lobe (Gogtay et al., 2004; Giedd et al., 1999) the whole brain
connectomic approach allowed us to define fine circuit differences in
more detailed fashion.

Connections between superior frontal gyrus and gyrus cinguli (ante-
rior and posterior segments) were found to be stronger in adolescents
(SI. Tables 1–2). Moreover, the dorsolateral prefrontal cortex (rostral
portion of middle frontal gyrus) and the superior frontal gyrus had sig-
nificantly stronger connections with the thalamus in both hemispheres
(SI. Table 1–2), suggesting protracted maturation of anterior thalamic
radiation (Bava et al., 2010). The significantly stronger connections be-
tween prefrontal cortex and limbic structures (gyrus cinguli and limbic
nuclei of thalamus in both hemispheres), found in adolescents, suggest
fine-tuning of fronto-limbic circuitry throughout childhood and juvenile
stage (SI. Tables 1–2). During the adolescence prefrontal cortex un-
dergoes substantial reorganization; the volume and thickness of the pre-
frontal cortex rapidly decrease (Gogtay et al., 2004; Giedd et al., 1999)
which parallels the process of synaptic pruning (Petanjek et al., 2011).
Our results show stronger connectivity between dorsolateral prefrontal
cortex (rostral middle frontal gyrus) and neighboring cortical areas in
F. For the SF methods, we give different values that correspond to the different decompo-
(∩p), the data-driven algorithms (∩dd) and the common rejections obtained by all decom-
res are used: nodal strength (NS), nodal efficiency (NE) and connection weight (CW). In

ST

LO CH ∩p WT FG EB LE ∩dd ∩ ∩∩

66 66 66 66 66 68 66 66 66 64
82 82 82 82 82 82 82 82 82 82
81 81 81 88 91 94 91 88 81 69



Fig. 4. The common significant nodes/connections between all significant results obtained by the HTSF and the STSF, and all the decompositionmethods (the last columnof Table Practical
Example Results). The red nodes are significantly different in terms ofNS andNE. However, the yellownodes significantly different only in terms of NE. Theblue connections correspond to
significantly different connections with Cohen's d between 1 and two,whereas, orange connections have a Cohen's d larger than 2.We used the Brain Net viewer tool (Xia et al., 2013) for
this visualization.
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both hemispheres (such as superior frontal gyrus and rostral portion of
middle frontal gyrus) (SI. Tables 1–2). Therefore, compared to children,
prefrontal cortex in adolescents favors stronger connectivity with its
neighboring areas, structural integration. Similarly it also favors stronger
connectivity with limbic areas (cingulate gyrus).

The lateral prefrontal cortex is a key neural substrate of executive
function. In order to carry out executive functions the connections
between the lateral prefrontal cortex and other cerebral areas allow
influx/outflow of information. This information (e.g., cognitive repre-
sentation of perception and of action) is temporally integrated in the
lateral prefrontal cortex which is crucial for goal-directed behavior
(Fuster, 2001). That is, integrating executive memory (sequences of be-
havior, action schemas) or working memory (Goldman-Rakic, 1991,
1995) with preparatory set finally leads to central function of the lateral
prefrontal cortex: temporal organization of behavior linking the organ-
ism with its environment (Fuster, 2001).

The anterior cingulate cortex, on the other hand, serves as an anterior
attentional system (Posner and Petersen, 1990). That is, it has a key role in
concentrating attention on behavioral or cognitive tasks while at the
same time serves as a key player for integrating the motivational value
(Fuster, 2001). Furthermore, it plays an important role in control of
basic drives and emotional behavior (Fuster, 2001).

There is a shift in predominance of dopaminergic activity in the
dorsolateral prefrontal cortex over the anterior cingulate cortex during
adolescence (Spear, 2000). This might relate to the reward deficiency
leading to reckless behavior, sensation seeking and risk taking seen in
adolescence (Spear, 2000). While there is no direct evidence that
changes in connectivity strength between mesocortical and prefrontal
regions underlie adolescent specific behavior, our results suggest that
this circuit might be one of its neurological substrates. Furthermore,
during adolescence major transformation of cognitive processing
occurs (transformation of cognitive thought leading to abstract reasoning
(Graber and Petersen, 1991)).

The left prefrontal cortex has a role in encoding the new memory
(Gabrieli et al., 1998) thought semantic organization of encodedmaterial
(Fletcher et al., 1998a). Contrarily, the right prefrontal cortex is more
involved during retrieval of stored memory and internal monitoring of
retrieved material (Fletcher et al., 1998b). Our results suggest that from
childhood to adolescence, strengthening of associationalfibers of the pre-
frontal cortex occurs in hemisphere specific fashion (SI. Tables 1–2). Re-
organization of frontal connectivity, thus, might underlie the changes
seen in cognitive skills (processing of information) during childhood
and adolescence (SI. Tables 1–2).

Parietal cortex

Choudhury et al. (2006) suggested that efficiency, and possibly
strategy, of perspective taking develop in parallel with brainmaturation
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Fig. 5. Average number of connections detected as significantly different between the two groups randomly chosen among the initial groups, using different strategies and different de-
composition methods, over 1000 random simulations (group selections). The Bonferroni procedure (FWER) is used in the first row and the BH procedure (FDR) in the second row. The
number of subjects in each group is either n = 5 or n = 10 as indicated. The dark bars show the common rejections between the rejections obtained by each method (SM, HTSF or
STSF) and the rejections obtained by the SM when using the complete sample.
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during adolescence. Moreover, socio-cognitive development during
adolescence is related to the maturation of prefrontal, inferior parietal
and superior temporal cortexes.

In line with the current concepts of development, parietal and
frontal cortexes reach the peak volume in pre-adolescent stage
(approx. 10–12 years) which if followed by decline during adolescence
(Gogtay et al., 2004; Giedd et al., 1999). It has been suggested that syn-
aptic reorganization of frontal and parietal cortices during adolescence
has an impact on cognitive processes such as mentalizing and perspec-
tive taking in the motor, conceptual and emotional domains (Ruby and
Decety, 2003, 2004) as well as in the process of abstract reasoning
(Luna, 2004; Qin et al., 2004). Our results show that the connections
of superior and inferior parietal cortexes, especially with superior
temporal cortex, strengthen considerably in adolescence (Tables 1, 2).
Furthermore, the parietal cortex is involved in distinguishing between
self and others, in terms of imagining how someone would think or
feel (Ruby and Decety, 2001, 2003, 2004) while superior temporal cor-
tex is associated with the prediction of actions based on the past ones.
The reorganization of these circuits might explain differences in socio-
cognitive functioning between children and adolescents (Choudhury
et al., 2006) while developmental alteration of these circuits could
lead to a poorer socio-cognitive outcome (Fischi-Gómez et al., 2014).

Brain stem connections

Interestingly, our results show that, compared to children, adoles-
cents have stronger connections of the brain stem and right hemisphere
(precentral gyrus, superior parietal, basal ganglia and thalamus).

Paus et al. (1999) showed that the cortico spinal tract matures until
late adolescence, being a neurological substrate for elaboration of fine
fingermovements. Indeed, our results also reveal prolongedmaturation
of pyramidal tract of the right hemisphere (SI. Tables 1–2). Having in
mind thatwedidnot take into account handedness of subjects,we cannot
rule out that hemispheric differences in maturation of this tract could be
contributed to the handedness of our subjects.

Finally, careful analysis of our results (Fig. 4) revealed that majority
of the connections found to be stronger in adolescence where associa-
tional connections of the right hemisphere between the areas of the
frontal cortex (rostral portion of themiddle frontal gyrus, superior fron-
tal gyrus), parietal cortex (superior and inferior parietal lobule) and
their neighboring areas (SI. Table 1).Within the left hemispheremajority
of connections found tobe strongerwere connections betweenprefrontal
cortical areas (rostral portion of the middle frontal gyrus) and its neigh-
boring areas (SI. Table 2).

In summary, the results of our structural connectivity analysis show
that adolescents, compared to children, favor structural integration of
prefrontal cortices with the neighboring areas and havemore elaborated
pyramidal tract of the right hemisphere. In addition, the structural inte-
gration of the parietal cortex of the right hemisphere and the superior
temporal cortex of the left hemispherewith their neighboring structures
confirms hemispheric differences in structural integration from child-
hood to adolescence.

Graph analysis reveals fine-tuning of brain connectivity during childhood
and puberty

Qualitative analysis of our structural connectivity results identified
some of the networks associated with maturation of axonal pathways
(SI. Tables 1–3). Nevertheless, new imaging analysis tools (like graph
analysis) nowadays allow in depth quantitative analysis of brain devel-
opment on global level (Park and Friston, 2013; Bullmore and Sporns,
2009).When assessing nodal efficiency, our results showed that in ado-
lescents, all of the cerebral nodes (except left frontal pole) have signifi-
cantly stronger nodal efficiency compared to children (SI. Table 4, 5; 1).
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Moreover, in adolescence, majority of nodes have also significantly
stronger nodal strength (SI. Table 4, 5; 1). NS suggests that adolescents
favor increased integration and decreased segregation of structural con-
nectivity as shownpreviously (Hagmann et al., 2010a). This global trend
of increased efficiencymight reflectmaturation of axonal pathways and
consequential structural network refinement (Hagmann et al., 2010a).
It is known that the processes of axonal myelinization and axonal diam-
eter increase are protracted through adolescence into early adulthood
(Paus, 2010). These biological changes influence the speed of neural
transmission (Aboitiz et al., 1992) and are crucial for the integration of
information across spatially segregated brain regions (Paus et al.,
1999). Spatio-temporal differences in maturation of different cerebral
areas have been linked to certain aspects of behavior during develop-
ment. As an example, Galvan et al. (2006) reported that earlier develop-
ment of the nucleus accumbens relative to the orbito-frontal cortex
underlies risk-taking behaviors seen in adolescents.Within this context,
our results suggest that significantly higher node strength (the sum
of weights attached to ties belonging to a node) seen in adolescent
subjects (SI. Table 4, 5; 1) reflects the developmental changes
(myelinization or increase of axonal diameter) that could underlie
adolescent behavioral. Similarly, as major changes occur during late
childhood and adolescence (SI. Tables 1–5), even a slight mismatch in
their maturation pattern (Paus et al., 2008), could potentially lead to
emergence of psychiatric disorders (e.g., schizophrenia) or obsessive–
compulsive (Anticevic et al., 2013, 2014; Paus et al., 2008).

Interestingly, in adolescents, relative to children, the occipital lobe
(calcarine, cuneus and lateral occipital areas) and lingual gyrus of both
hemispheres did not show significant differences in nodal strength.
While calcarine cortex contains the primary visual area (Brodmann
area 17), cuneus and lateral occipital cortices contain extrastriate com-
ponents of visual cortex. From functional point of view, Brodmann areas
18 and 19 (mostly occupying lateral occipital cortex) are classified as
unimodal visual association cortex (Mesulam, 1998). They are mono-
synaptically connected with V1 and constitute upstream visual associa-
tion areas; in plain words, they are only one synapse away from the
associated primary sensory area. These upstream unimodal sectors
encode basic features of sensation. Downstream sectors (e.g., inferior
temporal cortex), on the other hand, are at a distance of two or more
synaptic units from associated primary sensory area and they encode
complex contents of sensory experience (Mesulam, 1998). Our results
reveal that almost all of the nodes are significantly stronger in adoles-
cents relative to children (SI. Tables 4, 5) except the nodes belonging
to upstream unimodal sectors of visual information processing. There-
fore our results suggest that neural substrate of basic features of visual
sensationmight be unchanged during development, at least from struc-
tural point of view.

Conclusion

We presented a screening–filtering strategy that exploits the struc-
ture of the data and positive dependence that could exist between
tests corresponding to nodes or connections, without relying on strong
assumptions. The strategy is adapted to strongly control either the
FWER, the FDR or any error rate based on the modified p-values. We
showed via simulations and practical examples that the proposed strat-
egy almost always performsbetter than the usual node/connectionwise
analysis. The power obtained by the proposed strategy reaches several
times the power of the standard methods that do not exploit the posi-
tive dependence and the data structure, and this holds under a strong
control of the false positives. We showed as well that the screening
and filtering strategy improvement is quite robust against network
decomposition misspecification and screening thresholds. Although, the
SFmethods presented in this paper do not exploit the information of pos-
itive dependence in an optimal way, the gain obtained in the simulations
should be satisfactory for many applications, especially, in neuroimaging.
We also compared the screening and filtering strategy to the NBS, which
is thefirst andmost usedmethod to detect differences in brain connectiv-
ity. We showed how the SF methods in the FDR case compete with the
NBS in terms of performance, robustness and strong control.

Using the novel strategy for comparison of connectomes we have
demonstrated stronger connectivity of associational connections of pre-
frontal cortex in adolescents relative to pre-school children. Connec-
tions between prefrontal cortex and limbic structures were also
identified as stronger in adolescence. Additionally, adolescents have
significantly stronger NS across the brain with the exception of the
nodes belonging to upstream unimodal sectors of visual information
processing. Therefore, our results corroborate hypothesis that prefron-
tal associational connections and fronto-limbic circuitry have
protracted development that continues into adolescence. Similarly,
fine-tuning of connectivity, seen as significantly stronger node degree
across almost all areas of the brain, support the hypothesis that signifi-
cantmodification of information processing occurs in almost all areas of
the brain from childhood to adolescence. In conclusion, we suggest that
these findings might represent biological blueprint related to cognition
and behavior seen in adolescents.
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Appendix A

Proof of Proposition 1. We have to show that, under the null hy-
pothesis, the c.d.f. of Zji = Φ−1(1 − pji) is the normal c.d.f., that
is, ℙ(Zji b z) = Φ(z). Under the null hypothesis, pji∼U 0;1ð Þ . We
have ℙ(Zji b z) = ℙ(Φ−1(1− pji)). SinceΦ is an increasing function,
then ℙ(Zji b z) = ℙ(1 − pji b Φ(z)) = ℙ(pji N 1 − Φ(z)) = 1 − (1 −
Φ(z)) = Φ(z).

Proof of Proposition 2. Ti ¼
ffiffiffiffi
si

p −1∑ j∈ Ji Z ji: Since Ti is a linear combi-
nation of Gaussian random variables, then it is also a Gaussian random
variable. Let us compute its mean and variance.

E Tið Þ ¼ Effiffiffiffi
si

p −1∑ j∈ Ji Z jiÞ ¼
ffiffiffiffi
si

p −1∑ j∈ JiE Z ji
� � ¼ ffiffiffiffi

si
p −1∑ j∈ Ji0 ¼ 0:

�
Here we

used the fact that the expectation is a linear operator and that Here
we used the fact that the variance is a bi-linear operator and that
Z ji∼N 0;1ð Þ:

Proof of Proposition 3. According to the mixture model assumed for
the data, we have the following distributions:

Ti Z ji ¼ z
���� �

∼N ρ jiz; 1−ρ2
ji

� �� �
¼ N 1ffiffiffiffi

si
p z; 1− 1

si

� 	� 	
;

for hji = 0 and i ∈ I0, and

Ti Z ji ¼ z
���� �

∼N μ i þ ρ jiσ iz;σ
2
i 1−ρ2

ji

� �� �
;

for hji = 0 and i ∈ I1, where μ i ¼ E Tið Þ and σ i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Tið Þp

≤1:
If the Bonferroni procedure is used in the filtering step, themodified

p-values {pji/r|i∈ I+} are compared to α/M. This means that the original
p-values (belonging to the positive subsets) are compared to rα/M, or
equivalently, the scores Zji are compared to c = Φ−1(1− rα/M).

LetE FPð Þbe the expected number of false positives after the filtering
step. Note that the expected number of FP in the negative subsets is zero
because all p-values are set to 1.
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Let JN be the set of null hypotheses, that is, JN={ j : hji=0}. Given ρji
{ j=1,…,M},m0,m, si{i=1,…,m}, μ i{i=1,…,m}, σi{i=1,…,m}, πi
{i = 1,…, m}, U and c, and that E Iþ

� � ¼ mℙ Pi≤Uð Þ, we have

E FPð Þ ¼ E E FP Iþ
���� �� �

¼ E
X
i∈Iþ

X
j∈ Ji∩ JN

ℙh ji¼0 Z jiNc Pi ≤ Uj
� �0

@
1
A

¼ E
X
i∈Iþ

si
X

j∈ Ji∩ JN

ℙ Pi≤U Z ji ¼ z
���� �

ℙh0
Z ji ≥ z

� �
ℙ Pi≤Uð Þ

0
@

1
A

¼ E
X
i∈Iþ

si

Z ∞

c

m0Φ C0ð Þ þm1 1−πið ÞΦ Cμ i

� �
m0U þm1Φ Φ−1 1−Uð Þ−μ i

� �φ zð Þdz
0
@

1
A;

where φ is the probability density function of the normal distribution,

C0 ¼ Φ−1 1−Uð Þ−ρ jizffiffiffiffiffiffiffiffiffiffi
1−ρ2

ji

p and Cμ i
¼ Φ−1 1−Uð Þ−μ i−ρ jiσ iz

σ i

ffiffiffiffiffiffiffiffiffiffi
1−ρ2

ji

p .

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.11.059.
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