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Abstract

Detecting local differences between groups of connectomes is a great challenge in neuroimaging, because the large number of tests

that have to be performed and the impact on multiplicity correction. Any available information should be exploited to increase

the power of detecting true between-group effects. We present an adaptive strategy that exploits the data structure and the prior

information concerning positive dependence between nodes and connections, without relying on strong assumptions. As a first

step, we decompose the brain network, i.e., the connectome, into subnetworks and we apply a screening at the subnetwork level.

The subnetworks are defined either according to prior knowledge or by applying a data driven algorithm. Given the results of the

screening step, a filtering is performed to seek real differences at the node/connection level. The proposed strategy could be used to

strongly control either the family-wise error rate or the false discovery rate. We show by means of different simulations the benefit

of the proposed strategy, and we present a real application of comparing connectomes of preschool children and adolescents.

Keywords: Brain connectivity, complex networks, multiple testing, family-wise error rate (FWER), false discovery rate FDR,

fronto-limbic circuitry, adolescence.

Introduction

The study of brain connectivity has become an important

aspect of neuroscience as it can help to understand brain or-

ganization and function (Fornito et al., 2013; Sporns, 2011).

Moreover, the metrics of brain connectivity, assessed through

neuroimaging methods, have been recognized as an important

marker indicating the level of brain maturation or psychopathol-

ogy. Through recent innovations in medical imaging and image

analysis, the determination of interregional brain connectivity

became feasible. Different types of connectivity can be ob-

tained depending on the imaging modality and measure of con-

nectivity, e.g., structural connectivity from diffusion-weighted

MRI and fiber tracking (Cammoun et al., 2012; Hagmann et al.,

2008), or functional connectivity from functional MRI and sta-

tistical dependence on time (Smith et al., 2013; Friston, 2011;

van den Heuvel and Hulsoff-Pol, 2010; Achard et al., 2006).

Global brain connectivity can be modeled by a network (a

weighted graph) called connectome (Sporns et al., 2005), where

the N nodes stand for brain regions of interest (ROIs), and each

edge weight characterizes a measure of connectivity between

pairs of ROIs.

∗djalel.meskaldji@epfl.ch

Investigating differences in connectivity between distinct pop-

ulations based on connectivity matrices is attractive, but also

comes with a certain number of problems (Fornito et al., 2013;

Varoquaux and Craddock, 2013), among them, the high number

of multiple comparisons.

Effectively, when the comparison between brain networks are

studied at the level of nodes (vertices) (O(N)) that represent

brain ROIs, or connections (edges) (O(N2)) that link brain

ROIs, a huge number of tests has to be performed on the same

data, especially, in the case of testing at the level of connec-

tions, in which the number of tests basically grows quadrat-

ically with the number of nodes. If the multiplicity of tests

is ignored, the risk of committing false discoveries increases.

As a consequence, erroneous conclusions are frequently drawn

(Meskaldji et al., 2013a). On the other hand, considering mul-

tiplicity could dramatically decrease the chance of detecting

real between-group effects. This is a fact that is commonly

reported by researchers especially when the conventional Bon-

ferroni procedure is used for the multiplicity correction and the

strong control on the number of false discoveries is exerted. For

example, if N = 100 nodes, the Bonferroni threshold for signif-

icant p-values is of order 10−4 when testing at the level of nodes

and 10−6 when testing at the level of connections.

Depending on the field of application and the nature of the data,
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many strategies have been adopted in order to face the mul-

tiplicity challenge in the presence of positively correlated test

statistics. These strategies consist in exploiting the data struc-

ture and positive dependence that could be present between

tests. This can have an important impact on the power of de-

tecting true alternatives. For example, this concept was adopted

in the widely recognized software package for analyzing fMRI

data, the Statistical Parametric Mapping (SPM) (Friston et al.,

1995; Frackowiak et al., 1997) and in its extensions such as

wavelet extensions (Van De Ville et al., 2007, 2004), based on

the idea that voxels of a neurological type belonging to a unique

anatomical region will usually exhibit positively correlated be-

havior (Penny and Friston, 2003; Genovese et al., 1999). In

this case, the data is supposed to be smooth and follow a multi-

dimensional Gaussian distribution. For this reason, a smoothing

has to be applied to the data (Nichols and Hayasaka, 2003). A

permutation approach is performed to define active clusters.

The same concept has been followed to derive specific statis-

tical methods in the brain connectivity context. Zalesky et al.

(2010) proposed the network based statistic (NBS) as a method

to correct for the FWER (the probability of having at least one

false positive connection), in the framework of multiple testing

applied to the brain network connections. The method relies

on a first identification of connected components (in the graph

theoretical sense), by thresholding the set of p-values at an ar-

bitrary threshold. An iterative procedure based on permutation

testing allows thereafter identifying connected components that

carry a between-group effect. These methods have, however,

some limitations. First, the inference is obtained at the level of

connected components and only exerts a weak FWER control,

that is, once a component is declared to be significantly differ-

ent, nothing could be said at the level of individual nodes or

connections belonging to the component. In other words, the

type I error metric controlled at the level of nodes/connections

is unknown. Second, the results strongly depend on the ar-

bitrary choice of the threshold. The same can be said about

the spatial pairwise clustering (SPC), proposed by the same au-

thors, where the definition of components is based on geomet-

rical distance in addition to the connectedness in the graph the-

oretical sense (Zalesky et al., 2012).

It is commonly admitted that most mental diseases or cogni-

tive trait exhibit changes not in the entire brain uniformly, but

rather specific in functional systems or brain regions and this to

a different extent. Meskaldji et al. (2011a) proposed an adap-

tive strategy that exploits the network structure of the brain

connectivity by considering brain subnetworks, which results

in reducing the number of tests and a considerable improve-

ment in power. The strategy was applied to detect differences

in both structural and functional brain connectivity (Owen et al.,

2013a,b; Meskaldji et al., 2011a). However, besides the gener-

ality of this strategy in terms of summary statistics that could

be used, and in terms of the diversity of the brain decompo-

sition methods that could be applied, it suffers from the same

drawback as the NBS and the SPC, that is, nothing could be

said concerning the statistical evidence of nodes and connec-

tions that constitute the significant subnetworks. Nevertheless,

the subnetworks could be chosen as small as possible to obtain

statistical evidence at finer scales. We will give throughout this

paper some highlights on the differences between these weak

control methods.

The question that we will investigate in this paper is to go be-

yond the cluster/subnetwork level and investigate the differ-

ences at the single node/connection level. Inspired by Ben-

jamini and Heller (2007), we propose a screening-filtering strat-

egy that exploits the data structure and positive dependence that

could exist between connections/nodes. The advantage of the

proposed strategy is that it exerts a strong control of type I error

rates under weak assumptions (i.e., weaker than assumptions

needed by SPM, NBS and SPC). We study the performance of

the screening-filtering approach on simulated networks and on

structural brain connectivity matrices. In particular, we exam-

ine the influence of the network decomposition and the screen-

ing threshold on the statistical inference. We also discuss the

conceptual differences between our proposed strategy and the

some of existing methods in the literature.

As far as we know, this method is the first adaptive strategy that

guarantees the strong control of type I error rate at the level

of nodes or connections. For this reason, the performances of

the proposed strategy will only be compared to the standard

node/connection-wise inference, that is, methods that exerts a

strong control, but do not consider neither data structure nor

positive dependence between tests.

The paper is organized as follows. We first give the general

processing pipeline and the mathematical formulation of the

screening-filtering approach. Then, we show by simulations,

the benefit of using the proposed strategy. Finally, we present

a practical application on real data, from children and adoles-

cents, which consists in comparing structural human brain con-

nectomes between these populations.

Methods

We present in this section the different steps of local proce-

dures that exert a strong false positives control. In particular, we

outline two strategies: the standard methods and the screening

and filtering methods.

Local network-based measures

Since the imaging measures of connectivity can be used to

model the brain as a network, it is worth to locally compare

populations not only cell by cell of the connectivity matrices,

but also by estimating the network measures that characterize

the topological properties of the brain network (Fornito et al.,

2013; Meskaldji et al., 2013a; Bassett et al., 2008). The

combination of the local and the global inferences gives a

better understanding of the network organisation (Meskaldji

et al., 2013a). In this paper, we focus on the local measures.

Sporns (2011); Rubinov and Sporns (2010) among others are

good sources for a comprehensive list of important measures

with their interpretations in the brain connectivity context.

For non-homogeneous populations, it is strongly recommended

to correct for covariables such as the age or the gender of the

subjects, by taking the residuals of a regression as the new
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Figure 1: The different steps of a complete local analysis using the screening-filtering algorithm. The algorithm takes as an input two (or more) groups of connectivity

matrices to be compared, as well as a prior decomposition of the brain network. If the latter is not available, a decomposition is obtained by applying a data-driven

decomposition algorithm. The screening-filtering ends up with a set of modified p-values that could be corrected by a multiple testing procedure to obtain the

statistical inference.

observations (Meskaldji et al., 2013a).

This step ends up with a vector of local observations for each

node/connection and for each subject.

Testing and p-value computation

Let us assume that the aim of a brain connectivity study is to

compare different groups of connectomes. Comparing two pop-

ulations at the level of nodes or connections or any local unit

that we call atom, usually consists in performing a (univari-

ate or multivariate) two-sample test for each node/connection

(Meskaldji and Van De Ville, 2014). When more than two

groups are compared, an analysis of variance (ANOVA) is per-

formed with a predefined contrast. This ends up with M p-

values, where M is of the order O(N) when testing at the level

of nodes, and M goes like O(N2) when testing at the level of

connections.

Let p j denotes the p-value of atom j = 1, . . . ,M. The standard

method (SM) consists in performing a multiple testing proce-

dure to the set of p-values to control a type I error metric. For

example, one could apply the Bonferroni procedure to the p-

values {p1, . . . , pM} by declaring significant p-values that sat-

isfy pa ≤ α/M. This guarantees the strong control of the family-

wise error rate (FWER).

The SM does not exploit the data structure nor the positive de-

pendence between atoms and typically results into poor sensi-

tivity.

The screening and filtering strategy: a general sketch

The screening-filtering (SF) approach takes as an input

the raw p-values and consists in the following. First, we

group the family of atoms into m subsets. For each subset,

we compute the standardized mean of the z-scores within the

subset. Based on these mean scores, we perform a screening

at a predefined threshold. In other words, we compare the

m p-values corresponding to the mean scores to a predefined

threshold. This step results in two classes: positive subsets, that

is, the subsets with mean score p-value less than the screening

threshold, and negative subsets (the remaining subsets). This

step is a particular case of the subnetwork analysis proposed in

Meskaldji et al. (2011a), since we are using here a particular

case of summary statistics, which is the mean.

Note that if the threshold in the screening step corresponds to

a multiplicity correction, then the weak control is guaranteed.

For example, using the Bonferroni threshold α/m, in the

screening step guarantees the weak control of the FWER, that

is, at the level of subsets. We compare the screening step

performances to other methods that guarantee the weak control

in the application section.

Based on the results of the screening step, the practitioner can

perform a multiple testing procedure at the level of atoms by

computing the p-values conditioned by the statistical results

at the first step (see Benjamini and Heller, 2007). However,

this solution is time consuming in large data and the control

of the FP is not guaranteed for small samples. We propose

a procedure where we do not need to estimate the unknown

3
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parameters neither to compute the conditional p-values, i.e., we

work directly with the unconditioned (original) p-values. We

modify the original M p-values such that the modified p-values

can be used with any multiple testing procedure to control

the desired type I error metric. The modification consists in

dividing the p-values belonging to the positive subsets by a co-

efficient larger then 1, called the relaxation coefficient, i.e., the

modified p-values are always smaller then the original p-values

in the positive subsets. The remaining p-values (that belong

to negative subsets), are set to 1. The filtering step follows by

applying a multiple testing procedure to the modified p-values,

which results in the statistical inference at the level of atoms.

The general pipeline of performing group comparison with the

screening and filtering strategy is summarized by Figure 1.

The intuition behind this strategy is that the p-value weights

(Benjamini and Hochberg, 1997) that were uniform (all equal

to 1) before the screening step, are redistributed. The p-value

weights in negative subsets are given to positive subsets to

enrich p-values therein. The control of the type I error rate is

based on conditional probability theory, and hence, the choice

of the relaxation coefficient depends on the screening threshold.

The relaxation coefficient is chosen such that it guarantees

the control of false positives and it becomes larger when

the screening coefficient becomes smaller. A mathematical

formulation of the algorithm is presented in the following

section.

Mathematical formulation

Consider a set of M tests with their corresponding p-values.

We group the M tests into m subsets J1, . . . , Jm such that
⋃m

i=1 Ji = J and |Ji| = si, i = 1, . . . ,m. The hypotheses h ji

are indexed by two indices: the subset index i and the atom in-

dex j. The p-values associated with the tests are p ji, j ∈ J and

are related to the corresponding z-scores by p ji = Φ(Z ji), where

Φ = 1 − Φ and Φ is the gaussian cumulative distribution func-

tion.

Proposition 1

Under the null hypothesis (no real difference), the z-scores fol-

lows a normal distribution N(0, 1).

The proof of this proposition is in the appendix.

Let µ ji = E(Z ji). Without loss of generality, we consider one-

sided tests h ji = 1, if µ ji > 0, and h ji = 0, otherwise.

We consider the following mixture effect model (Benjamini and

Heller, 2007). Null subsets are subsets that only contain null hy-

potheses. Otherwise, the subset is called affected. Let I0 = {i :

1, . . . ,m | ∑ j∈Ji
h ji = 0} and I1 = {i : 1, . . . ,m | ∑ j∈Ji

h ji > 0}
the indices of null subsets and affected subsets, respectively.

The number of null subsets is |I0| = m0 and the number of af-

fected subsets is |I1| = m1. The proportion of non-null hypothe-

ses in the subset Ji is πi = s−1
i

∑

j∈Ji
h ji.

The information in each subset is summarized by a summary

statistic Ti =
√

si
−1

∑

j∈Ji
Z ji. To model the dependence inside

each subset Ji, let ρ ji = corr(Ti; Z ji) be the correlation be-

tween each test Z ji ∈ Ji with its corresponding subset summary

statistic. We assume that ρ ji >
√

si
−1, which corresponds to

corr(Z ji,Zli) > 0 for ( j, l) ∈ J2
i
, i ∈ I1 and ∈ j , l. We also

assume that ρ ji =
√

si
−1

for ( j, l) ∈ J2
i
, i ∈ I0 and j , l.

Proposition 2

According to this model, for a null subset, Ti ∼ N(0, 1).

The proof of this proposition is in the appendix.

Suppose that the p-values corresponding to the summary statis-

tics are Pi(i = 1, . . . ,m), that is, Pi = Φ(Ti). The central limit

theorem allows us to make this approximation especially when

the size si becomes large.

The screening step consists in comparing the subset p-values

Pi (i = 1, . . . ,m) to a predefined threshold U. This screening

results in two classes of subsets. Let I+ = {i : Pi ≤ U} be the

positive subsets.

We divide the original p-values inside the positive subsets by

the relaxation coefficient r and we apply a filtering using a mul-

tiple testing procedure.

Proposition 3

Under the mixture model described above, if the Bonferroni

procedure is used in the filtering step at level α, then the ex-

pected number of false positives after the filtering step is

E(FP) = E

















∑

i∈I+
si

∫ ∞

c

m0Φ (C0) + m1(1 − πi)Φ
(

Cµi

)

m0U + m1Φ(Φ−1(1 − U) − µi)
ϕ(z)dz

















,

where ϕ is the probability density function of the normal dis-

tribution, C0 =
Φ−1(1−U)−ρ jiz

√

1−ρ2
ji

, Cµi
=

Φ−1(1−U)−µi−ρ jiσiz

σi

√

1−ρ2
ji

, c =

Φ−1(1 − rα/M), µi = E(Ti) and σi =
√

Var(Ti) ≤ 1.

The proof of this proposition is in the appendix.

The relaxation coefficient r is chosen sufficiently small such

that the expected number of false positives E (FP) ≤ α, for all

possible values of the unknown parameters, that is,

r̂ = min
{

argmax{r : E(FP) ≤ α},m0; πi; µi, σi, ρ ji

}

.

We still increase the value of the relaxation coefficient r as long

as the type I error rate is below the level α. This condition guar-

antees the strong control of the FWER by Markov’s inequality.

Consider the particular case as in the upcoming simulations,

where µ ji = ∆ for atoms with effect and πi = π for all i ∈ I1.

In this case, µi = πsi for all i ∈ I1. We give an approxima-

tion algorithm to estimate the relaxation coefficient in this case.

Let s = 1/m
∑

{i=1,...,m} si be the average subset size. We set the

parameter ρ ji to the least favorable value of 1/
√

s, which corre-

sponds to the case where the atoms inside the same subset are

independent. For the parameter ∆ we chose either ∞, which

corresponds to the more conservative lower bound, or the mean

of the m1s largest values of the scores. The latter is the one used

in the simulations and the applications presented in this paper.

Finally, we approximate the parameter σi by 1 for all i ∈ I1.

Algorithm 1 gives an approximated upper bound for the relax-

ation coefficient r.

Matlab and R scripts that implement this algorithm are avail-

able at: http://miplab.epfl.ch/software.

Simulations presented in this paper show that the FDR is con-

trolled if the modified p-values are used in the BH procedure.

However, a rigorous proof of the FDR control is presented in

Meskaldji (2013) and Meskaldji et al. (2013b).
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Figure 2: Ratio of average power of the SF methods over the average power of the SM against the raw effect, using the Bonferroni procedure. The HTSF (dashed

line) and the STSF (dashed-points line). The number of atoms is either M = 200, 1000 or 2000. The number of subsets is m = 20 when M = 200 and 50 when

M = 1000 and 2000. The number of partially-affected subsets is m1 = 2, 10 and 5 for M = 200, 1000 and 2000, respectively. In each situation the proportion π of

affected atoms within partially-affected subsets is either 0.25, 0.5 or 0.75 as indicated. The number of simulations performed to obtain each panel is 1000.

Application to simulated data

We compare the performance of the SF approach with

the SM, by considering different simulation settings and one

experimental dataset. We also discuss the influence of the

different parameters on the statistical inference.

First, we consider simulating brain networks in which we

integrate a positive contrast that represents the between-group

effect. In this simulation setting, we suppose that we have prior

information about the positive dependence between tests. This

prior information is available as a predefined decomposition of

the global set of tests. We compared the relaxed methods to

the SM in terms of average power and average number of false

positives.

We simulated a set of M hypotheses (corresponding to M

atoms), which we divided into m subsets with different sizes

si ≥ 1, i = 1, . . . ,m, randomly chosen. Among the m subsets,

we randomly choose m1 subsets to contain the effect. We

call these subsets partially-affected subsets. In each of these

subsets we randomly selected a set of hypotheses for which we

simulated a test score Z as a random realization of the shifted

standard normal distribution with mean ∆, that is, Z ∼ N(∆, 1).

These atoms contain the contrast, the between-group effect.

The average proportion of atoms with effect in the m1 partially-

affected subsets is π. For all the remaining hypotheses, either in

the m1 subsets (containing the effect) or in the remaining m−m1

subsets (without effect), the test scores are random normal

N(0, 1) realizations. Positive dependence was modelled by the

proportion of affected atoms in each partially-affected subset.

We simulated global sets with M = 200, 1000 and 2000 atoms,

with m = 20 or 50 subsets, and m1 = 2, 5 or 10 partially-

affected subsets. The average proportion of atoms with effect

within partially-affected subsets was either π = 0.25, 0.5 or

0.75.

The value of M = 200 represents a moderate number of atoms

in brain connectivity studies at the nodal level. However, for

connection-wise studies, the number of atoms to be considered

is of order O(N(N − 1)/2) for an undirected network with N

nodes. For example, a network with 90 nodes and density

of 0.25 or 0.5 has approximately 1000 or 2000 connections,

respectively. This situation is highlighted by the values

M = 1000 and 2000. For M = 200, the number of subsets is

20, which corresponds to an average subset size of 10. Among

the 20 subsets, only two of them contain the contrast. However,

when m = 1000 or 2000 the number of subsets is the same

m = 50, which gives two different average subset sizes of 20

and 40, respectively. Although the number of subsets is the

same in the two latter cases, the number of partially-affected

subsets is 10 and 5, respectively. To measure the influence of

the quality of the decomposition on the performance of the
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Figure 3: Ratio of average power of the SF methods over the average power of the SM against the raw effect, using the BH procedure. The setting is the same as in

Figure 2.

proposed strategy, we considered three different values of the

average number of affected atoms within partially-affected

subsets (in the m1 subsets) π = 0.25, 0.5 or 0.75. It is not

impossible to have almost a perfect decomposition in practice,

however, we did not consider the case where π ≈ 1.

We applied the SM and the SF algorithm to detect the positive

contrast. We carefully evaluated the influence of the choice of

the screening threshold. In this simulation and in the next ap-

plication, we used two different screening thresholds. The first

choice is based on a multiplicity correction. For example, if the

Bonferroni procedure is used for the screening, the threshold

is α/m. The second choice is simply to perform a screening at

threshold α. Based on this choice, we obtain two specific SF

algorithms that we term hard thresholding SF (HTSF) and soft

thresholding SF (STSF) algorithms, respectively, see Table 1.

Of course, the estimated relaxation coefficient with the HTSF

algorithm is always larger than the one estimated with the

STSF algorithm for the same data and the same decomposition.

We used two different type-I error metrics; the expected

number of false positives E(FP) (which closely relates to

the FWER via Markov’s inequality) and the false discovery

rate FDR = E (FP/R), where R is the number of rejections

(atoms declared to be significant). These two type-I error

metrics are particular cases of the general family E (FP/s(R)),

proposed by Meskaldji et al. (2011b), where s is any non-

decreasing function. To control the expected number of false

positives, we used the Bonferroni procedure that performs

each single test at level α/M, that is, it compares each single

p-value to the threshold α/M. The false discovery rate is

controlled by applying the Benjamini and Hochberg (1995)

(BH) procedure, which consists in ordering the p-values

from smallest to largest and chose as a significance threshold

the largest p-value situated under the increasing line with

slope α/M. Since the thresholds form a line, this procedure

is called the linear step-up procedure. Note that to con-

trol the E (FP/s(R)), the ordered p-values pi, i = 1, . . . ,M,

are compared to the sequence s(i)α/M Meskaldji et al. (2011b).

Figures 2 and 3 show the ratio of the average power of the

relaxed methods over the average power of the SM, in different

situations, when using the Bonferroni or the BH procedures, re-

spectively, both used with α = 0.05. On the other hand, Table 2

gives the estimated expected number of false positive E(FP) in

the Bonferroni case, and the estimated FDR in the BH case.

The simulations illustrate the power gain obtained by using

the relaxed methods. The SF methods almost always perform

better than the usual SM. The gain is realized even though less

false positives are committed. The only case in which the re-

laxed methods does not seem to perform better than SM, espe-

cially the HTSF, is when the number of tests is moderate and

the proportion of affected atoms within the partially-affected

subsets is relatively small. This issue rapidly disappears when
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Data: A set of M p-values, a decomposition of the global

set of p-values (or the average subset size and the

number of subsets), a global error rate α and a

screening threshold U.

Result: An approximation of the relaxation coefficient r.

Initialization oldr = 0; δ = 100.

while δ > ǫ do
r = oldr

temp=0;

while temp ≤ α do
r = r + δ;

EFP = []; (an empty vector)

c = Φ−1(1 − rα/M)

Γ0 =
∫ ∞

c
Φ

(

Φ−1(1−U)−(1/
√

s) z√
1−1/s

)

ϕ(z)dz

for m1 ∈ {1, ...,m} do

for π ∈ {1/s, ..., ⌊s⌋/s} do
∆ = ∞ or the mean of the m1πs largest scores.

Γ1 =
∫ ∞

c
Φ

(

Φ−1(1−U)−π∆−(1/
√

s) z√
1−1/s

)

ϕ(z)dz

EFP=[EFP; s(m0Γ0 + m1(1 − π)Γ1)]

end

end

temp=max(EFP)

end

oldr = r − δ
δ = δ/10

end

return r − δ
Algorithm 1: Proposed algorithm to approximate the relax-

ation coefficient.

Name Screening Filtering

SM − Bonferroni/BH

STSF α (No correction) Bonferroni/BH

HTSF Bonferroni/BH Bonferroni/BH

Table 1: The different steps of the local methods that are compared in this paper.

Th SM has only one step.

SM HTSF STSF

E(FP) 0.046 0.035 0.044

FDR 0.057 0.053 0.055

Table 2: The estimated expected number of false positives E(FP) in the Bon-

ferroni case and the estimated FDR in the BH case, for the different methods

SM, HTSF and STSF. The number of simulations is 1000 for each case.

the proportion becomes larger and the gain obtained by the SF

methods reaches more than 5 times the power of the SM when

the raw effect ∆ is small. This corresponds to situations with

small between-group effect or small sample size. When ∆ be-

comes large, all methods, including the SM are equivalent. We

can also observe when comparing the panels corresponding to

M = 1000 and 2000, that the gain increases as the size of the

subsets increases. Other simulations (not shown here) indicate

that the advantage of the SF methods over the SM increases

with the number of partially-affected subsets, m1. This is be-

cause the screening will detect more positive subsets on aver-

age. Finally, the relaxed methods behave almost in a similar

way when using either the Bonferroni procedure or the BH pro-

cedure.

To conclude this simulation study, we can say that the STSF

is more stable in terms of gain because small proportions are

easily detected. The HTSF seems to perform well when the

proportion π becomes larger, which is directly related to the ap-

propriate choice of the decomposition. The HTSF should be

chosen when we have more confidence on the network decom-

position. Otherwise, STSF is preferable, as it has a less strict

screening in the first step. The choice of the decomposition and

the screening threshold are discussed in more details in the ap-

plication section.

Application to brain connectomes

The screening and filtering strategy could be applied to any

modality of brain connectivity or any complex networks in gen-

eral.

Here we present a comparison study of whole-brain structural

connectivity matrices derived from diffusion MRI tractography.

Description of the data

We consider two groups of brain connectivity matrices based

on the dataset used in Hagmann et al. (2010b), which consists

of 30 connectivity matrices. We define two groups based on the

age of the subjects: 16 pre-school children and 14 adolescent

children.

The connectivity matrices are derived from diffusion-weighted

MRI acquisitions and well-established algorithmic procedures

as described in Hagmann et al. (2008); Cammoun et al. (2012).

These matrices have been normalized by eliminating the linear

bias towards longer fibers introduced by the tractography algo-

rithm, and by dividing the fiber density between two ROIs by

the average of their areas to account for brain volume normal-

ization (Hagmann et al., 2010b).

Local measures

Many possible nodal and connection measures could be used

to compare brain connectomes. In this study, we use one con-

nection measure: connection weight (CW); and two nodal mea-

sures: nodal strength (NS) and nodal efficiency (NE). The CW

measures the strength of connectivity between two nodes which

is related to the capacity of transfer of information between

two ROIs. The NS is defined as the sum of weights of edges

connected to a specific node. It is computed by the sum of

row/column values corresponding to that node in the connec-

tivity matrix of subject k, that is,

NSk
i =

N
∑

j=1

wk
i j,

where wk
i j

is the weight of the connection between nodes i and

j in matrix (subject) k. The NS can be interpreted as the capac-

ity of transfer between not only two nodes, but the capacity of

transfer from a specific node to its neighbors. Finally, the NE
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of a node is the inverse of the average minimum weighted path

length from that specific node to all other nodes, that is,

NEk
i =



















1

N − 1

N
∑

j=1, j,i

dk
i j



















−1

,

where dk
i j

is the weighted distance; i.e., the length of the

weighted shortest path between node i and node j for subject k.

Note that in this case, the value of each cell is inverted because

the distance between two connected nodes is supposed to be the

inverse of the connection weight (Rubinov and Sporns, 2010)

. The nodal efficiency represents the speed and the capacity of

transfer of information from a node not only to its neighbors

but to all other nodes in the network. The nodal efficiency is

related to the nodal strength because the first step of shortest

paths from a specific node starts by its neighbors.

Decomposition of the brain network

There are many ways to decompose a network into subnet-

works. For example, one could group connections that share

the same node as a subnetwork. In doing so, the number of

subnetworks will be the number of nodes in the brain net-

work. The choice is very large and studying all possibilities

exceeds the scope of this paper. Here we choose decomposing

a network based on the node communities, that is, subnetworks

are defined on the basis of groups of nodes. Once groups of

nodes (communities) are specified, subnetworks are defined ei-

ther by connections between nodes of the same community (the

intra-community connections) or the connections between two

communities (inter-community connections) (Meskaldji et al.,

2011a).

Here we present the different network community decomposi-

tion methods that we used in our application study. Our choice

is large because we would like to study the robustness of the

method against the network decomposition misspecification.

We used two different prior decompositions of the global set of

nodes. The first one corresponds to the decomposition of the

brain into lobes (LO). The second is based on a recent study

(Chen et al., 2012), which uses a different approach to cortical

localisation, we call it Chen decomposition (CH).

To highlight the large range of applicability of the screening

and filtering strategy, we also decompose the set of nodes into

communities using different data-driven algorithms, that is, al-

gorithms based only on the data without any prior grouping in-

formation. A large number of decomposition methods is based

on the optimization of the quantity known as modularity. Mod-

ularity is a quantity that measures the goodness of decompo-

sition of a network into communities. A good community de-

composition will have many edges within communities and a

few between them (Newman and Girvan, 2004).

The four decomposition methods we used in this study are the

following. The first one is called walktrap (WT), which is based

on the fact that random walks on a graph tend to get trapped

into densely connected subgraphs corresponding to communi-

ties (Pons and Latapy, 2005). The second one is the fast greedy

algorithm (FG), which is based on the greedy optimization of

the modularity (Clauset et al., 2004). The third algorithm is

the edge betweenness algorithm (EB). It is based on iterative

removal of edges from the network and edge betweenness re-

calculation (Newman and Girvan, 2004). Finally, the leading

eigenvector (LE) in which the modularity function is rewritten

in matrix terms which leads to express the optimisation task as

a spectral problem in linear algebra (Newman, 2006).

Figure 1, in supplementary information (SI) illustrates the re-

sult of the six decomposition methods on the average group 1

(the pre-school children group) connection matrix. The decom-

positions obtained and the number of communities discovered

by data-driven algorithms are not the same (Table 3). Never-

theless, the communities discovered are almost always situated

within the same hemisphere. The variety of decompositions

will afford a careful study of the influence of the decomposition

on the final statistical inference.

Note that, depending on the application, the inference could

be performed only on the intra-connectivity within communi-

ties which results in reducing the number of hypotheses tested.

However, in our study, we keep all the connections.

Statistical inference

To compare the two groups of connectomes, we applied

the SM with the Bonferroni and the BH procedures, the NBS

and the permutation testing FDR (NBS and permutation FDR

are implemented in NBS Matlab Software downloaded from:

http://www.nitrc.org/projects/nbs/), and the screening and fil-

tering methods, i.e., HTSF and STSF, both with Bonferroni

and BH procedures. We distinguish between two types of con-

trol: the weak control of the FWER and the strong control of

the FWER. The weak control is guaranteed by the SM with

BH procedure (SM-BH), the permutation testing FDR (PFDR),

the screening step of the HTSF with the Bonferroni procedure

(HTS-Bonf), the filtering step of both HTSF and STSF with the

BH procedure (HTSF-BH and STSF-BH, respectively). The

strong control, however is guaranteed by the SM with the Bon-

ferroni procedure (SM-Bonf) and both HTSF and STSF with

the Bonferroni procedure (HTSF-Bonf and STSF-Bonf, respec-

tively).

Results and Discussion

Weak control of false positives

Table 3 gives the number of so-defined subnetworks obtained

on the basis of the different decomposition methods. It gives as

well the number of positive subsets after the screening step for

each decomposition method. In table 4, we report the relaxation

coefficients estimated by Algorithm 1 for different SF methods

and different decompositions. The number of significantly dif-

ferent connections under weak control are reported in Table 5

for SM-BH, PFDR, HTS-Bonf, HTSF-BH and STSF-BH. The

number of connections within the component detected by the

NBS method for different threshold values is reported in Table

6.

According to these results, we comment some important points.

8



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

LO CH WT FG EB LE

Number of subnetworks 91 91 45 28 10 28

HTS-Bonf 30 36 23 17 9 19

HTS-BH 62 72 38 25 9 23

STS 65 72 38 25 9 24

Table 3: The first line represents number of the so-defined subnetworks based on the node community decomposition methods. The remaining lines give the number

of positive subnetworks obtained at the screening step for each of the SF methods for the different decompositions.

LO CH WT FG EB LE

HTSF-Bonf 7.22 7.22 7.21 7.18 7.01 7.18

STSF-Bonf 3.66 3.66 4.25 4.55 5.00 4.55

HTSF-BH 4.20 3.99 4.50 4.72 5.16 4.85

STSF-BH 3.66 3.66 4.25 4.55 5.00 4.55

Table 4: The relaxation coefficient estimated using Algorithm 1 in different situations for different SF methods. The relaxation coefficients corresponding to the

HTSF are always lager than the STSF case.

First, we observe in Table 5 the improvement gained by the

screening and filtering methods against the SM, almost twice

the number of significant connections. Second, although

the different number of positive subnetworks obtained in the

screening step corresponding to different decompositions and

two different screening thresholds (HTSF-BH and STSF-BH,

Table 3) and different relaxation coefficients, the improvement

seems to be stable. This does not hold in the case of the HTS-

Bonf for the different decomposition methods. The same could

be said concerning the NBS results, which dramatically depend

on the arbitrary threshold (Table 6). It is important to men-

tion a fundamental difference between the NBS and HTS-Bonf,

and PFDR, SM-BH, HTSF-BH and STSF-BH. All these meth-

ods guarantee the weak control of the FWER. However, PFDR,

SM-BH, HTSF-BH and STSF-BH guarantee as well the strong

control of the FDR, whereas the strong control exerted by the

NBS and the HTS-Bonf is completely unknown. For all the rea-

sons mentioned above, we suggest for the weak control of false

positives, either the HTSF-BH or the STSF-BH.

Note that the NBS method ends up with one single p-value for

the whole detected component whereas the screening step of

the SF methods ends up with different p-values corresponding

to the subnetworks.

Strong control of false positives

In the case of strong control of the false positives, we used

the Bonferroni procedure and we compared the SF methods

(HTSF-Bonf and STSF-Bonf) with the SM-Bonf in terms of

the number of connections/nodes declared to be significantly

different between the two compared groups, which we reported

in Table 7. For each of the relaxed methods, STSF and HTSF,

we give two values that correspond to the prior decompositions:

Lobes (LO) and Chen (CH) as well as the number of common

results obtained when using these two prior decompositions

(∩p); four values that correspond to the different data-driven

decompositions: Walk trap (WT), Fast greedy (FG), Edge be-

tweenness (EB) and Leading eigenvector (LE). We also report

the number of common rejections between the results obtained

with the four data-driven algorithms (∩dd), and, finally, the

common rejections by all the decomposition methods (∩). The

last column corresponds to the common results between the

common ones obtained by the HTSF and the common ones

obtained by the STSF (∩∩). The common values ∩p, ∩dd and

∩ highlight the dependence of the SF methods on the choice

of the decomposition and the common values ∩∩ indicate the

influence of the screening threshold.

The results show the potential gain due to the SF algorithm and

its relevance in brain connectivity analysis; i.e., a considerable

improvement under the same control exerted, the strong

control of the FWER. The results are in accordance with the

performances obtained by simulations, but in this case, one

cannot determine the number of false positives since the ground

truth effect is unknown. For example, in the nodal case (NS

and NE), the number of tests is M = 83 (a moderate number)

and the SM already detects many nodes as being significantly

different between the two groups, especially, when using

the NE as nodal topological measure. This means that the

between-group effect is strong, which corresponds to a high

raw effect ∆. The between-group effect seems to be weaker in

the NS case than in the NE case and the advantage of the SF

methods is more remarkable. Now, if we observe the results

of the connection-wise analysis in which the number of tests

is much larger, we see that the advantage of the SF methods

is more pronounced. The number of significant connections

is almost twice in all cases. The STSF behaves almost in the

same way as the HTSF with a slightly small advantage for the

HTSF, which indicates that the decomposition methods are

quite appropriate. Moreover, the common detections ∩p, ∩dd

and ∩ indicate that both the HTSF and the STSF have a non

negligable dependence on the choice of the decomposition.

In addition, the SF methods seem to be influenced by the

screening threshold in the Bonferroni case more than in the BH

case. This is because the number of positive subsets detected

by the BH procedure in the screening step is almost the same as

the one obtained with no multiplicity correction corresponding

to the screening step of the STSF.

Figure 4 shows the common significant connections obtained
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LO CH WT FG EB LE

SM-BH 432 432 432 432 432 432

PFDR 348 348 348 348 348 348

HTS-Bonf 1329 1486 1911 2328 3458 2330

HTSF-BH 747 780 847 854 875 858

STSF-BH 737 761 828 852 867 843

Table 5: The number of connections declared as significantly different between the two groups using different weak control strategies and different decomposition

methods (when it’s applicable). Concerning the PFDR case, the number of permutation was set to 5000.

Threshold 0.05 0.25 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Nb. connections 1051 1024 966 841 677 508 368 260 171 101 66 31 5 1 1 2 0

Table 6: The number of connections within the component detected by the NBS method for different values of the first screening threshold. The number of

permutations was set to 5000.

Figure 4: The common significant nodes/connections between all significant results obtained by the HTSF and the STSF, and all the decomposition methods (the

last column of Table PracticalExampleResults). The red nodes are significantly different in terms of NS and NE. However, the yellow nodes significantly different

only in terms of NE. The blue connections correspond to significantly different connections with Cohen’s d between 1 and two, whereas, orange connections have a

Cohen’s d larger than 2. We used the Brain Net viewer tool (Xia et al., 2013) for this visualisation.

by both the STSF and the HTSF, corresponding to the last

column of Table 7. A detailed list of the significant nodes and

connections is available as supplementary information.

A permutation based evaluation

We present here an experimental study that could be seen

as an intermediate evaluation between simulations and the

previous practical example. Our comparison consists of the

following. Among the 16 pre-school children and the 14

adolescent children, we randomly select 5 or 10 subjects

from each group, apply the different methods (SM, HTSF and
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SM HT ST

LO CH ∩p WT FG EB LE ∩dd ∩ LO CH ∩p WT FG EB LE ∩dd ∩ ∩∩
NS 61 67 64 64 69 68 69 69 66 64 66 66 66 66 66 68 66 66 66 64

NE 80 83 83 83 83 83 83 83 82 82 82 82 82 82 82 82 82 82 82 82

CW 52 91 86 82 97 99 102 101 95 81 81 81 81 88 91 94 91 88 81 69

Table 7: The number of nodes/connections declared to be significantly different using SM, HTSF and STSF. For the SF methods, we give different values that

correspond to the different decompositions: LO, CH, WT, FG, EB and LE, the common rejections obtained by the prior decompositions (∩p), the data-driven

algorithms (∩dd) and the common rejections obtained by all decompositions (∩). ∩∩ represents the global intersection of all cases. Three different network

measures are used: nodal strength (NS), nodal efficiency (NE) and connection weight (CW). In both cases, the Bonferroni procedure is used to control the FWER.
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Figure 5: Average number of connections detected as significantly different between two groups randomly chosen among the initial groups, using different strategies

and different decomposition methods, over 1000 random simulations (group selections). The Bonferroni procedure (FWER) is used in the first row and the BH

procedure (FDR) in the second row. The number of subjects in each group is either n = 5 or n = 10 as indicated. The dark bars show the common rejections between

the rejections obtained by each method (SM, HTSF or STSF) and the rejections obtained by the SM when using the complete sample.

STSF) and then estimate the number of significant connections

obtained with the different decompositions. The operation is

repeated 1000 times.

In Figure 5, we show the average number of significant

connections for each method, using two different multiple

testing procedures: the Bonferroni procedure and the BH pro-

cedure. For the relaxed methods, we give different values that

correspond to the different decompositions. We also reported

the average number of the common rejections between the

rejections obtained by each method (SM, HTSF and STSF) and

the rejections obtained by the SM when using the complete

sample (the dark bars in the figure).

Figure 5 clearly shows the advantage of the SF methods,

especially, when the between-group effect is weak. It also

indicates that the STSF and the HTSF are quite equivalent.

According to the simulation results, this is due to a moderate

quality of the decomposition of the global brain network which

is based on node communities, and a decomposition based on

the global set of connections may improve the results of the

HTSF in practice. We plan to investigate this specific question

in a future work. In addition, the data-driven decompositions

lead to better performances and may outperform the prior

decompositions. This increases the degree of applicability and

validation of the proposed strategy.

Besides these observations concerning the performance of

the SF methods, we clearly see the difference between the

Bonferroni procedure and the BH procedure. The latter, by the

definition of the FDR, detects much more connections but at
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the price of a considerable number of false positives, whereas

the expected number of false positives in the Bonferroni case is

always majored by α. Meskaldji et al. (2011b, 2013c) studied

this specific issue in an optimality framework and proposed

to use either a truncated version of the FDR or a concave

threshold curve instead of the linear thresholds of the BH

procedure. These choices limit the number of false positives

without losing much power.

Neurological substrate of adolescence and childhood

Childhood, adolescence and maturation of brain connections

The life-history stages of postnatal human development are

divided into infancy (first three years), childhood (2 to 4 years),

juvenile (3 to 4 years), adolescence (3 to 5 years) and youth

stage (3-4 years), respectively. Each one of these stages marks

a unique set of human characteristics, biological as well as be-

havioral, required for gradual transition into adulthood.

Profound differences in cognitive skills, as well as behavior,

between preschool children (Piaget, 1964), adolescents (Spear,

2000) and adults have been studied extensively. Moreover,

modern neuroimaging techniques allowed identification of spe-

cific biomarkers related to each life-history stage. To give an

example, while the brain reaches its final size during the ju-

venile stage (White, 1996) the gray matter and white matter

still continue to mature. From infancy trough childhood, ju-

venile, adolescence and the youth stage volume of the cere-

bral white matter exponentially increases while gray volume

decreases linearly (Lebel and Beaulieu, 2011). This increase

in cerebral white matter volume parallels the increase in white

matter density (Paus et al., 1999) and is most likely caused by

an increase of axonal diameter and myelin sheet thickness. Our

results are in agreements with these findings (SI. Table 1-3).

When comparing adolescents with preschool children we have

identified microstructural differences in fibre pathways. All of

the connections (69 connections reported in Figure 4) found to

be significantly different in adolescent subjects and had signifi-

cantly stronger structural connectivity strength (SI. Table 1-3).

Certain cerebral regions (ROIs) were associated with increased

number of significantly stronger connections (SI. Table 1-3,

red) allowing us to anatomically and qualitatively analyze these

results.

Prefrontal Cortex

Among these regions were thalamus and superior frontal

gyrus of the right hemisphere and dorsolateral prefrontal cor-

tex (rostral part of middle frontal gyrus) of both hemispheres

(SI. Table 1-2). Although our results corroborate the results

reported by Lebel and Beaulieu (2011) and are in agreement

with reports on prolonged maturation of frontal lobe (Gogtay

et al., 2004; Giedd et al., 1999) the whole brain connectomic

approach allowed us to define fine circuit differences in more

detailed fashion.

Connections between superior frontal gyrus and gyrus cinguli

(anterior and posterior segments) were found to be stronger in

adolescents (SI. Table 1-2). Moreover, dorsolateral prefrontal

cortex (rostral portion of middle frontal gyrus) and superior

frontal gyrus had significantly stronger connections with tha-

lamus in both hemispheres (SI. Table 1-2), suggesting pro-

tracted maturation of anterior thalamic radiation (Bava et al.,

2010). The significantly stronger connections between pre-

frontal cortex and limbic structures (gyrus cinguli and limbic

nuclei of thalamus in both hemispheres), found in adolescents,

suggest fine-tuning of fronto-limbic circuitry throughout child-

hood and juvenile stage (SI. Table 1-2). During the adolescence

prefrontal cortex undergoes substantial reorganization; the vol-

ume and thickness of prefrontal cortex rapidly decrease (Gog-

tay et al., 2004; Giedd et al., 1999) which parallels the pro-

cess of synaptic pruning (Petanjek et al., 2011). Our results

show stronger connectivity between dorsolateral prefrontal cor-

tex (rostral middle frontal gyrus) and neighboring cortical areas

in both hemispheres (such as superior frontal gyrus and ros-

tral portion of middle frontal gyrus) (SI. Table 1-2). Therefore,

compared to children, prefrontal cortex in adolescents favors

stronger connectivity with its neighboring areas, structural in-

tegration. Similarly it also favors stronger connectivity with

limbic areas (cingulate gyrus).

Lateral prefrontal cortex is a key neural substrate of executive

function. In order to carry out executive functions the connec-

tions between lateral prefrontal cortex and other cerebral areas

allow influx/outflow of information. These information (e.g.,

cognitive representation of perception and of action) are tem-

porally integrated in lateral prefrontal cortex which is crucial

for goal-directed behavior (Fuster, 2001). That is, integrating

executive memory (sequences of behavior, action schemas) or

working memory (Goldman-Rakic, 1995, 1991) with prepara-

tory set finally leads to central function of lateral prefrontal

cortex: temporal organization of behavior linking the organism

with its environment (Fuster, 2001).

The anterior cingulate cortex, on the other hand, serves as an

anterior attentional system (Posner and Petersen, 1990). That

is, it has a key role in concentrating attention on behavioral or

cognitive tasks while at the same time serves as a key player for

integrating the motivational value (Fuster, 2001). Furthermore,

it plays an important role in control of basic drives and emo-

tional behavior (Fuster, 2001).

There is a shift in predominance of dopaminergic activity in

dorsolateral prefrontal cortex over anterior cingulate cortex dur-

ing adolescence (Spear, 2000). This might relate to the reward

deficiency leading to reckless behavior, sensation seeking and

risk taking seen in adolescence (Spear, 2000). While there is no

direct evidence that changes in connectivity strength between

mesocortical and prefrontal regions underlie adolescent specific

behavior, our results suggest that this circuit might be one of its

neurological substrates. Furthermore, during adolescence ma-

jor transformation of cognitive processing occurs (transforma-

tion of cognitive thought leading to abstract reasoning (Graber

and Petersen, 1991)).

Left prefrontal cortex has a role in encoding the new mem-

ory (Gabrieli et al., 1998) thought semantic organization of en-

coded material (Fletcher et al., 1998a). Contrarily, right pre-

frontal cortex is more involved during retrieval of stored mem-
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ory and internal monitoring of retrieved material (Fletcher et al.,

1998b). Our results suggest that from childhood to adoles-

cence, strengthening of associational fibers of the prefrontal

cortex occurs in hemisphere specific fashion (SI. Table 1-2).

Reorganization of frontal connectivity, thus, might underlie the

changes seen in cognitive skills (processing of information)

during childhood and adolescence (SI. Table 1-2).

Parietal Cortex

Choudhury et al. (2006) suggested that efficiency, and possi-

bly strategy, of perspective taking develop in parallel with brain

maturation during adolescence. Moreover, socio-cognitive de-

velopment during adolescence is related to maturation of pre-

frontal, inferior parietal and superior temporal cortex.

In line with the current concepts of development, parietal and

frontal cortexes reach the peak volume in pre-adolescent stage

(approx. 10-12 years) which if followed by decline during ado-

lescence (Gogtay et al., 2004; Giedd et al., 1999). It has been

suggested that synaptic reorganization of frontal and parietal

cortices during adolescence has an impact on cognitive pro-

cesses such as mentalising and perspective taking in the motor,

conceptual and emotional domains (Ruby and Decety, 2004,

2003) as well as in the process of abstract reasoning (Luna,

2004; Qin et al., 2004). Our results show that the connections

of superior and inferior parietal cortex, especially with superior

temporal cortex, strengthen considerably in adolescence (Ta-

bles 1, 2). Furthermore, parietal cortex is involved in distin-

guishing between self and others, in terms of imagining how

someone would think or feel (Ruby and Decety, 2004, 2003,

2001) while superior temporal cortex is associated with the pre-

diction of actions based on past ones. Reorganization of these

circuits might explain differences in socio-cognitive function-

ing between children and adolescents (Choudhury et al., 2006)

while developmental alteration of these circuits could lead to

poorer socio-cognitive outcome (Fischi-Gómez et al., 2014).

Brain Stem Connections

Interestingly, our results show that, compared to children,

adolescents have stronger connections of the brain stem and

right hemisphere (precentral gyrus, superior parietal, basal gan-

glia and thalamus).

Paus et al. (1999) showed that cortico spinal tract matures un-

til late adolescence, being a neurological substrate for elabo-

ration of fine finger movements. Indeed, our results also re-

veal prolonged maturation of pyramidal tract of the right hemi-

sphere (SI. Table 1-2). Having in mind that we did not take

into account handedness of subjects, we cannot rule out that

hemispheric differences in maturation of this tract could be con-

tributed to the handedness of our subjects.

Finally, careful analysis of our results (Figure 4) revealed that

majority of the connections found to be stronger in adolescence

where associational connections of the right hemisphere be-

tween the areas of frontal cortex (rostral portion of the middle

frontal gyrus, superior frontal gyrus), parietal cortex (superior

and inferior parietal lobule) and their neighboring areas (SI. Ta-

ble 1). Within left hemisphere majority of connections found to

be stronger were connections between prefrontal cortical areas

(rostral portion of the middle frontal gyrus) and its neighboring

areas (SI. Table 2).

In summary, results of our structural connectivity analysis show

that adolescents, compared to children, favor structural integra-

tion of prefrontal cortices with the neighboring areas and have

more elaborated pyramidal tract of the right hemisphere. In

addition, the structural integration of the parietal cortex of the

right hemisphere and superior temporal cortex of the left hemi-

sphere with their neighboring structures confirms hemispheric

differences in structural integration from childhood to adoles-

cence.

Graph analysis reveals fine-tuning of brain connectivity during

childhood and puberty

Qualitative analysis of our structural connectivity results

identified some of the networks associated with maturation of

axonal pathways (SI. Table 1-3). Nevertheless, new imaging

analysis tools (like graph analysis) nowadays allow in depth

quantitative analysis of brain development on global level (Park

and Friston, 2013; Bullmore and Sporns, 2009). When assess-

ing nodal efficiency, our results showed that in adolescents, all

of the cerebral nodes (except left frontal pole) have significantly

stronger nodal efficiency compared to children (SI. Table 4,

5; 1). Moreover, in adolescence, majority of nodes have also

significantly stronger nodal strength (SI. Table 4, 5; 1). NS

suggests that adolescents favor increased integration and de-

creased segregation of structural connectivity as shown previ-

ously (Hagmann et al., 2010a). This global trend of increased

efficiency might reflect maturation of axonal pathways and

consequential structural network refinement (Hagmann et al.,

2010a). It is known that processes of axonal myelinisation and

axonal diameter increase are protracted through adolescence

into early adulthood (Paus, 2010). These biological changes

influence the speed of neural transmission (Aboitiz et al., 1992)

and are crucial for integration of information across spatially

segregated brain regions (Paus et al., 1999). Spatio-temporal

differences in maturation of different cerebral areas have been

linked to certain aspects of behavior during development. As an

example, Galvan et al. (2006) reported that earlier development

of nucleus accumbens relative to orbito-frontal cortex under-

lies risk-taking behaviors seen in adolescents. Within this con-

text, our results suggest that significantly higher node strength

(the sum of weights attached to ties belonging to a node) seen

in adolescent subjects (SI. Table 4, 5; 1) reflects the develop-

mental changes (myelinisation or increase of axonal diameter)

that could underlie adolescent behavioral. Similarly, as ma-

jor changes occur during late childhood and adolescence (SI.

Table 1-5), even a slight mismatch in their maturation pattern

(Paus et al., 2008), could potentially lead to emergence of psy-

chiatric disorders (e.g., schizophrenia) or obsessive compulsive

(Anticevic et al., 2013a,b; Paus et al., 2008).

Interestingly, in adolescents, relative to children, the occipital

lobe (calcarine, cuneus and lateral occipital areas) and lingual

gyrus of both hemispheres did not show significant differences

in nodal strength. While calcarine cortex contains the primary

visual area (Brodmann area 17), cuneus and lateral occipital

cortices contain extrastriate components of visual cortex. From
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functional point of view, Brodmann areas 18 and 19 (mostly

occupying lateral occipital cortex) are classified as unimodal

visual association cortex (Mesulam, 1998). They are monosy-

naptically connected with V1 and constitute upstream visual as-

sociation areas; in plain words, they are only one synapse away

from the associated primary sensory area. These upstream uni-

modal sectors encode basic features of sensation. Downstream

sectors (e.g., inferior temporal cortex), on the other hand, are

at a distance of two or more synaptic units from associated pri-

mary sensory area and they encode complex contents of sensory

experience (Mesulam, 1998). Our results reveal that almost all

of the nodes are significantly stronger in adolescents relative to

children (SI. Table 4, 5) except the nodes belonging to upstream

unimodal sectors of visual information processing. Therefore

our results suggest that neural substrate of basic features of vi-

sual sensation might be unchanged during development, at least

from structural point of view.

Conclusion

We presented a screening-filtering strategy that exploits the

structure of the data and positive dependence that could ex-

ist between tests corresponding to nodes or connections, with-

out relying on strong assumptions. The strategy is adapted to

strongly control either the FWER, the FDR or any error rate

based on the modified p-values. We showed via simulations

and practical examples that the proposed strategy almost always

performs better than the usual node/connection wise analysis.

The power obtained by the proposed strategy reaches several

times the power of the standard methods that do not exploit the

positive dependence and the data structure, and this holds under

a strong control of the false positives. We showed as well that

the screening and filtering strategy improvement is quite robust

against network decomposition misspecification and screening

thresholds. Although, the SF methods presented in this paper

do not exploit the information of positive dependence in an op-

timal way, the gain obtained in the simulations should be satis-

factory for many applications, especially, in neuroimaging. We

also compared the screening and filtering strategy to the NBS,

which is the first and most used method to detect differences in

brain connectivity. We showed how the SF methods in the FDR

case compete with the NBS in terms of performance, robust-

ness and strong control.

Using the novel strategy for comparison of connectomes we

have demonstrated stronger connectivity of associational con-

nections of prefrontal cortex in adolescents relative to pre-

school children. Connections between prefrontal cortex and

limbic structures were also identified as stronger in adoles-

cence. Additionally, adolescents have significantly stronger NS

across the brain with the exception of the nodes belonging to

upstream unimodal sectors of visual information processing.

Therefore, our results corroborate hypothesis that prefrontal as-

sociational connections and fronto-limbic circuitry have pro-

tracted development that continues into adolescence. Similarly,

fine-tuning of connectivity, seen as significantly stronger node

degree across almost all areas of the brain, support the hypoth-

esis that significant modification of information processing oc-

curs in almost all areas of the brain from childhood to ado-

lescence. In conclusion, we suggest that these findings might

represent biological blueprint related to cognition and behavior

seen in adolescents.

Appendix

Proof of Proposition 1

We have to show that, under the null hypothesis, the c.d.f. of

Z ji = Φ
−1(1− p ji) is the normal c.d.f., that is, P(Z ji < z) = Φ(z).

Under the null hypothesis, p ji ∼ U(0, 1). We have

P(Z ji < z) = P(Φ−1(1 − p ji)). Since Φ is an increasing

function, then P(Z ji < z) = P(1 − p ji < Φ(z)) = P(p ji >

1 − Φ(z)) = 1 − (1 − Φ(z)) = Φ(z).

Proof of Proposition 2

Ti =
√

si
−1

∑

j∈Ji
Z ji. Since Ti is a linear combination of

gaussian random variables, then it is also a gaussian random

variable. Let us compute its mean and variance.

E(Ti) = E

(√
si
−1

∑

j∈Ji
Z ji

)

=
√

si
−1

∑

j∈Ji
E(Z ji) =

√
si
−1

∑

j∈Ji
0 = 0. Here we used the fact that the expec-

tation is a linear operator and that Z ji ∼ N(0, 1).

Var(Ti) = Var
(√

si
−1

∑

j∈Ji
Z ji

)

=
(√

si
−1

)

∑

j∈Ji
Var(Z ji) =

(√
si
−1

)

∑

j∈Ji
1 = 1

si
si = 1. Here we used the fact that the

variance is a bi-linear operator and that Z ji ∼ N(0, 1).

Proof of Proposition 3

According to the mixture model assumed for the data, we

have the following distributions:

(

Ti|Z ji = z
)

∼ N
(

ρ jiz,
(

1 − ρ2
ji

))

= N
(

1
√

si

z,

(

1 − 1

si

))

,

for h ji = 0 and i ∈ I0, and

(

Ti|Z ji = z
)

∼ N
(

µi + ρ jiσiz, σ
2
i

(

1 − ρ2
ji

))

,

for h ji = 0 and i ∈ I1, where µi = E(Ti) andσi =
√

Var(Ti) ≤ 1.

If the Bonferroni procedure is used in the filtering step, the

modified p-values {p ji/r | i ∈ I+} are compared to α/M. This

means that the original p-values (belonging to the positive sub-

sets) are compared to rα/M, or equivalently, the scores Z ji are

compared to c = Φ−1(1 − rα/M).

Let E(FP) be the expected number of false positives after the

filtering step. Note that the expected number of FP in the neg-

ative subsets is zero because all p-values are set to 1.

Let JN be the set of null hypotheses, that is, JN = { j : h ji =

0}. Given ρ ji{ j = 1, . . . ,M},m0,m, si {i = 1, . . . ,m}, µi {i =
1, . . . ,m}, σi {i = 1, . . . ,m}, πi {i = 1, . . . ,m},U and c, and that
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E(I+) = mP (Pi ≤ U), we have

E(FP) = E
(

E
(

FP|I+))

= E



















∑

i∈I+

∑

j∈Ji∩JN

Ph ji=0(Z ji > c|Pi ≤ U)



















= E



















∑

i∈I+
si

∑

j∈Ji∩JN

P

(

Pi ≤ U |Z ji = z
)

Ph0

(

Z ji ≥ z
)

P (Pi ≤ U)



















= E

















∑

i∈I+
si

∫ ∞

c

m0Φ (C0) + m1(1 − πi)Φ
(

Cµi

)

m0U + m1Φ(Φ−1(1 − U) − µi)
ϕ(z)dz

















,

where ϕ is the probability density function of the normal

distribution, C0 =
Φ−1(1−U)−ρ jiz

√

1−ρ2
ji

and Cµi
=
Φ−1(1−U)−µi−ρ jiσiz

σi

√

1−ρ2
ji

.
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Highlights: 

 

We propose an algorithm to locally compare connectomes 

 

The algorithm properties are illustrated with analytical 

proofs and simulations  

 

We compare our method against state-of-the-art methods 

 

We compare structural connectomes between preschool 

children and adolescents 


