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ABSTRACT

Understanding brain structure and function can benefit from
studying functional connectivity. A common methodology to
measure functional connectivity between two brain regions is
to estimate the correlation between their corresponding aver-
age time courses. Usually, these correlations are computed
either via the Pearson estimator or the non-parametric Spear-
man estimator. However, these two measures do not fully
reflect the information we want to extract about the sponta-
neous activity in the different areas of the brain. In this paper,
we propose to estimate functional connectivity between two
regions by modeling the activation parts of the time course
as the extreme events and by measuring the co-activation be-
tween these events. We show that our new measure of func-
tional connectivity contains key information about the co-
activations, which is lost when using common functional con-
nectivity measures; i.e., Pearson or Spearman correlation.

Index Terms— Functional connectivity, extreme events,
sufficiency, neuroimaging, fMRI.

1. INTRODUCTION

The study of dynamics of MRI signals has become essential
to advance our understanding of brain function. Functional
connectivity reflects the spontaneous fluctuations of brain
activity by measuring correlation between fMRI time courses
[1]. Whole brain connectivity is represented by the so-called
functional connectivity matrix, also termed the functional
connectome. After preprocessing of the fMRI data aiming
to remove data acquisition artifacts and other non-desirable
confounds, the connectivity is conventionally estimated by
Pearson correlations between pairs of fMRI time courses of
all brain regions [2, 3]. The matrix that we obtain is usu-
ally full and the functional connectome represents a complete
graph. A more sparse representation of the functional connec-
tome is obtained using regularized estimators. Often, these
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regularizations are applied to the coefficients of the inverse
covariance matrix called the precision matrix, which is di-
rectly linked to the partial correlations between time courses
[4]. Other recent studies of brain connectivity considered the
fMRI activation signal as a phase transition time process by
considering its extreme values [5].
Here, we also consider the activation signals and define
(positive or negative) extreme values on the basis of a fixed
threshold. We then present a new estimator of the functional
connectivity: for each pair of regions, we measure two val-
ues: (1) the accordance, which measures the co-activation
and the co-disactivation of a pair of tome courses, and (2) the
discordance, a measure of activation-disactivation of a pair
of time courses. We show that the new estimator reflects the
dynamical features of spontaneous fluctuations of the brain
activity better than the common estimators such as correla-
tion. The proposed method is promising for the emerging
interest in non-stationary behavior of fMRI signals.

2. METHODS

Functional connectivity (FC) is a measure of relationship
between functional data. FC summarizes this relationship
for the whole time interval by only one value (univari-
ate or multivariate) for each pair of brain regions. Let
X = x1,x2, ...,xT be a multivariate stochastic process
with x = x(1), . . . , x(N) ∈ RN , observed in time points
indexed by T = {1, . . . , T}. Let Θ be the FC that we
would like to estimate from the data. Let η be an estima-
tor (a function of the observed data). We note the esti-
mated functional connectivity by η(X) = Θ̂X. The most-
used FC estimator is the sample Pearson correlation matrix

η(X) = R̂X =
[
diag(ŜX)

]−1

ŜX

[
diag(ŜX)

]−1

, where

ŜX = 1
T X
′X is the covariance matrix estimate of the

stochastic process X. It is well known that this estimator
is a good estimator for the true correlation matrix. However,
is the correlation matrix itself a good candidate to represent
FC? In other words, does the correlation matrix contain all
the desired information about the FC. In order to clarify this
question we introduce the notion of sufficiency, a well known

978-1-4799-2374-8/15/$31.00 ©2015 IEEE 26



concept in estimation theory.

2.1. Sufficiency
Suppose that we collected functional data X = x1,x2, ...,xT

in order to estimate the parameter Θ. Let fΘ(X) be the prob-
ability density function (PDF) for x1,x2, ...,xT. Let η =
η(X) be an estimator based on X. Let gΘ(η) be the PDF for
η(X). If the conditional PDF

hΘ(X) =
fΘ(X)

gΘ[η(X)]

is independent of Θ, then η(X) is a sufficient statistic for Θ.
In other words, hΘ(X) = h(X), and Θ does not appear in
h(X). Intuitively, this means that η(X) contains all the infor-
mation contained in X to estimate Θ, that is, knowing η(X)
(i.e., conditioning fΘ(x) on η(X)) is sufficient for estimating
the true unknown parameter Θ.
Often, a sufficient statistic for Θ is a summary statistic of
X = x1,x2, ...,xT. If such a summary statistic is suffi-
cient for Θ, then knowing this one statistic is just as useful
as knowing all the T observations of the process for estimat-
ing Θ. The correlation matrix estimator R̂(X) is a sufficient
estimator for the true correlation matrix. However, the best
estimator η is an estimator that extracts all the information
about the FC from the the available data X. Furthermore, an
estimator η1 is better then a second estimator η2 if it contains
more information about the true unknown parameter Θ. We
say in this case that η1 is more sufficient than η2.

2.2. Estimation of the functional connectivity

Fig. 1. Illustration of the different cases in the construction of
the new FC estimator. The green and yellow curves represent
a pair of normalized fMRI time courses.

FMRI time courses are considered as noisy observations
of brain activity. In order to eliminate spurious fluctuations,

Input The normalized observed multivariate process
X = x1,x2, ...,xT, where xt = x

(1)
t , . . . , x

(N)
t ∈ RN

and t = 1, . . . , T.
A quantile threshold q.
Output An estimation of the functional connectivity,
Θ̂.
Initialization Θ̂ = 0 ∈ RN×N .
for i ∈ {1, ..., N} do

T+
i = {t ∈ {1, . . . , T} : xit > Φ−1(q)}.
T−i = {t ∈ {1, . . . , T} : xit < −Φ−1(q)}.
Θ̂i,i = 1

T

∣∣T+
i

∣∣ .
end
for i ∈ {1, ..., N − 1} do

for j ∈ {(i+ 1), ..., N} do
∪T+

i,j = T+
i ∪ T

+
j ;

∩T+
i,j = T+

i ∩ T
+
j ;

∪T−i,j = T−i ∪ T
−
j ;

∩T−i,j = T−i ∩ T
−
j ;

∩T±i,j = {T+
i ∩ T

−
j } ∪ {T

−
i ∩ T

+
j };

Θ̂i,j =∣∣{∩T+
i,j} ∪ {∩T

−
i,j}
∣∣ / ∣∣{∪T+

i,j} ∪ {∪T
−
i,j}
∣∣;

Θ̂j,i =
∣∣∩T±i,j∣∣ / ∣∣{∪T+

i,j} ∪ {∪T
−
i,j}
∣∣ .

end
end

Algorithm 1: Estimation of the proposed FC.

we consider only extreme events of the observed time courses.
We suppose that these extreme events represent significant ac-
tivations or disactivations of the corresponding brain regions.
Practically, after normalizing each time course, i.e., subtract-
ing the mean and dividing by the standard deviation, the nor-
malized time courses x(i), i = 1, . . . , N, are compared to a
positive threshold and a negative threshold based on a pre-
defined quantile q. More specifically, for each time course
x(i), we identify the sub-intervals corresponding to extreme
events by T+

i = {t ∈ {1, . . . , T} : xit > Φ−1(q)} and
T−i = {t ∈ {1, . . . , T} : xit < −Φ−1(q)}, for positive and
negative extreme events, respectively, where Φ is the CDF of
the Gaussian distribution. Other distribution could be used
depending on the assumptions. The ratio of the union of the
significant positive extreme sub-intervals over the whole time
interval length measures the proportion of significant activa-
tion of the corresponding brain region. This value is stored
as the diagonal element i in the estimated FC matrix. Then,
for each pair of time courses, x(i) and x(j), we determine the
size of the union of co-activation and co-disactivation inter-
val times and we normalize by the size of the union of signifi-
cant activation and disactivation interval times of the two time
courses. The obtained value measures the accordance of co-
activation and co-disactivation of the corresponding pair of
brain regions, and is stored in the upper-triangular part of the
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(a) FC with q = 0.95. (b) FC with q = 0.90. (c) FC with q = 0.5.

Fig. 2. Three FC matrices of one subject, estimated by Algorithm 1. The three matrices correspond to quantile threshold
q = 0.9, q = 0.95, and q = 0.50, respectively. The upper-triangular part indicates the accordance in co-activation and co-
disactivation, while the lower-triangular part indicates the discordance. The color map is based on the 0.25, 0.5, 0.75 and
1 quantiles of positive values (accordance) and negative values (discordance), respectively. The diagonal of the FC matrix
indicates the percentage of the activation parts of each time course.

(a) FC with q = 0.95
vs. Pearson correlation

(b) FC with q = 0.95
vs. Spearman correlation

(c) FC with quantile q = 0.50
vs. Pearson correlation

Fig. 3. Comparison between FC derived with our algorithm (upper-triangular) and FC derived either by (a and c) Pearson
correlation or by (b) Spearman correlation (lower-triangular). The FC estimated by our algorithm is summarized in the upper
triangular part by adding the discordance (negative) values to the accordance (positive) values.

FC matrix. Similarly, we obtain the measure of discordance
between two time courses be considering the size of positive-
negative and negative-positive extreme interval times, also
normalized by the size of the union of activation and disacti-
vation interval times of the two time courses. This measure is
stored in the lower-triangular part of the FC matrix. Note that
all values of the estimated FC are normalized by construc-
tion between −1 and +1. The FC estimator is summarized in
Algorithm 1. Figure 1 illustrates some of the concepts intro-
duced in this section.

3. RESULTS AND DISCUSSION

We applied the new FC estimation algorithm to resting state
(RS) fMRI data of healthy subjects from a previous study
[6], and we compared the obtained FC matrices to those esti-
mated by pair-wise Pearson and Spearman correlations. For
each subject, time courses were obtained from 90 brain re-
gions [7] by regional averaging. Figure 2 shows two FC ma-
trices for the same subject, estimated with Algorithm 1, using
three different values of the quantile threshold, i.e., q = 0.95,
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q = 0.90 and q = 0.5. These matrices are of course non-
symmetric. The upper-triangular part represents the accor-
dance value, while the lower triangular part represents the
discordance value. The diagonal indicates the proportion of
activation for each time course. Both pieces of information
are relevant for understanding brain functional connectivity.
The estimation of FC is highly influenced by the threshold
quantile. The higher is the threshold, the higher is the sparsity
of the matrix obtained. High thresholds give more robust esti-
mation in the sense that only highly significant activations and
disactivations are considered. Two extremal values of quan-
tile threshold are possible. The value q = 1 in which case, the
estimated FC is identically the zero matrix 0. On the other
hand, the value of q = 0.5, which corresponds to set both
the positive threshold and the negative threshold to 0, leads to
FC matrices in which the parts that contribute to the negative
correlations are separated from the parts that contribute to the
positive correlations. In this case, if we symmetrize the FC
matrices by summing the upper-triangular part and the lower-
triangular part we obtain FC matrices that resemble more to
those obtained by Pearson or Spearman correlations (see Fig-
ure 3).
Finally, we could say that the new estimator of FC is more
suitable since it brings extra relevant information about func-
tional connectivity. Especially, the new estimator can differ-
entiate between two situations where time courses could give
weak correlations. The first case is when the correlation is
weak along the time courses, while the second case is when
strong positive correlations are annihilated by strong negative
correlations. The multivariate property of the new estimator
might bring more statistical power in group difference studies,
and the extra information that it contains reflects concisely a
dynamical feature of FC, which is an emerging topic in the
field usually assessed using sliding-window correlation tech-
nique.

4. CONCLUSION

We proposed a new estimator of FC derived from fMRI time
courses. The new estimator is more closely related to co-
activation of brain regions by estimating accordance and dis-
cordance of co-activations and co-disactivations separately.
This information is lost in common estimators of FC, which
makes our estimator more sufficient in the estimation-theory
sense. We also presented a simple algorithm to construct the
new estimates of FC. We expect that expressing FC using
our new estimator affords more accurate interpretations of the
brain function, and helps to better disentangle between brain
states and fMRI modalities, or even between different groups
of subjects. The brain networks representing connectivity ma-
trices as estimated by our method could be compared using
adaptive multimodal statistical methods, such as the adaptive
two step strategy [8, 9, 10, 11].
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