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A B S T R A C T

Electroencephalography (EEG) data entail a complex spatiotemporal structure that reflects ongoing organi-
zation of brain activity. Characterization of the spatial patterns is an indispensable step in numerous EEG
processing pipelines. We present a novel method for transforming EEG data into a spectral representation.
First, we learn subject-specific graphs from each subject’s EEG data. Second, by eigendecomposition of the
normalized Laplacian matrix of each subject’s graph, an orthonormal basis is obtained using which any given
EEG map of the subject can be decomposed, providing a spectral representation of the data. We show that
energy of EEG maps is strongly associated with low frequency components of the learned basis, reflecting the
smooth topography of EEG maps. As a proof-of-concept for this alternative view of EEG data, we consider
the task of decoding two-class motor imagery (MI) data. To this aim, the spectral representations are first
mapped into a discriminative subspace for differentiating two-class data using a projection matrix obtained
by the Fukunaga–Koontz transform (FKT). An SVM classifier is then trained and tested on the resulting
features to differentiate MI classes. The method is benchmarked against features extracted from a subject-
specific functional connectivity matrix as well as four alternative MI-decoding methods on Dataset IVa of BCI
Competition III. Experimental results show the superiority of the proposed method over alternative approaches
in differentiating MI classes, reflecting the added benefit of (i) decomposing EEG data using data-driven,
subject-specific harmonic bases, and (ii) accounting for class-specific temporal variations in spectral profiles.
1. Introduction

Electroencephalography (EEG) enables acquisition of brain activity
at high temporal resolution, using multiple electrodes spanning the
surface of the brain. The temporal and spatial structure of EEG data
are both essential attributes to take into consideration when making
interpretations and extracting features. Activity-induced electric fields
get smeared as they transition from their source to the surface of the
brain, and as such, the data has low spatial resolution and the chan-
nels are often highly correlated. Accounting for the underlying spatial
organization in EEG data is therefore of marked importance. Graph
signal processing (GSP) [1–3], an emerging field that has attracted
great interest across multiple disciplines, can be leveraged to account
for the underlying structure in EEG data.

The fundamental idea in GSP is to apply signal processing pro-
cedures to data that reside on an irregular domain described by a
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graph, a construct consisting of a set of vertices and edges. GSP has
in particular been adopted in a steadily increasing number of studies
for characterization and processing of functional MRI data [4–10]. For
EEG data, a number of studies have shown promising results, namely,
for dimensionality reduction [11,12], signal denoising [13], and motor
imagery (MI) decoding [14,15]. Moreover, diffusion MRI-derived con-
nectome harmonics have been used to characterize EEG data within a
GSP setting, for tracking fast spatio-temporal cortical dynamics [16],
their sparse representation [17], and for source reconstruction [18].

Despite the benefits of GSP, its successful application heavily relies
on using a suitable graph that can represent an intrinsic underlying
relation between the data elements. This is not available in many
applications, such as for EEG data, in particular, if one is to consider
solely an EEG dataset at hand; although graph vertices can be readily
defined as being either recording electrodes [13,14,19] or regions
vailable online 6 October 2023
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Fig. 1. A schematic overview of the proposed methodology for spectral representation of EEG data on the harmonic basis of learned graphs. A 𝑇1 set of 𝑁-electrode EEG maps are
used to learn a graph, using which an EEG harmonic basis is derived. A 𝑇2 set of 𝑁-electrode EEG signals can then be decomposed using the learned harmonic basis; decomposition
of four representative signals (time points) from a set are shown. The 𝑇1 and 𝑇2 set of measurements may be identical or may differ, depending on the application at hand.
from an atlas [16,17], there exists no straight-forward definition of
graph edges and edge weights. Given an ensemble set of data, graph
learning (GL) techniques can be employed to infer a graph structure
from data. Different GL methods have been proposed in the litera-
ture [20], a sub-category of which impose constraints on graph sparsity
and signal smoothness [21–23]. A number of recent neuroimaging
studies have employed GL, namely, for subject identification [24],
signal denoising [25], and brain state identification [26,27].

Inspired by the promising results on the use of GSP and GL in brain
mapping, here we propose a general scheme for GSP-based representing
EEG signals on the spectra of graphs inferred via GL. In doing so, first,
we learn a suitable graph from an ensemble set of EEG maps. Second, by
employing GSP, we transform a desired set of EEG maps – which may
not be necessarily the same as the set used to infer the graph – into
a spectral representation, a space defined by the Laplacian harmonic
basis of the learned graphs. This representation provides a compact
and intuitive representation of EEG maps. A schematic overview of the
proposed method is illustrated in Fig. 1.

To showcase the applicability of the proposed EEG mapping, we
consider the problem of MI task decoding [28]. Discrimination of
mental states from EEG data is a challenging task, for which numerous
methods have been proposed [29,30]. One class of methods aims at
extracting features from the temporal evolution of the data, in time
2

or frequency domain [31–36], whereas an alternative class aims at
extracting spatial features from EEG maps [37–41]. Adaptive classifiers,
matrix and tensor classifiers, transfer learning, and deep learning are
among other methods that have been more recently proposed [42–44].
Here we propose a method that is comprised of four stages. First, we
use graph learning to infer subject-specific EEG graphs. Second, by
interpreting EEG maps as time-dependent graph signals on the learned
graphs, we transform the data into a spectral representation. Third, we
derive a discriminative spectral graph subspace that specifically aims
at differentiating two-class data, using a projection matrix obtained
by the Fukunaga–Koontz transform (FKT) [45]; the transform takes in
to account differences in temporal covariation of spectral profiles in
the two classes, in the same spirit as methods that function on spatial
features of the electrode space [14,38,39,46]. Fourth, we treat the
variance of representations within the subspace as features, which is
in turn used to train and test a binary classifier.

The remainder of this paper is structured as follows. In Section 2,
we provide an overview of fundamental concepts from GSP, GL, and
FKT, tailored for the EEG-based application at hand. In Section 3, we
first study the learned graphs and their associated harmonic bases,
highlighting differences across subjects as well with respect to graphs
obtained via correlation-based functional connectivity. We then show
that energy of EEG maps is strongly associated with low frequency
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components of the learned bases, providing a sparse representation
of the data. Finally, we present MI-task decoding results using the
proposed method, also bench marking against alternative state-of-the-
art methods. In Section 4, we present a discussion around the results,
highlight limitations, and provide an outlook into potential future
work.

2. Materials and method

2.1. Dataset

To evaluate the proposed method, EEG data from the publicly
available BCI Competition III-Dataset IVa [47] were used. The data,
comprising of two classes of motor imagery EEG signals, were recorded
from five healthy subjects (labeled as aa, al, av, aw, and ay) using
118 electrodes that were installed with the electrode arrangement in
the extended international 10/20-system at a sampling rate of 100 Hz.
A total of 280 visual cues of length 3.5 s were presented to subjects,
interleaved with rest interval of random lengths 1.75 to 2.25 s. Despite
the limited number of subjects, the dataset is very rich in that it in-
cludes a large number of trials per subject. This makes the dataset very
suitable for use within a machine learning setting, and as a benchmark
in many studies. During the presentation of target cues, subjects were
asked to perform right hand or right foot motor imageries. 140 trials
were acquired for each class. According to the competition instructions
the trials were divided into training and test sets in each class. The set
sizes differed across the five subjects. For the first two subjects most
trials are labeled (60% and 80%, respectively), whereas for the other
three subjects 30%, 20%, and 10% of the trials are labeled, respectively;
the remaining trials are used as test sets.1 Given the difference in the
ize of the training and test sets across subjects, classification is more
hallenging on subjects av, aw, and ay, which have smaller training
ets.

.2. Graph signal processing fundamentals

Let  = ( ,  ,𝐀) denote a weighted, undirected graph, where  =
{1, 2,… , 𝑁} represents the graph’s finite set of 𝑁 vertices (nodes), 
denotes the graph’s edge set, i.e., pairs (𝑖, 𝑗) where 𝑖, 𝑗 ∈  , and 𝐀
is a symmetric matrix (𝐴𝑖,𝑗 = 𝐴𝑗,𝑖) that denotes the graph’s weighted
adjacency matrix. The weights in the adjacency matrix indicate the
strength of the connection, or similarity between two corresponding
vertices, therefore, 𝐴𝑖,𝑗 = 0 if there is no connection/similarity between
vertices 𝑖 and 𝑗. It is assumed that there are no self-loops in the graph,
i.e., 𝐴𝑖,𝑖 = 0. The graph’s combinatorial Laplacian matrix is defined as

𝐋 = 𝐃 − 𝐀, (1)

where 𝐃 is the diagonal matrix of vertex degrees with its elements given
as 𝐷𝑖,𝑖 =

∑

𝑗 𝐴𝑖,𝑗 , and the graph’s symmetrically normalized Laplacian
matrix is defined as:

 = 𝐃−1∕2𝐋𝐃−1∕2 = 𝐈 − 𝐃−1∕2𝐀𝐃−1∕2, (2)

where 𝐈 is the identity matrix. Since  is a real, symmetric, and positive
semi-definite, it can be diagonalized via its eigenvalue decomposition
as:

 = 𝐔Λ𝐔𝑇 , (3)

where 𝑇 denotes the transpose operator, 𝐔 = [𝐮1,𝐮2,… ,𝐮𝑁 ] is an
orthonormal matrix concatenating the eigenvectors 𝐮𝑘 ∈ R𝑁 in its
columns, and Λ is a diagonal matrix that stores the corresponding
real, and non-negative eigenvalues 0 = 𝜆1 ≤ 𝜆2 ≤ … ≤ 𝜆𝑁 ≤ 2.

1 Further details about this dataset can be found at http://www.bbci.de/
ompetition/iii/).
3

T

The eigenvalues define the graph Laplacian spectrum, and the corre-
sponding eigenvectors form an orthonormal harmonic basis [48]. In
the following, we interchangeably use the terms eigenvector, harmonic,
and eigenmap, all referring to the eigenvectors of the normalized graph
Laplacian matrix; in particular, we refer to eigenmaps when illus-
trating EEG harmonics as spatial maps. Graph Laplacian eigenvectors
associated to larger eigenvalues entail a larger extent of variability.
Specifically, eigenvalues of the graph Laplacian matrix can be seen as
an extension of frequency elements that define the Fourier domain in
classical signal processing. Intuitively, this relation can be inferred by
treating the graph Laplacian as a generalization of the second deriva-
tive operator to irregular domains. In particular, noting that complex
exponentials {𝑒𝑗𝜔𝑡} are both the basis functions of the Fourier transform
and the eigenfunctions of the 1-D Laplacian operator (i.e. d2

d𝑡2 𝑒
𝑗𝜔𝑡 =

−𝜔2𝑒𝑗𝜔𝑡), it can be readily observed that graph Laplacian eigenvalues
nd eigenvectors are linked to classical domain Fourier space elements,
.e., frequencies and their associated complex exponentials. For further
eading we refer the interested reader [2,49].

Let 𝐟 ∈ R𝑁 denote a graph signal, that is, a real signal defined
n the vertices of  whose 𝑛th component represents the signal value
t the 𝑛th vertex of . By using the Laplacian eigenvectors, 𝐟 can be
ransformed into its spectral representation, commonly referred to as
he graph Fourier transform (GFT) of 𝐟 , denoted 𝐟 , as:

̂ = 𝐔𝑇 𝐟 . (4)

The GFT satisfies Parseval’s energy conservation relation, i.e., ‖𝐟‖2 =
‖𝐟‖2 [50], indicating that the energy of the signal can be computed
equally in either the vertex domain or the spectral domain of . Given
he orthonormality of the Laplacian eigenvectors, the inverse GFT of 𝐟
s obtained as:

= 𝐔𝐟 =
𝑁
∑

𝑘=1
𝐟 [𝑘]𝐮𝑘, (5)

howing that by synthesizing 𝐟 as a weighted sum of orthogonal graph
requency components 𝐮𝑘, 𝐟 entails the degree of spatial variability of
over the .

To better understand the notion of frequency on graphs, the total
ariation (TV) of a graph signal 𝐟 on graph  can be quantified using
as [51]:

V(𝐟 ,𝐋) =
∑

(𝑖,𝑗)∈
𝐴𝑖,𝑗 (𝐟 [𝑖] − 𝐟 [𝑗])2 (6)

= 𝐟𝑇𝐋𝐟 , (7)

here the proof of the second equality can be found in [52]. Larger
alues of TV(𝐟 ,𝐋) indicate greater changes of 𝐟 on , i.e., higher spatial
ariability, and thus, lower spatial smoothness; this notion of smooth-
ess is leveraged in Section 2.3 for learning graphs. Alternatively,
nstead of using 𝐋, TV can be computed in a similar way as in (7)
sing , which, in particular, provides an intuitive interpretation in
he spectral domain as:

V(𝐟 ,) = 𝐟𝑇𝐟 (8)
(3)
= 𝐟𝑇𝐔Λ𝐔𝑇 𝐟 (9)

(4)
=

𝑁
∑

𝑘=1
𝜆𝑘𝐟2[𝑘], (10)

howing that signals that are spatially smooth on the graph – i.e., have
he majority of their energy in the lower end of the spectrum – have
low TV whereas signals that exhibit higher order spatial fluctuations

ntail a larger TV; an alternative formulation of TV(𝐟 ,) similar to (6)
s given in Appendix A. Moreover, by viewing each of the eigenvectors
𝑘 as a graph signal, we have:

(8) 𝑇 (3)
V(𝐮𝑘,) = 𝐮𝑘 𝐮𝑘 = 𝜆𝑘, (11)

http://www.bbci.de/competition/iii/)
http://www.bbci.de/competition/iii/)
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showing that each eigenvalue is a quantification of the extent of
variability of its corresponding eigenvector. Alternatively, a more sim-
plistic, and intuitive quantification of the extent of variability of eigen-
vectors is given by computing a weighted zero crossings (WZC) mea-
sure [53] as:

WZC(𝐮𝑘) =
∑

(𝑖,𝑗)∈
𝐴𝑖,𝑗𝐻(−𝐮𝑘[𝑖] − 𝐮𝑘[𝑗]), (12)

where 𝐻(⋅) is the Heaviside step function.

2.3. Learning graphs from smooth signals

Effective use of various GSP algorithms relies on using suitable
graphs that can capture subtle intrinsic organizational features within
graph signals. However, in many applications, a definition of a graph
is not readily available. Graph learning (GL) techniques can be used
to estimate a graph structure from an available set of data. A class of
GL methods enforce data smoothness—that is, graph signals should be
smooth on the learned graph [21,22]. A graph signal is smooth on a
given graph if graph signal elements that are connected via an edge
with high weight exhibit small differences, whereas larger differences
are observed between elements that are either not connected via an
edge or connected via an edge with a small weight.

Let 𝐅 = [𝐟1, 𝐟2,… , 𝐟𝑀 ] ∈ R𝑁×𝑀 denote a matrix that stores a set of
𝑀 measurements on a domain with 𝑁 elements, and let 𝐙 denote an
𝑁×𝑁 matrix with entries that represent the Euclidean distance between
pairs of rows in 𝐅, i.e., 𝑍𝑖,𝑗 = ‖𝐅𝑖,∶ − 𝐅𝑗,∶‖2, where 𝐅𝑘,∶ denotes the 𝑘th
row of 𝐅, that is measurements from the 𝑘th element. The objective is
to derive an organizational relation between the rows of 𝐅, in the form
of a graph. Given a graph  with 𝑁 vertices, the overall smoothness of
the columns of 𝐅 – i.e., graph signals on  – can be computed using (7)
as:
𝑀
∑

𝑚=1
TV(𝐟𝑚,𝐋) =

𝑀
∑

𝑚=1
𝐟𝑇𝑚𝐋𝐟𝑚 (13)

= trace(𝐅𝑇𝐋𝐅) (14)

= 0.5‖𝐀◦𝐙‖1, (15)

where ◦ denotes the Hadamard product, and 𝐀 denotes the graph’s
adjacency matrix. The smaller the value given by (15), the smoother is
𝐅 on ; that is, for 𝐅 to be smooth on graph , non-zero elements in 𝐀
should maximally match small-value elements in 𝐙, meaning that signal
values at vertices connected with an edge should minimally differ as
quantified by the distance measure. Using this measure of smoothness,
a graph can be learned via solving [22]:

min
𝐀

‖𝐀◦𝐙‖1 + 𝛼‖𝐀𝟏‖22 + 𝛼‖𝐀‖2𝐹 ,

s.t. diag(𝐀) = 0,

𝐴𝑖,𝑗 = 𝐴𝑗.𝑖 ≥ 0, 𝑖 ≠ 𝑗, (16)

where 𝛼 is regularization parameter, ‖ ⋅‖𝐹 denotes the Frobenius norm
and 𝟏 = [1,… , 1]𝑇 . The terms ‖𝐀𝟏‖22 and ‖𝐀‖2𝐹 control sparsity by
minimizing vertex degrees and shrinking edge weights, respectively,
whereas the imposed constraints ensure finding a valid graph adjacency
matrix. Alternatively, the objective function in (16) can be improved by
replacing the 𝓁2-norm with a logarithmic barrier on the vertices degree
vector as:

min
𝐀

‖𝐀◦𝐙‖1 − 𝛼𝟏𝑇 log(𝐀𝟏) + 𝛽
2
‖𝐀‖2𝐹 ,

s.t. diag(𝐀) = 0,

𝐴𝑖,𝑗 = 𝐴𝑗.𝑖 ≥ 0, 𝑖 ≠ 𝑗, (17)

here the second term ensures graph degrees to be positive, thus
mproving the overall connectivity of the graph, and moreover, ensures
ach vertex to have at least one edge. 𝛼 and 𝛽 are regularization param-
4

ters; intuitively, smaller values of 𝛽 yield sparser graphs by penalizing f
dges between vertices with larger 𝑍𝑖,𝑗 [22]. In the following, we
efer to the graph learning approaches given in (16) and (17) as the
2-penalized and log-penalized methods, respectively.

.4. Two-class discriminative subspace via simultaneous diagonalization of
ovariance matrices

After defining a brain graph, the graph spectral representations of
he EEG signals were considered to find a discriminative subspace for
wo-class (right hand and right foot) MI classification. To this end,
nspired by methods presented in [54,55], we use the FKT [45,56],
hich is based on simultaneous diagonalization of two covariance ma-

rices [46]. For graph signal 𝐟 defined on , let 𝐟 denote the de-meaned
nd normalized version of 𝐟 obtained as [57]:

̃ = (𝐟 − 𝐮𝑇1 𝐟𝐮1)∕‖𝐟 − 𝐮𝑇1 𝐟𝐮1‖2. (18)

Given two signal classes, 𝑗 = 1, 2, let 𝐅(𝑖)
𝑗 denote an 𝑁 × 𝑀 matrix

f the EEG data for trial 𝑖 of class 𝑗, wherein the element on the 𝑛th
ow and 𝑚th column corresponds to the signal value at electrode/vertex
at time point 𝑚; i.e., each column in 𝐅(𝑖)

𝑗 represents a graph signal.
et 𝐅̃(𝑖)

𝑗 denote the de-meaned and normalized version of 𝐅(𝑖)
𝑗 , wherein

each column is normalized as in (18), and let ̂̃𝐅(𝑖)
𝑗 denote the GFT of

𝐅̃(𝑖)
𝑗 , where the GFT is applied on each column of 𝐅̃(𝑖)

𝑗 . By leveraging the
FKT, the goal is to map ̂̃𝐅(𝑖)

𝑗 to a subspace in which the class type, i.e., 𝑗,
can be inferred. This is done by considering the covariance structure of
the GFT coefficients. Let

Σ = Σ1 +Σ2, (19)

where Σ𝑗 denotes the across-trial ensemble averaged covariance matrix
of class 𝑗, defined as:

Σ𝑗 =
1
𝐿𝑗

𝐿𝑗
∑

𝑖=1

𝐂(𝑖)
𝑗

trace
(

𝐂(𝑖)
𝑗

) , (20)

where 𝐿𝑗 denotes the number of trials in class 𝑗, and 𝐂(𝑖)
𝑗 is the

covariance matrix of the GFT coefficients of trial 𝑖 of class 𝑗, obtained
s:
(𝑖)
𝑗 = ̂̃𝐅(𝑖)

𝑗
̂̃𝐅(𝑖)
𝑗

𝑇
. (21)

As Σ is positive definite, it can be eigendecomposed as

Σ = 𝐕Γ𝐕𝑇 , (22)

where 𝐕 is the matrix of eigenvectors and Γ is the diagonal matrix of
the corresponding eigenvalues, using which a whitening transform 𝐏 is
btained as:

= Γ−1∕2𝐕𝑇 . (23)

y whitening Σ, the variances in the space spanned by 𝐕 will become
qual, i.e.:

𝛴𝐏𝑇 = 𝐏(Σ1 +Σ2)𝐏𝑇

=

∶=𝐒1
⏞⏞⏞
𝐏Σ1𝐏𝑇 +

∶=𝐒2
⏞⏞⏞
𝐏Σ2𝐏𝑇 = 𝐼. (24)

onsequently, eigenvalue decomposition of 𝐒1 and 𝐒2 gives:

1 = 𝐁Γ1𝐁𝑇 , (25)

2 = 𝐁(𝐼 − Γ1)𝐁𝑇 , (26)

here 𝐁 denotes the eigenvectors, which are the same for both 𝐒1 and
2, and their corresponding eigenvalues are complementary; i.e., by
orting the eigenvalues in descending order, the eigenvector associ-
ted with the largest eigenvalue of 𝐒1 is associated with the smallest
igenvalue of 𝐒2. Therefore, the combination of a small subset of the

irst and last eigenvectors of 𝐁 provides a discriminatory transform for
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Fig. 2. Block diagram of the proposed method for MI task decoding.

differentiating the two classes. Finally, the overall projection matrix can
be obtained as:

𝐖 = 𝐁𝑇𝐏. (27)

Using 𝐖 = [𝐰1,𝐰2,… ,𝐰𝑁 ]𝑇 , the GFT coefficients of a given EEG trial,
i.e, ̂̃𝐅(𝑖)

𝑗 , can be transformed to a feature vector 𝐲 ∈ R𝑃 as:

𝐲[𝑘] = logvar
(

𝐰𝑘
̂̃𝐅(𝑖)
𝑗

)

, 𝑘 = 1,… , 𝑃 , (28)

where 𝑃 = || with  ⊂ {1, 2,… , 𝑁} being a subset of the first and last
GFT indices. Results presented in this work are for  = {1, 𝑁}, thus,
resulting in a two-dimensional discriminative GFT subspace, wherein
the variance of the first feature is maximized in the first class while
being minimized in the second class and vice versa. For the interested
reader, a mathematical analysis of using EEG maps as inputs to FKT,
and the relation between resulting FKT filters to those presented here
is given in Appendix B.

2.5. Proposed method for MI task decoding

The proposed method for EEG-based MI task decoding is illustrated
as a block diagram in Fig. 2. The training and test EEG signal sets for
each subject are initially preprocessed, and then fed into the training
and test phases, respectively. As temporal preprocessing, for each trial,
we used the time points within the 0.5–2.5 s interval after the visual
cue to construct graph signals; this 2-s interval has been previously
used in related works [14,39,40]. Motor activity, be it real or imagined,
modulates the sensorimotor mu rhythm (8–13 Hz) and beta rhythm
(13–30 Hz), therefore, we filtered the extracted signal with a third-
order Butterworth filter with a passband of 8–30 Hz. Graph signals were
then extracted from these filtered signals; in particular, we defined one
graph signal per time instance, i.e., each signal represents EEG values
across the 118 electrodes, which, thus, resulted in 𝑀 = 200 graph
signals per trial.
5

2.5.1. EEG as graph signals
In the training phase, we modeled the structure of the brain of

each subject as a graph, in which vertices corresponded to the EEG
electrodes and edges were defined by estimating the graph’s weighted
adjacency matrix using the log-penalized and 𝓁2-penalized graph learn-
ing frameworks. As a means of comparison, we also defined a fully
connected correlation graph in which edge weights were defined based
on the degree of functional connectivity between electrode pairs; that
is, for each electrode pair, the absolute value of the Pearson correlation
coefficient between their time courses was defined as the edge weight,
reflecting an estimate of the overall statistical dependency between
the two electrodes [58]. The large number of recording electrodes in
the studied EEG dataset makes the dataset a good choice for graph-
based analyses, providing the means to study the spatial organization
and interaction of different cortical areas while also considering the
fast temporal dynamics. In order to investigate the role of the brain
structure (the physical distance between the vertices), the performance
of two distance-based graphs was also investigated, in which, the
Euclidean distance between the electrodes was utilized as the weight
of the graph edges. The results of using these distance-based graphs
are provided in the supplementary material for comparison.

2.5.2. EEG feature extraction via GSP and FKT
For each graph, the eigenvectors of  were used to compute the GFT

of each graph signal. Using FKT, a transformation matrix 𝐖 that maps
the GFT coefficients into a discriminative graph spectral subspace was
then derived. The mapped data were then treated as discriminative fea-
tures. To determine the most effective graph frequency harmonics for
classifying the EEG signals, a feature selection algorithm was used; we
ranked the GFT coefficients based on their energy using the Wilcoxon
statistical test. GFT Coefficients with higher ranks correspond to more
distinctive features. The number of selected features for each subject
was determined using 10-fold cross-validation.

2.5.3. MI classification and evaluation
The classifier was trained using labeled training data, where labels

indicate the class of each trial, and classification performance was
evaluated with the labeled test data. The projection matrix 𝐖 and the
index of GFT coefficients that provided the most discriminative features
were derived in the training phase and consequently used in the test
phase. The logarithm of variance of the projected GFT coefficients on 𝐖
were used as features to train a support vector machine (SVM) classifier
with a linear kernel. Since this projection maximizes the variance of
the signals from one class while minimizing it for the signals from the
other class, it provides discriminative features for classification. We
used SVM due to its overall superior robustness and efficiency in the
BCI applications compared to other classifiers [42]. The linear kernel
was selected for its simplicity and low computational cost.

3. Results

Fig. 3(a) shows the arrangement of the 118 electrodes on the head;
a map showing the correspondence between electrode positions and
anatomical regions is provided in supplementary material Figure S1.
Fig. 3(b) shows the adjacency matrices of the three graphs for subject
aa. Both the learned graphs are significantly sparser than the corre-
lation graph, a result of sparsity-inducing terms used in the learning
process. In contrast, the correlation graph is a complete graph, with
edge weights that are substantially larger than those of the two learned
graphs. Fig. 3(c) presents schematic views of the three different graphs
across the five subjects. The graphs of three subjects – aa, al, and aw
– manifest approximately similar patterns, wherein a large number of
edges are concentrated in the frontal and parietal lobes. In the other
two subjects – av, and ay – edges are more broadly distributed across
the brain. The number of graph edges are comparable between the
learned graphs but are differently scaled for the correlation graph due
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Fig. 3. (a) Arrangement of EEG electrodes and their associated graph vertex indices. For better interpretation of graph matrices, a colormap is added to enable linking the
row/column order of the matrices to the electrode layout; in subplots (b), (d) and (e), a representative matrix is appended with the colormap. (b) Adjacency matrices of the
log-penalized, 𝓁2-penalized, and correlation graphs for subject aa. (c) Schematic representation of the three different graphs, across five subjects. Edge widths and colors reflect
edge weights, and vertex sizes reflect nodal degrees. For better visualization, only the top 50% of edges that have the largest weights are shown in the correlation graph. (d)
Comparison of the sparsity pattern of the log-penalized graph (lower triangular segment) and the 𝓁2-penalized graph (upper triangle segment) learned for each subject; edges that
are common between the two graphs are shown as black dots, whereas edges that are unique to each design are shown as red dots. (e) Difference between edge weights of edges
that are common between the log-penalized and 𝓁2-penalized graph of each subject.
to the large difference between the degree distributions. The correlation
graph is a complete graph as it is defined based on the correlation of all
electrode pairs, whereas the two learned graphs are notably sparse. A
6

quantitative comparison of the graphs is presented in Table 1. It shows
the connection density in the studied graphs which is the proportion
of the number of graph edges relative to the total possible number of
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Table 1
Connection density of the three studied graph types for each subject and on average
across all subjects.

Graphs aa al av aw ay Mean ± std

Log-penalized 0.12 0.12 0.16 0.09 0.1 0.12 ± 0.03
𝓁2-penalized 0.18 0.19 0.22 0.16 0.16 0.18 ± 0.03
Correlation 1 1 1 1 1 1

Fig. 4. Distribution of nodal degrees, edge weights, and nodal strengths of the three
studied graphs; for each graph type, for each of the three measures, values were pooled
together across subjects and a probably distribution was then computed.

connections that could be formed in the graph. The graph learning
methods preserve the connectivity of the graphs by using a lower
number of edges compared to the fully connected correlation graphs.
Moreover, the log-penalized method yields sparser learned graphs com-
pared to the 𝓁2-penalized method. The sparsity patterns of the learned
raphs are compared in Fig. 3(d). In all five subjects, the edges of the
og-penalized graph are a subset of the edges of their corresponding 𝓁2-

penalized graph, but nevertheless, edge weights notably differ between
the two designs. The differences between the weights of the common
edges were obtained by subtracting the 𝓁2-penalized edge weights from
the log-penalized ones, results shown in Fig. 3(e). The differences are
positive values in all subjects, reflecting higher edge weights in log-
penalized graphs. The highest edge weights are for subject av and the
lowest values are for subject aw which also have the highest and the
lowest connection densities in the learned graphs, respectively (cf. Ta-
ble 1). For comparison, distance-based graphs as well as their adjacency
matrices are shown in Figure S2 in the supplementary material. The
distribution of nodal degrees, edge weights, and nodal strengths are
shown in Fig. 4. Nodal degrees of the correlation graphs are larger
than that of the learned graphs, which is because (i) they are complete
graphs (cf. Table 1), and (ii) the edge weights are in general greater
than those of the learned graphs (cf. Fig. 3(b)), which can also be
visually inferred from Fig. 3(c).

Distribution and histogram of the normalized Laplacian eigenvalues
for three graphs of subject aa are shown in Fig. 5(a). Most of the eigen-
values in the correlation graph are concentrated around the value of
one, whereas the eigenvalues of the learned graphs, especially the log-
penalized graph, gradually increase, and are more widely distributed
along the spectrum. Figure S3 in the supplementary material shows the
normalized Laplacian eigenvalues of the distance-based graphs relative
to the correlation and learned graphs.
7

Fig. 5(b) illustrates eigenmaps associated to a representative set of
normalized Laplacian eigenvalues of the log-penalized graph. The first
eigenmap is almost evenly distributed over all the graph vertices and
given that TV(𝐮1) = 𝜆1 = 0 there is no notable spatial variation. In
the next eigenmaps, the increase in spatial variability is proportional to
the increase in graph frequencies. The last eigenmap is highly localized,
which is in line with normalized Laplacian matrices characteristics that
manifest localized patterns of spatial variability in high frequencies.
Fig. 5(c) shows several of the eigenmaps and their corresponding eigen-
values for the three studied graphs for subject aa. The eigenmaps of the
learned graphs capture a wider range of variability compared to the
correlation graph, many eigenmaps of which manifest spatial patterns
with a similar variability corresponding to a spectral value around
one. A selected subset of eigenmodes of the log-penalized graphs of all
subjects as well as the complete set of eigenmaps of the three studied
graphs and the two distance-based graphs for subject aa are shown in
supplementary material Figures S4–S9.

Aside from studying the structure and properties of the learned
graphs, it is also intuitive to quantify their structure in relation to graph
signals. Given that smoothness is a main term in the objective function
of the leveraged learning methods, as a first step, we validated the
degree to which graph signals of the test-set data are represented as
smooth signals on the graphs that were learned using the training-set
data. For each subject, for each learned graph, and for each EEG trial,
we computed the mean TV of the set of graph signals within that trial
(average over 200 graph signals); in particular, using each graph’s 𝐋
matrix, we computed the trace term in (14), and divided the resulting
value by the number of graph signals, 200, to obtain an average TV
value for each trial. We performed this analysis not only for the learned
graphs, but also for correlation graph for comparison. Moreover, to
verify the efficiency of the learning process in resulting in a graph on
which graph signals of the test-set data are smooth compared to that
on a null graph, we generated surrogate Laplacian matrices from the
learned graphs (also the correlation graph) by randomly shuffling the
edges, while maintaining matrix symmetry; a new surrogate Laplacian
matrix was generated for each trial. With this approach, firstly, we
generate random graphs with the same sparsity as that of the learned
graphs (but complete graphs in the case of the correlation graph),
and secondly, we retain the edge weight distribution. The results are
presented in Fig. 6(a). EEG graph signals show a substantially lower
TV on the learned graphs compared to, on the one hand, the correla-
tion graphs, and on the other hand, their surrogate graphs, across all
subjects. This reflects the efficacy of the learning process in providing
a domain on which EEG signals are smooth. As a second step, we
validated whether the learned graph for each subject provides a better
substrate on which the subject EEG graph signals are most spatially
smooth. The results are presented in Fig. 6(b). In all five subjects, EEG
graph signals have lowest TV on the graph learned using the subject
data compared to graphs learned from other subjects data; see entries
on the main diagonal for the learned graphs. However, this pattern
is not seen on the correlation graphs, for which the graph of subject
al provides the substrate on which 3 out 5 subjects’ data are seen as
most smooth – see second column in the third matrix – and that of
subject aw provides a substrate on which the highest values of TV (least
smoothness) are seen not only for the signals of subject aw but also
for the signals of the other four subjects—see fourth column in the
third matrix. The TV of the training-set data on the learned graphs is
presented in Figure S10 in the supplementary material.

The WZC of the normalized Laplacian eigenvectors of the three
studied graphs is shown in Fig. 7(a). Spatial variability of eigenvectors
generally increases by increasing the eigenvalue indices. WZC grad-
ually increases along the spectrum in the learned graphs, especially
in the log-penalized one, whereas in the correlation graph, it sharply
increases in the initial eigenvalue indices, and then only minimally
changes in the remainder of the spectrum. Fig. 7(b) shows the relation

between the WZC of the eigenvectors and their related eigenvalues. The
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Fig. 5. (a) The normalized Laplacian spectra of the log-penalized, 𝓁2-penalized, and correlation graphs of subject aa; the exact eigenvalues are shown on the top whereas the
histogram of their distribution is shown at the bottom. (b) A representative set of eigenmaps of the log-penalized graph of subject aa, selected across the graph’s spectral range. (c)
A selected subset of eigenmodes of the log-penalized, 𝓁2-penalized, and correlation graphs of subject aa; eigenmaps associated with the same eigenvalue indices across the three
graphs are displayed.
eigenvalues of the learned graphs provide a more uniform sampling of
the spectral range whereas those of the correlation graph are cluttered
within the upper end of the spectrum. Moreover, the eigenvalues of the
8

learned graphs show a clear relation to the WZC of their corresponding
eigenvectors, a consistent second order polynomial trend, which is
not observed in those of the correlation graph. Figure S11 in the
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Fig. 6. Validation of the extent of smoothness of the EEG graph signals on the learned graphs and correlation graphs; TV values are shown, the inverse of which is a measure
of smoothness. (a) TV of graph signals on the learned/correlation graphs as well as surrogate graphs in all subjects. (b) The mean TV of each subject’s graph signals on its
learned/correlation graph and on the other subjects’ graphs; Each row in a matrix – ranked via color-code – represents the mean TV of signals of a single subject on the graph of
the different subjects; e.g., the element on the third row and fourth column is the mean TV of signals of subject av on the learned graph of subject aw, whereas the third diagonal
element is the mean TV of signals of subject av on the learned graph of the same subject.
Fig. 7. (a) Weighted zero crossings measure for the eigenvectors of the studied graphs
for subject aa. (b) Relation between the WZC measure of the eigenvectors and their
corresponding eigenvalues.

supplementary material provides a comparison between the WZC of the
eigenvectors of distance-based graphs relative to that of the correlation
and learned graphs.

Fig. 8 shows the cumulative energy spectra of test-set data graph
signals on the correlation and learned graphs build using the training-
set data of subject aa. Results are also presented on the surrogate
graphs, constructed using the same approach described in TV analysis
for Fig. 6. In both learned graphs, a substantial proportion of the energy
of EEG graph signals is concentrated in the lower-end of the spectrum,
with only a mere fraction of lowest frequency eigenvectors (approxi-
mately 17%) capturing most of the signal energy (approximately 90%).
9

Fig. 8. Cumulative energy spectra of EEG graph signals from subject aa on different
graphs. Aside from the three studied graphs, results are presented on 100 surrogate
graphs; given that each surrogate graph has a unique spectrum, results are presented
as individual curves rather being averaged; the eigenvalues of a representative surrogate
graph are marked.

The energy spectra sharply increase in the initial eigenvalues of the
log-penalized and 𝓁2-penalized graphs, the increasing rate of which
decreases in the remainder of their spectra. For the correlation graph,
as in the two learned graphs, approximately 70% of signal energy is
captured by only the second to seventh eigenvectors, however, the
covered spectral range substantially differs between the two, where for
the correlation graph almost 95% of the graph’s spectrum is covered
by this amount of energy, whereas in contrast, only 25% and 35% of
the spectrum is covered for the log-penalized and 𝓁2-penalized graphs,
respectively. For the surrogate graphs, the energy almost uniformly
increases as a function of the number of spectral indices; i.e., an equal
amount of energy is captured by each eigenvector, a characteristic that
is strongly reminiscent of the spectral structure of white noise. In Figure
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Table 2
Classification accuracies (in %) for the three different brain graph designs on the test-set
data for each subject, and on average across subjects, in five different graph frequency
band settings.

Log-penalized aa al av aw ay Mean ± std

AF 74.11 100 70.41 90.18 74.21 81.78 ± 12.73
LF 86.61 100 70.92 91.96 84.92 86.88 ± 10.68
MF 55.36 66.07 52.55 63.39 54.36 58.35 ± 5.99
HF 51.78 80.36 43.88 59.37 47.22 56.62 ± 14.53
LF+HF 74.11 100 71.43 90.62 75.79 82.39 ± 12.35

𝓁2-penalized aa al av aw ay Mean ± std

AF 69.64 100 70.41 89.73 72.22 80.40 ± 13.73
LF 87.5 98.21 70.41 83.03 88.49 85.53 ± 10.10
MF 54.46 67.86 53.06 62.05 55.16 58.52 ± 6.27
HF 54.46 80.36 44.39 55.80 51.19 57.24 ± 13.66
LF+HF 78.57 100 72.45 86.61 78.57 83.24 ± 10.63

Correlation aa al av aw ay Mean ± std

AF 70.53 100 70.92 88.39 72.22 80.41 ± 13.25
LF 86.61 100 68.88 94.2 87.7 87.47 ± 11.71
MF 52.68 78.57 54.59 54.91 53.97 58.94 ± 11
HF 55.36 71.43 56.12 51.34 48.41 56.53 ± 8.89
LF+HF 66.96 100 71.43 91.96 84.13 82.9 ± 13.8

S12 in the supplementary material, cumulative energy spectra profiles
of both the test-set and training-set data are presented, using not only
functional and surrogate graphs as in Fig. 8, but also for distance
graphs, and across the five subjects.

In order to investigate the performance of the proposed method in
MI-classification, five different sets of the GFT coefficients were utilized
in the first experiment. The first set consisted of the entire set of GFT
coefficients, denoted all frequencies (AF). Similar to prior works on the
application of GFT on brain imaging data [59,60], three additional sets
of GFT coefficients were defined by dividing the spectrum into three
equal frequency bands, denoted low (LF), medium (MF) and high (HF)
frequencies. Inspired by Cattai et al. [13], a fifth subset was defined
via the union of the LF and HF subsets, denoted LF+HF. These five
sets of GFT coefficients were then used as inputs to the FKT to derive
a discriminative matrix 𝑊 for each set. Consequently, features for
classification were extracted by computing the logarithm of variance
of the projected GFT coefficients on 𝑊 .

Table 2 presents classification accuracies using the three different
graphs for each individual subject and also on average across subjects.
Using the LF GFT coefficients resulted in substantially higher classifi-
cation accuracy compared to using the MF or HF components, in all
subjects as well as on average across subjects. In comparison to AF and
LF+HF, the LF coefficients provided the highest accuracy in subjects aa,
and ay in all three graphs. In subject aw, LF showed highest accuracy
for log-penalized and correlation graphs, whereas it was outperformed
by AF for 𝓁2-penalized graph. In subject al, LF showed similar results as
AF and LF+HF for log-penalized and correlation graphs, whereas it was
outperformed by AF and LF+HF for 𝓁2-penalized graph. In subject av,
best results were obtained using the LF+HF components, in all three
graphs. Overall, the lowest classification accuracies in both learned
graphs are for subject av, corroborating the highest mean TV (least
smoothness) of this subject’s graph signals on its learned graphs as
shown in Fig. 6.

We used feature selection to determine an optimal subset of the GFT
coefficients that provide the most discriminative features for classifica-
tion; cf. Section 2.5.2. The logarithm of variance of the GFT coefficients
was used as input to feature selection. Fig. 9 illustrates the scores
of graph frequencies in the log-penalized graph for each subject and
on average across subjects. The lowest one-third eigenvalue indices
attained substantially higher scores than the rest of the spectrum,
corroborating results presented in Fig. 8 and in Table 2 that show
EEG signal energy is largely captured by eigenvectors within the LF
10

range. Therefore, we only used selected features from this sub-band as
Table 3
Classification accuracies (in %) when directly using the GFT coefficients vs the proposed
method, wherein GFT coefficients are subjected to FKT. In both settings, features are
selected from the LF sub-band of the graph spectra.

GFT aa al av aw ay Mean ± std

Log-penalized 61.61 87.5 60.71 70.53 81.75 72.42 ± 11.96
𝓁2-penalized 65.18 91.07 57.65 67.86 66.27 69.61 ± 12.62
Correlation 68.75 96.43 62.75 73.21 68.65 73.96 ± 13.1

Proposed aa al av aw ay Mean ± std

Log-penalized 87.5 100 70.92 91.96 92.86 88.65 ± 10.88
𝓁2-penalized 87.5 98.21 72.96 84.82 88.49 86.4 ± 9.06
Correlation 90.18 100 68.88 94.2 88.89 88.43 ± 11.75

Table 4
Comparison of classification accuracies (in %) for the proposed method (log-penalized
graph, GFT+FKT, selected features from the LF sub-band) and four alternative
state-of-the-art methods.

Method aa al av aw ay Mean ± std

Proposed 87.5 100 70.92 91.96 92.86 88.65 ± 10.88
GSL [14] 85.71 98.21 75 85.27 90.48 86.93 ± 8.46
RCSSP [40] 82.14 96.42 68.87 98.21 88.88 86.91 ± 11.94
𝓁1-CSP [39] 78.57 98.21 54.08 80.35 83.33 78.91 ± 15.6
BECSP [41] 77.68 100 73.98 84.82 88.1 84.91 ± 10.12

the most effective harmonics for each subject, classification accuracy
for which are presented in Table 3. Results using other performance
measures (precision, recall, AUC, and ROC curves) are shown in sup-
plementary Table S1 and Figure S13. To evaluate the effectiveness of
using the FKT, results of classification using GFT coefficients (without
FKT) are also provided in Table 3. The direct use of the GFT coefficients
is prone to over-fitting due to the small size of the training samples
in comparison to the dimension of the feature vectors, especially in
the subjects with small training sets. Therefore, a subset of GFT co-
efficients as determined by the feature selection step were fed into
the classifier. Comparing these results with those in Table 2 reveals
that for all three graphs, the performance in two of the subjects – aa
and ay for log-penalized and correlation, av and aw for 𝓁2-penalized
– enhanced when selected features from LF were used compared to
when all LF coefficients were used, which has in turn resulted in
better overall accuracy. Moreover, the results suggest that using FKT
notably improves classification accuracy compared to directly using
the GFT coefficients. That is, mapping the GFT coefficients onto the
subspace provided by FKT results in features that better discriminate
the two MI classes, thanks to accounting for the difference in the
covariance structure [46] of the GFT coefficients of the two classes.
Fig. 10(a) shows the obtained FKT filters for the log-penalized graph
of subject aa. The most discriminative coefficients can be inferred from
the absolute value difference between two filters, shown in Fig. 10(b);
the corresponding eigenmaps of the six top-ranked indices are shown
in Fig. 10(c), whereas, for comparison, those for the 𝓁2-penalized and
correlation graphs are shown in Fig. 10(d) and (e), respectively. The
FKT filters for the other four subjects are presented in Figure S14 in the
supplementary material. Overall, the best average accuracy in Table 3
was obtained in the proposed method by using the log-penalized graph
learning approach. Related results on using distance-based graphs are
presented in Tables S2–S3 in the supplementary material.

Finally, the performance of the proposed method was compared to
four recent alternative state-of-the-art methods: a GSP-based method
[14] that utilizes graph Slepians [61], and three methods that utilize
different extensions of the FKT [39–41]. The results are presented
in Table 4. The proposed method using log-penalized graph learning
outperforms the alternative methods, on average across subjects. The
method by Georgiadis et al. [14] shows the best classification accuracy
in subject av, whereas that of Cherloo et al. [40] shows the best accu-
racy in subject aw. In the other three subjects, the proposed method
yields higher classification accuracy.
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Fig. 9. Scores of the graph frequencies in the log-penalized graph for each individual subject and on average across subjects.
Fig. 10. (a) FKT filters for the log-penalized graph of subject aa using the lower end
of the spectrum. (b) Absolute value difference between the two filters, indicating the
harmonics which provide maximal contribution for discrimination the two classes. (c)
The top six eigenmaps based on (b); indices below each map indicate eigenvalue
index. (d)–(e) Same as in (c) but for the subject’s 𝓁2-penalized and correlation
graphs, respectively; the FKT filters for these two graphs of subject aa are shown in
supplementary Figure S14.

4. Discussion

Volume conduction results in spatial smearing in EEG electrode
measurements [62], making it of importance to account for underlying
spatial structures. A graph model can provide a holistic view of such
spatial dependencies. Here we studied three graph models, one based
on the Pearson correlation between pairs of electrodes, and two based
on capturing the inherent spatial smoothness manifested jointly by
the entire set of electrodes via graph learning. For each subject, the
studied graphs present a notable difference in their nodal degrees, and
11
their structure in general, showing the added benefit of using subject-
specific graphs, which is inline with the body of literature that suggest
inter-subject variability in EEG spatial patterns manifested for identical
tasks [63–66]. Learned graphs of subjects aa, al and aw have larger
nodal degrees, and edge weights are seen in motor-related areas in
the frontal and parietal cortices, areas that are commonly known to
become active under MI tasks [67,68]. In addition to motor-related
areas in the frontal and parietal cortices, the correlation graphs of
all subjects also manifest large nodal degrees in the occipital lobe;
these patterns can be interpreted as high spatial frequencies (correlated
asynchronous activity between electrode pairs), a pattern which is in
contrast penalized by the smoothness criterion in the objective function
of the graph learning algorithms. The log-penalized graphs are sparser
graphs with larger edge weights compared to the 𝓁2-penalized graphs.
This sparsity is desirable as it, on the one hand, is a characteristic of
realistic networks such as that of the human brain, and on the other
hand, reduces the computational burden of algorithms, making the
method suitable for online BCI applications.

Given that graph Laplacian eigenvectors form an orthonormal basis
for graph signals [48], their broader spatial variability with respect
to the graph structure – i.e., range and distribution of eigenvalues, cf.
Fig. 5 – can provide a more effective decomposition when computing
a spectral representation of EEG graph signals via the GFT. The WZC
quantification of the eigenvectors of the correlation and learned graphs,
cf. Fig. 7, corroborate visual interpretations made on spatial variability
of eigenmaps as shown in Fig. 5(c), reflecting the superior capability
of the learned graphs over the correlation graph in providing a basis
that represents a broader range of spatially varying patterns. The effect
of this difference in the eigenbasis can also be seen by inspecting the
spectral representation of the associated EEG signals on the graphs.
In the correlation graph, a small subset of the first eigenvectors cap-
tures a substantial portion of the total signal energy, whereas in the
learned graphs, signal energy is distributed across a wider range of
eigenvectors. In particular, eigenvalues with high multiplicity around
one in the correlation graph spectrum (a high peak at 𝜆 ≃ 1) suggest
vertex duplication, in which a new vertex to the graph has an identical
connectivity pattern to the duplicated vertex, resulting in vertices with
the same connectivity profile [69]. This suggests that the connectivity
pattern is rather similar across vertices in the correlation graph.

The proposed graph learning and GSP setting enables an intuitive
accounting of spatial dependencies observed in EEG data. However, it
does not account for temporal dynamics, aside from using the ensemble
set of EEG graph signals when performing graph learning. To jointly
account for the spatio-temporal features, we leveraged the FKT, which
functions on the spectral representation of EEG data as provided by
GFT. The proposed FKT-based approach of extracting features from a
temporal set of GFT coefficients is in contrast to prior related works [4,
6,70] wherein the temporal mean or variance of the GFT coefficients is
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Fig. 11. GFT coefficients of the log-penalized graph for a representative trial of the (a) right hand and (b) right foot MI classes of subject aa; each trial consists of 200 time
instances, thus, 200 graph signals. (c) The absolute value of the difference between the GFT coefficients of the trials shown in (a) and (b).
considered as feature, which notably discards the temporal dynamics.
The temporal evolution of GFT coefficients of two representative EEG
trials and the absolute value of the difference between them are shown
in Fig. 11. Largest GFT coefficients are located mainly in the lower end
of the spectrum, reflecting the relevance of spatial patterns manifested
by the eigenvectors within the LF range (cf. Fig. 5) in representing
a substantial extent of the variance observed in EEG signals. Subtle
differences are seen between the two classes. The GFT coefficients
are not consistent across time, showing notable variability. By using
the FKT, the manifested temporal dynamics are taken into account,
mapping the GFT coefficients to a subspace in which the two MI tasks
can be effectively differentiated, corroborating related findings on fMRI
data [54].

4.1. Limitations and outlook

In relation to the definition of brain graph vertices, as in related
prior works—e.g. Saboksayr et al. [27], Georgiadis et al. [14] and
Cattai et al. [13], we treated each EEG electrode as a graph vertex,
thus, directly used EEG electrode recordings after minimal preprocess-
ing, without utilizing source reconstruction [71]. For the application
considered in study, i.e. MI task decoding, source reconstruction is
not required, and in fact, it is favorable to not use as it increases
computational speed within a BCI setting, and also prevents undesired
spatial smoothing that results from source-reconstruction. Nevertheless,
in other applications, in particular, those of cognitive neuroscience, it
is beneficial to define a brain graph wherein brain regions derived from
a template atlas are treated as vertices, e.g. as in [17,72], which would
reduce spurious connectivity between vertices [73]; this would require
using a dataset that includes suitable structural or diffusion MRI data
to perform source reconstruction, which may however not be available
in some datasets. The graph learning method proposed in this paper
can be extended to use source-reconstructed EEG data; regularization
parameters – 𝛼 and 𝛽 – used in the optimization terms may need tuning
to account for the difference in the nature of nodes, and as such, may
for example be set by linking them to desired graph sparsity [74]. By
using source reconstruction, the resulting graphs and eigenmaps can
be, firstly, more easily interpreted in relation to underlying structure,
and secondly, matched and subsequently averaged or compared across
subjects, and used for applications such as fingerprinting [24,75,76].

The spatial dependency between brain activity at neighboring
electrodes – resulting from the smearing effect that is inherent in EEG
– suggests the need to take into account the spatial configuration of
electrodes, a topic of continued research interest [77,78]. The structure
of the functional graphs studied in this paper – both for the correlation
and the learned graphs – is affected by the geometric configuration
of electrodes. Here we studied differences in harmonic basis derived
from functional graphs to that of distance-based graphs via quantifying
differences in signal energy profiles or MI-task decoding performance.
12
To study the effect of distance, we assessed the degree to which geomet-
ric configuration of electrodes is sufficient to spatially decompose EEG
data using distance-based graphs, the results of which are presented in
the supplementary material. In particular, MI-decoding results showed
a relatively inferior performance for distance-based graphs relative
to learned graphs (cf. Tables S2–S3), indicating the effectiveness of
inferring functional and structural relation from EEG maps [79,80].
Future work is necessary to provide an in-depth comparison between
EEG harmonics of different nature, with the broader goal of obtaining
a harmonic basis that can disentangle signal contribution associated
to volume conduction from that associated to pure functional relation
between channels. We also investigated utilizing a graph learned from
the signals of an ensemble set of subjects, not specific to individual
subjects, constructed by using the training data of all subjects for
learning the graph. Results for the log-penalized graphs are presented in
Table S4. The use of a common graph/basis may indeed be necessary
for other applications in which spectral representations of EEG maps
are required to be compared across individual subjects or across groups,
suggesting the potential to further investigate such a design in related
applications.

A number of alternative feature extraction strategies may be con-
sidered in future work. Firstly, without resorting to GSP, the resulting
learned graphs may be readily used for fingerprinting [24,81] or to
extract features that characterize brain functional structure, via prin-
ciples from either graph theory, e.g. as in [82,83], or spectral graph
theory, e.g. as in [84,85] and [86]. Secondly, for MI task decoding
in particular, given that the frontal and parietal cortices are more
involved, by choosing a subset of electrodes—e.g. as in [14,40], graph
learning can be localized to these regions of interest. From another
point of view, not only EEG maps of individual time points, but also
wavelet decomposition coefficients obtained from temporal wavelet
transforms [87,88] can be considered as graph signals on the learned
graphs for subsequent analyses. Furthermore, it may be beneficial to ex-
tract coarse features at the resolution of spectral graph frequency bands
rather than GFT coefficients, e.g. as in [9,57], as this can be necessary
in deriving compact, interpretable EEG-based clinical biomarkers [89].
The challenge to this aim would be to use an appropriate choice of
graph filter banks [90,91] based on the graph spectra [92] and the
energy spectral density [50] of EEG maps on learned graphs.

An intriguing avenue for future research is to study the relation-
ship between harmonic basis of EEG learned graphs and EEG mi-
crostates [61,93,94]—short periods during which the topographies of
EEG maps remain quasi-stable. In particular, given the objective of the
learning process to derive a manifold on which observed EEG maps
are smooth, subject-specific EEG microstates, which exhibit smooth
topographies, may naturally arise as a subset of, or linear combination
of, the lowest frequency components of the learned harmonic basis;
the intrinsic dynamic nature of activity-dependent neuronal couplings
at rest [95–97] may however render it necessary to resort to deriving
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time-resolved graph harmonics [98]. Another avenue of research is to
study the potential of EEG learned graphs as a backbone on which
spatial filtering of EEG maps can be performed – e.g. for interpo-
lation of missing channels [99,100] – via spectral graph diffusion
filtering schemes [7,101]. Finally, the proposed EEG-based graph learn-
ing and spectral representation can be readily extended to multiclass
classification problems by using extensions of FKT that have been
introduced in the literature [102,103], as well as other data modal-
ities, in particular, fMRI [6,54], near-infrared spectroscopy [104], or
Magnetoencephalography [75,105].

5. Conclusions

We proposed a GSP-based method on learned graphs to extract
spatial signal information from EEG data. The applicability of the
method was validated within the setting of classifying EEG motor
imagery tasks. We treated acquired EEG data at each time-point as a
spatial signal that resides on the vertices of three different, subject-
specific functional graphs, in particular, two of which were learned
from the data. Our analysis showed that imagined motor activities
are generally spatially smooth on the learned graphs, and can thus be
effectively represented by using only a subset of their graph frequency
components. Furthermore, we showed that temporal dynamics mani-
fested in EEG signals can be captured by using the FK transformation,
resulting in a discriminative subspace that can better separate motor
imagery classes. Classification results showed the superior performance
of the proposed method compared to four related alternative methods,
indicating the benefit of extracting features via integrating spatial and
temporal characteristics of EEG signals within a GSP setting. We be-
lieve that the proposed methodology for spectral graph representation
of electrophysiological brain data holds the potential to enhance our
understanding of brain functional organization in a wide range of
applications in neuroinformatics.
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preliminary version of this work has been presented in [58]. 𝐖
ppendix A. Alternative formulation of TV(𝐟 ,)

An alternative formulation of TV(𝐟 ,) in the form of sum of differ-
ences between neighboring vertices – similar to that given in (6) for
TV(𝐟 ,𝐋) – can be obtained as:

TV(𝐟 ,) = 𝐟𝑇𝐟 (29)
(2)
= (𝐃−1∕2𝐟 )𝑇𝐋(𝐃−1∕2𝐟 ) (30)

(7)
=

∑

(𝑖,𝑗)∈
𝐴𝑖,𝑗

(

𝐟 [𝑖]
√

𝐷𝑖,𝑖
−

𝐟 [𝑗]
√

𝐷𝑗,𝑗

)2

, (31)

showing the strong similarity between TV(𝐟 ,𝐋) and TV(𝐟 ,), both quan-
ifying the degree of variation in the signal value at elements connected
ia edge in the graph.

ppendix B. Relation between FKT filters obtained on EEG GFT
oefficients to those obtained on EEG maps

In the feature extraction method proposed in this paper, we applied
he FKT on the GFT coefficients of EEG maps to derive filters that can
iscriminate between two classes. In this section, we investigate the
athematical relation between FKT filters obtained via two different

pproaches: (i) using the GFT coefficient of the EEG trials (proposed
ethod), (ii) using EEG maps themselves as input to the FKT.

The first approach is thoroughly explained in Section 2.4. Here we
erive the relation for the FKT filters using the second approach – com-
only referred to within the literature as Common Spatial Patterns [37]
to those obtained using the first approach; we use the ̌ notation to

ifferentiate variables of the same nature in the second approach to
hose of the first approach. Let Σ̌𝑗 denote the across-trial ensemble
veraged covariance matrix of the EEG maps of class 𝑗, defined as:

̌ 𝑗 =
1
𝐿𝑗

𝐿𝑗
∑

𝑖=1

𝐂̌(𝑖)
𝑗

trace
(

𝐂̌(𝑖)
𝑗

) , (32)

where 𝐂̌(𝑖)
𝑗 denotes the covariance matrix of the EEG maps of trial 𝑖 of

class 𝑗, obtained as 𝐂̌(𝑖)
𝑗 = 𝐅̃(𝑖)

𝑗 𝐅̃(𝑖)𝑇
𝑗 . By invoking (4), 𝐂̌(𝑖)

𝑗 and 𝐂(𝑖)
𝑗 given

in (21), can be related as:

𝐂̌(𝑖)
𝑗

(4)
= 𝐔 ̂̃𝐅(𝑖)

𝑗
̂̃𝐅(𝑖)𝑇
𝑗 𝐔𝑇 (21)

= 𝐔𝐂(𝑖)
𝑗 𝐔𝑇 . (33)

Moreover, invoking the invariance property of the trace under cyclic
permutations – i.e., trace(𝐴𝐵𝐶) = trace(𝐶𝐴𝐵) – and 𝐔𝑇𝐔 = 𝐼 , from (33)
we have trace

(

𝐂̌(𝑖)
𝑗

)

= trace
(

𝐂(𝑖)
𝑗

)

. Noting this equality between traces,
inserting (33) in (32) gives Σ̌𝑗 = 𝐔Σ𝑗𝐔𝑇 , and therefore, Σ̌ = Σ̌1 + Σ̌2
is related to Σ as:

Σ̌
(19)
= 𝐔Σ𝐔𝑇 (22)

= 𝐔𝐕Γ(𝐔𝐕)𝑇
𝐕̌∶=𝐔𝐕
= 𝐕̌Γ𝐕̌𝑇 , (34)

where 𝐕̌ denotes the eigenvectors of Σ̌. (34) shows that Σ̌ and Σ

hare the same eigenvalues and, intuitively, that their eigenvectors are
elated via the GFT—i.e., 𝐕 = 𝐔𝑇 𝐕̌, that is, the eigenvectors of Σ are
he GFT of the corresponding eigenvectors of Σ̌. Invoking and using the
efinition of the whitening matrix given in (23), the relation between
hitening matrices is obtained as:

̌ = Γ−1∕2𝐕̌𝑇 (34)
= Γ−1∕2(𝐔𝐕)𝑇 = Γ−1∕2𝐕𝑇𝐔𝑇 (23)

= 𝐏𝐔𝑇 . (35)

nvoking and using the definition of 𝐒1 as given in (24), 𝐒1 is obtained
s:

̌ 1 = 𝐏̌Σ̌1𝐏̌𝑇 (35)
= 𝐏𝐔𝑇 (𝐔Σ1𝐔𝑇 )𝐔𝐏𝑇 = 𝐏Σ1𝐏𝑇 = 𝐒1, (36)

nd similarly, we have 𝐒̌2 = 𝐒2. Therefore, the eigenvectors of 𝐒̌1 and
̌ 2 are the same as the eigenvectors of 𝐒1 and 𝐒2, i.e. 𝐁 given in (25).
inally, by invoking and using the definition of FKT filters given in (27),
he relation between the FKT filters is obtained as:

̌ 𝑇 ̌ 𝑇 𝑇 𝑇
= 𝐁 𝐏 = 𝐁 𝐏𝐔 = 𝐖𝐔 . (37)
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Noting that the FKT filters are given as rows of matrices 𝐖 and 𝐖̌, (37)
shows that the FKT filters obtained on the GFT coefficients of EEG maps
can be equivalently obtained by applying GFT to FKT filters obtained
on the EEG maps, a very intuitive relation between the filters from the
two approaches.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.bspc.2023.105537.
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