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Despite a lack of scientific consensus on the definition of emotions, they are generally considered to involve several modifications in the
mind, body, and behavior. Although psychology theories emphasized multi-componential characteristics of emotions, little is known
about the nature and neural architecture of such components in the brain. We used a multivariate data-driven approach to decompose a
wide range of emotions into functional core processes and identify their neural organization. Twenty participants watched 40 emotional
clips and rated 119 emotional moments in terms of 32 component features defined by a previously validated componential model.
Results show how different emotions emerge from coordinated activity across a set of brain networks coding for component processes
associated with valuation appraisal, hedonic experience, novelty, goal-relevance, approach/avoidance tendencies, and social concerns.
Our study goes beyond previous research that focused on categorical or dimensional emotions, by highlighting how novel methodology
combined with theory-driven modeling may provide new foundations for emotion neuroscience and unveil the functional architecture
of human affective experiences.

Introduction
Emotions are complex and multifaceted phenomena that do not
only generate rich subjective feeling states, but also powerfully
impact on perception (Phelps et al. 2006), cognition (Pessoa 2008),
memory (Phelps 2004; Tambini et al. 2017), and action (Damasio
2006). In spite of the lack of a general consensus on definition,
various theories have been proposed to characterize emotions
and their differentiation, but all remain debated and their links
to specific brain processes are still equivocal (Sander et al. 2005;
Meaux and Vuilleumier 2015; Adolphs 2017).

Neuroscientific approaches have mostly considered emotions
either as separate entities (e.g. fear and joy) following theoreti-
cal models of discrete emotions (Ekman 1999) or instead postu-
lated a few basic dimensions (e.g. valence and arousal) following
dimensional models (Russell 2003). In both cases, the neural sub-
strates of particular emotion categories or dimensions are usually
assigned to dedicated brain areas or circuits (e.g. amygdala and
striatum; Meaux and Vuilleumier 2015; Saarimäki et al. 2015).
However, these approaches do not easily account for the rich vari-
ety of emotions and their anatomical overlap across distributed
brain regions as shown repeatedly by neuroimaging studies in
the last 2 decades (Kassam et al. 2013; Kragel and LaBar 2013,
2015; Saarimäki et al. 2015). Several meta-analyses indicate that
there is no simple one-to-one association of particular emotions
or dimensions with individual brain regions (Kober et al. 2008;
Lindquist et al. 2012; Wager et al. 2015). Conceptual constructs of
valence (Pool et al. 2016; Berridge 2019) or arousal (Satpute et al.
2019; Haj-Ali et al. 2020) do not correspond to clearly separable

or unique neural substrates. Therefore, the exact role of different
brain areas and their functional interaction within large-scale
networks during emotional experience remains unresolved.

In contrast, other psychology theories of emotions have
sought to resolve these inconsistencies by explicitly tackling the
multiple ingredients of emotions. For example, the constructionist
theory posits emotions as arise from conceptual categorization
processes that are constructed by core affective dimensions
(valence and arousal) based on interoception and integrated
with other sources of knowledge determined by perception,
attention, and past experiences (Barrett 2017a). This framework
also helps better explain individual differences in the elicitation
and neural representation of emotions, consistent with findings
that emotional experiences engage multiple brain networks
activated in parallel (Kober et al. 2008; Wager et al. 2015)
and partly shaped by prior learning influences (Lebois et al.
2020). Another componential theory is the Component Process
Model (CPM), which proposed the existence of several distinct
processes that operate simultaneously and interact with each
other to evaluate the meaning of events and induce adaptive
changes in behavior and cognition (Scherer 2009a). This model
makes an explicit distinction between specific constituents of
emotions, including appraisal mechanisms, motor expression,
action tendencies, peripheral autonomic changes, motivational
drive, as well as various effects on cognitive and memory
functions, in addition to the generation of subjective feeling states
(Scherer and Moors 2019; see Fig. 1). These constituents may
be shared between different emotions but engaged in different
ways and to different degrees. Moreover, different appraisal

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/12/7993/7081419 by U

niversité de Lausanne user on 24 August 2023

https://creativecommons.org/licenses/by/4.0/


7994 | Cerebral Cortex, 2023, Vol. 33, No. 12

Fig. 1. Componential model of emotion. In this framework, emotions are conceived as resulting from the concomitant (or sequential) engagement of
distinct processes, responsible for the evaluation as well as the behavioral and bodily responses to particular events. According to the CPM proposed by
Scherer and colleagues, from which emotion features were defined in our study, 5 distinct functional components are postulated, which can reciprocally
interact to constitute an emotional experience, including appraisal mechanisms that process contextual information about the event, motivational
mechanisms that promote goal-oriented behaviors and cognitions, motor expressions and physiological changes that instantiate bodily responses, and
subjective feelings that may reflect an emerging component encoding conscious emotion awareness.

mechanisms evaluate events along different dimensions, which
eventually determine their personal affective significance and
trigger corresponding changes in mental and bodily functions
(Ellsworth and Scherer 2003). The pattern of appraisals and
corresponding responses will, in turn, generate a particular
emotion experience. According to such models, appraisals may
encompass not only affective properties (e.g. pleasantness or
valence), but also novelty, relevance to current goals, causality
and agency, expectation and familiarity, control ability, as well
as personal values, social norms, and other contextual factors
(Sander et al. 2005).

While componential theories of emotion have been explored
in detail in psychology, no study has examined how these compo-
nent processes relate to particular brain networks, and which are
the potential core processes commonly engaged across a range
of different emotion categories. However, several neuroimaging
meta-analyses results show activations in overlapping and dis-
tributed regions in response to various emotions (Kober et al.
2008; Lindquist et al. 2012; Wager et al. 2015), consistent with the
notion that multiple cognitive or sensorimotor processes subserv-
ing adaptive functions may be recruited across different emotions.
Such activation patterns would be consistent with componential
and constructionist view suggesting that emotions activate par-
allel processes such as sensorimotor, physiological/interoceptive,
or motivational functions, each mediated by large-scale brain
networks, rather than rely on a modular emotion-specific orga-
nization. Nevertheless, previous neuroimaging studies referred to
distinct functional components based on post hoc analysis or
interpretation, without directly testing for such views in a the-
oretically driven manner. Thus, although several meta-analysis
advocated for componential and constructionist approaches as
a valuable framework for understanding the emotional brain
(Kragel and LaBar 2016; Sander et al. 2018), to our knowledge,
only 1 study (Skerry and Saxe 2015) considered specific appraisal
features, a core element of componential theories, to explain
brain activation patterns during emotion recognition (using verbal
scenarios; Skerry and Saxe 2015). Interestingly, this study found
that the appraisal feature space could better explain the neural
representation of different emotions than just valence or arousal
dimensions. Yet, a more comprehensive dissection of the neural
underpinnings of human affective experience, going beyond the
appraisal of emotion in others and including a wider range of

components (e.g. motivation, expression, physiology, etc.), is still
lacking.

In a search for putative neural dimensions (which we call
core processes) shared across various emotions, the current study
chose to focus on the CPM framework as a testbed because
prior research based on this model has provided a detailed, well
validated catalog of specific features and descriptors for different
components (see Materials and Methods section). This makes it
well-defined to be directly tested in relation to distributed brain
networks. However, it is important to note that our study does not
seek to prove these components or confirm the theory relative to
others, but rather takes it as a presumption to reveal potential
core processes using a multivariate approach.

Another key issue for emotion studies in psychology and
neuroscience concerns the elicitation procedures used to induce
emotional responses. Many earlier studies employed highly
simplified and indirect approaches, for example, pictures of facial
expressions, voices, music, or photographs that convey only a few
specific emotions (Meaux and Vuilleumier 2015). These stimuli
may cause a perception or recognition of particular emotions, but
do not necessarily prompt a genuine emotional experience. More
recent studies have therefore also explored other approaches
using more naturalistic elicitation procedures (e.g. movies or
memory scripts; Kragel and LaBar 2013, 2014). However, emotions
are still most often studied in terms of pre-defined categories
(Damasio et al. 2000) or dimensions (Nummenmaa et al. 2012),
rather than functional component processes.

Our study addresses these current gaps in emotion research by
(i) employing a naturalistic and ecologically valid emotion elici-
tation procedure with a large movie data set, without assigning
them to pre-defined categories, (ii) decomposing emotions into a
multidimensional space organized along distinct component pro-
cesses, based on participant’s experience rather than pre-defined
categories, and (iii) dissecting the main “building blocks” of this
space and their neural substrates using a data-driven modeling
approach. Our main goal is to refine our understanding of emotion
processing in the human brain through defining new methods
to uncover their neural organization. We base our approach on
a well-established CPM of emotion (Scherer 2001, 2009a), which
provides a comprehensive representation of several key aspects of
emotional behavior and experience (see Materials and Methods).
Our results demonstrate how emotions may emerge from
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coordinated activity across a distributed set of brain net-
works coding for component processes associated with val-
uation appraisal, novelty, hedonic experience, goal-relevance,
approach/avoidance tendencies, and social concerns. In doing
so, our study goes beyond previous research in several ways and
opens new perspectives in affective neuroscience. Figure 2 illus-
trates the pipeline of our approach (see Materials and Methods
section for details).

Materials and methods
This research has been approved by Geneva Research Ethics Com-
mittee (CER 09-316 and BASEC 2018-02006) and done according to
the committee guidelines. Informed written consent was obtained
from all participants.

Emotion elicitation
To elicit emotions in a naturalistic and dynamic manner and
track component processes, rather than presenting a sequence
of unrelated stimuli assigned to pre-defined categories, we used
a series of 40 movie clips that were selected and validated to
cover a range of different emotions, similar to those classically
investigated in psychology and neuroscience. Movies provide eco-
logically valid stimuli as they allow for a continuous measure of
emotional responses, whose nature or intensity can be influenced
by context, temporal history, or expectation (beyond just the cur-
rent visual or auditory inputs). The efficacy and validity of movies
has been well-established in psychological studies of emotion
elicitation because of these desirable characteristics (Philippot
1993; Gross and Levenson 1995; Soleymani et al. 2008; Schaefer
et al. 2010; Gabert-Quillen et al. 2015; Samson et al. 2016), but this
approach remains scarce in neuroimaging research and limited
to measures of basic dimensions (valence and arousal; Sabatinelli
et al. 2011; Lahnakoski et al. 2012) or discrete categories of emo-
tion (fear, sadness, etc.; Tettamanti et al. 2012; Saarimäki et al.
2015).

Stimuli selection
To select emotionally engaging movie excerpts, we borrowed a
set of 139 videos from previous researches (Gross and Levenson
1995; Soleymani et al. 2008; Schaefer et al. 2010; Gabert-Quillen
et al. 2015). All excerpts were collected in both English and French
languages and, matched for duration and visual quality (the
original video excerpts were in English, but our experiment was
in French, so we collected the dubbed version of original clips as
well). We then chose video excerpts eliciting various emotions and
covering different component dimensions of interest.

To this aim, we first conducted a preliminary behavioral study
where emotion assessments were made in terms of discrete emo-
tion categories, as well as according to a set of component descrip-
tors. Discrete emotions were rated using a modified version of
the Differential Emotion Scale (14 labels: fear, anxiety, anger,
shame, warm-hearted, joy, sadness, satisfaction, surprise, love,
guilt, disgust, contempt, calm; McHugo et al. 1982; Izard et al.
1993), whereas the componential descriptors were assessed using
a questionnaire of 39 features taken from the CoreGRID instru-
ment (Fontaine et al. 2013; see Supplementary Methods, Sec-
tion A). The CoreGRID instrument includes 63 semantic concepts
representing activity in the 5 major components postulated by
emotion theories (appraisal, motivation, expression, physiology,
feeling; see Fig. 1). Our selection concerned features appropriate
to emotions experienced during movie watching where events
happened to characters rather than directly to the viewer in the

real-world. Based on the intensity and discreteness of categorical
emotion ratings, we retained 40 videos equally covering 10 dif-
ferent discrete emotion categories (each predominating in 4 clips,
average duration 111 s, and standard deviation of 44 s). By using
several emotions (beyond the 6 basic categories), we were able to
assess a more complete range of components.

The pilot ratings and validation of video clips were obtained
through a web interface using CrowdFlower, a crowdsourcing plat-
form that allows accessing an online workforce to perform a task.
The selected workforce was limited to native English speakers
from United States or United Kingdom and the reward was set
for a minimum effective hourly wage of $6.6 (each task was
rewarded c110 for an estimate of maximum 600 s to complete the
entire paradigm); however, on average, each task was performed
in ∼342 s, equivalent to an average hourly wage of $11.57. The
quality control of the assessments was ensured by means of ad
hoc test questions about the content of the clip. Participants
(n = 638, 358 males, mean age = 34, SD = 11) watched the full clip
(on average 2.8 clips per participant), and then rated each question
on how it described their feeling or experience on a 5-points
Likert scale (with 1 associated to “not at all” and 5 associated to
“strongly”).

Participants in the fMRI study
Twenty right-handed volunteers (9 females, mean age 20.95, range
19–25 and standard deviation of 1.79) with no history of neuro-
logical or psychiatric disorders took part in the study. They were
recruited via fliers and all native French speakers. All partici-
pants gave written consent according to the Geneva Research
Ethics Committee guidelines. Demographic information (includ-
ing age, sex, nationality, handedness, education, and language
speaking) and Big-Five Personality Traits (using BFI-10 question-
naire; Rammstedt and John 2007) were collected prior to the
experiment. There were 4 scanning sessions in total. Participants
received a monetary reward of 40 CHF per session and a final
bonus of 90 CHF if they completed all sessions (equivalent of 20
CHF per hour). For technical reasons, the first session of the first
participant had to be discarded from the data, and another partic-
ipant only completed 2 sessions out of 4. However, the remaining
data from these 2 participants were used in the analysis as they
included observations covering all emotion conditions.

Experiment procedure
Participants underwent 4 testing sessions in 4 different days to
complete the whole experiment. Each session started with an
fMRI experiment followed by 9 behavioral assessment. At the
beginning of each fMRI session, participants completed a Brief
Mood Introspection Scale (BMIS) questionnaire and got prepared
for the scanning. During the fMRI scanning, they watched 10 video
excerpts, belonging to 10 different pre-labeled emotion categories
(in random order), ensuring to probe for component processes
as equally as possible across sessions. Each video was presented
once only, followed by a 30-s washout clip (composed of geometric
shapes moving over a fixed background, matched for average
luminance and color content of the preceding clip, accompanied
by neutral tones sampled from the video sound track). Partici-
pants were instructed to freely feel emotions and fully appraise
the affective meaning of scenes, rather than control their feeling
and thoughts because of the experiment environment (see Sup-
plementary Methods, Section C for details).

Following each fMRI session, participants watched the same
videos (whole clips) again and rated feelings and thoughts evoked
by the pre-selected events in each video clip (1–4 excerpts per clip,
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Fig. 2. PLSC method. Participants watch emotional clips during 4 daily fMRI sessions. Matrix X summarizes the brain activity patterns during emotional
events and matrix Y summarized the assessment of 32 emotion features collected during a separate behavioral session and 2 physiology features for each
event. PLSC is then applied to find the commonalities between neural activity and behavioral measures. This is achieved in 3 steps, first by computing
the relationship (R) between brain activities (X) and behaviors (Y). Then decomposing the relationship matrix R using singular value decomposition
(SVD). And, finally, using permutation tests and bootstrapping to assess the statistical significance and saliency of latent factors.

based on salient events identified in a separate study, total 119
excerpts), according to how they felt when they first saw it inside
MRI scanner. Participants were explicitly advised to reflect on
their own feelings and thoughts and not what is intended to be felt
in general by watching the same event. Ratings were obtained for
pre-selected events with perceptually and/or emotionally salient

content (between 1 and 4 events per each video, with mean of 2.9
and duration of 12-s per event). This allowed us to ensure ratings
corresponded to a precise event, and not more global judgments
about the video. Answers were given immediately after watching
the emotional event by pausing the video. Emotional events were
selected from a separate pilot experiment by other subjects (n = 5)
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who made continuous evaluations with CARMA (software for
Continuous Affect Rating and Media Annotation; Girard 2014)
allowing second by second ratings (see Supplementary Methods,
Section B).

For post-fMRI ratings, participants had to choose 1 or 2 of the
emotion labels (primary and secondary most felt) from the list of
10 discrete emotion categories (fear, anxiety, anger, joy, sadness,
satisfied, surprise, love, disgust, and calm), and to rate each of
32 CoreGRID features selected in our pilot study using a 7-point
Likert scale (1 corresponding to “not at all” and 7 corresponding
to “strongly”). Seven other features from the CoreGRID list con-
cerned some of the physiological and expression measures were
not included in the current analyses. Each fMRI session and 10
behavioral session lasted for about 1 and 2 h, respectively (about
3 h × 4 sessions = 12 h of experiment for each participant), includ-
ing preparation time. Behavioral rating sessions were performed
on a separate PC in a quiet room. In total, 2,276 video events
were rated along the 32 GRID dimensions described above (see
Supplementary Methods, Section D for details).

Data acquisition
MRI was performed on a 3T Siemens TIM Trio scanner at the Brain
and Behavior Laboratory of the University of Geneva, with a 32-
channel head coil using gradient-echo T2∗-weighted echo-planar
image sequence for functional images (TR = 2,000 ms, TE = 30 ms,
flip angle = 85◦, FOV = 192 mm, resolution = 4 × 64, 35 axial slices,
voxel size 3 × 3 × 3 mm). High-resolution T1-weighted structural
images and susceptibility-weighted images were also collected.
Each video was presented during a separate MRI acquisition run
to ensure independence between different stimuli. The acqui-
sition time for each run was about 164 s on average. Stimuli
presentation and rating were controlled using Psychtoolbox-3,
an interface between MATLAB and computer hardware. During
the fMRI session, participants watched the stimuli on an LCD
screen through a mirror mounted on the head coil. The audio
stream was transmitted through MRI-compatible Sensimetrics
Insert earphones (model S14). Peripheral physiological measures
were also collected during the fMRI session including heart activ-
ity, respiration, and electro dermal activity (EDA) using BIOPAC
system. However, because of technical reasons, the EDA was miss-
ing for several sessions in some subjects and so these data were
excluded from subsequent analysis of fMRI data to keep as many
sessions/subjects as possible in the brain analysis (In a separate
study with a distinct analysis focusing only on physiology and
behavioral data (Menétrey et al. 2022) where the total number
of variables was much smaller than the current fMRI study, we
removed all sessions with missing EDA and instead retained EDA
as a variable of interest in our analysis.). Similarly, to detect facial
expressions such as smiles and frowns, we recorded electromyo-
gram (EMG) during the full scanning sessions, but because of
electromagnetic interference from other devices and poor signal
overall, facial motor activity could not be reliably retrieved and
was not analyzed either.

Preprocessing of fMRI data
Initial processing of the fMRI data was performed using Statistical
Parametric Mapping 12 (SPM12) software (Wellcome Department
of Cognitive Neurology, London, UK). The data were corrected for
slice timing and motion, co-registered to high resolution struc-
tural images, and normalized to Montreal Neurologic Institute
(MNI) space. Spatial smoothing was applied at 6 mm and temporal
data were high-pass filtered at 0.004 cutoff point. No physiolog-
ical noise correction was applied because physiology covariates

are assumed to constitute one of the constituents of the CPM
and therefore have to be retained in the analysis. Changes in
neural activation were modeled across the whole brain using the
general linear model (GLM) as implemented in SPM12. For each
run, the blood-oxygenation-level-dependent (BOLD) signal was
modeled using multiple regressors, 1 per each emotional event
(without overlap) plus 1 representing the washout period, which
were convolved with the hemodynamic response function (HRF).
The onset of each HRF is aligned with the beginning of each
emotional events. Six motion parameters (translations in x, y,
and z, roll, pitch, and yaw) were also added to account for nui-
sance effects. No mask was applied to the GLM estimations and
data from whole brain were used in the later analysis. For each
emotional event, a contrast map between the emotional event
and washout βs was computed and then used as the differen-
tial neural marker of the corresponding emotional experience(s)
associated with this event. We also analyzed the framewise dis-
placement using 2 metrics (Power et al. 2014; Huijbers et al. 2017)
with the standard thresholds of 0.5 and 0.2 mm, respectively, as
suggested by other literatures. Our analysis revealed that only 5
runs out of 770 to have more than 20% displaced frames. However,
removing the affected 5 runs did not change the final results,
significantly.

Physiology signal preprocessing
All physiology signals (heart pulsation, respiratory, and EDA) were
acquired throughout the scanning sessions at 5,000 Hz sampling
rate. To preprocess this data, we used AcqKnowledge 4.2 and
MATLAB. Signal artifacts and signal losses were corrected man-
ually using Endpoint function in AcqKnowledge software, which
interpolates the values between 2 selected points. Then signals
were downsampled to 120 Hz and a comb-pass filter was applied
to remove the scanner artifacts. The heart activity signal was
filtered with a band-pass filter between 1 and 40 Hz and the heart
rate (HR) was computed using peak detection technique and was
converted to beats per minute. Results were controlled to make
sure that the estimated HR is in the normal range of 60–100 beats
per minute and otherwise corrected manually. All automatically
detected peaks were verified visually and any misdetection was
corrected manually. The respiration signal was band-pass filtered
between 0.05 and 1 Hz and similar to heart signal, respiration rate
(RR) was estimated. The EDA signal was also processed, but finally
discarded from analyses because of a large portion of missing
values. Average HR and RR (after orthogonalizing them to head
motion vectors) were computed for each emotional event and
then treated similarly as other GRID descriptors to assess neural
effects associated with increases or decreases of HR and RR. Please
note we did not include physiology signals as nuisance regressors
in the fMRI analysis (e.g. RETROICOR) in order to minimize the
risk of removing potential signals of interest (based on theoretical
predictions from CPM), while still cleaning the fMRI data from
potential noise associated with brain motion (using head realign-
ment parameters). We also verified that the head motion-related
regressors were unlikely to remove concomitant effects on neural
activity associated with peripheral physiology by ruling out any
systematic correlation between head motion and HR or RR [mean
correlation r = −0.015 across all movie runs; not significant when
tested across participants (n = 20, P = 0.802), movie clips (n = 40,
P = 0.723), or single runs (n = 770, P = 0.134)].

CPM and CoreGRID
We based our analysis of behavioral and fMRI data on a previously
established model (Scherer 2001) assuming 4 different functional
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Table 1. Items of GRID questionnaire. The left column shows the list of the 32 GRID items rated by participants for each of the 119
selected events in movies and 2 peripheral physiology measures (marked with alphabet). In this column, the abbreviation “s.th.” stands
for “something.” The second column represents the component that each GRID item belongs to. The 6 right columns correspond to the
6 factors obtained from a factorial analysis (D1–D6) and their loading coefficients. Loading coefficients with maximum values for each
factor are color-coded to help interpretation and group them in terms of corresponding factors: D1 can be interpreted as valence, D2
corresponds to arousal, D3 mainly encodes motor expression and bodily changes, D4 represents novelty, D5 relates to action
tendencies, and finally D6 represents norms. Coefficients highlighted in bold are statistically significant (P-value < 0.05).

Questions: (While watching this scene, did you . . . ) Components D1 D2 D3 D4 D5 D6

Feel good? Feelings −0.85 −0.12 −0.17 −0.06 −0.13 −0.03
Feel situation was unpleasant for you? Appraisal 0.81 0.20 0.29 0.01 0.10 0.11
Feel bad? Feelings 0.81 0.27 0.25 0.01 0.09 0.06
Want to undo what was happening? Motivation 0.81 0.21 0.15 0.01 0.15 0.17
Want the situation to continue? Motivation −0.81 0.12 −0.05 −0.07 −0.11 −0.02
Feel the urge to stop what was happening? Motivation 0.81 0.19 0.17 0.00 0.16 0.16
Feel it was unpleasant for someone else? Appraisal 0.71 0.13 0.07 0.18 0.16 0.18
Feel calm? Feelings −0.69 −0.19 −0.26 −0.11 −0.18 −0.08
Feel strong? Feelings −0.54 0.04 −0.08 −0.08 −0.01 0.03
Want to tackle the situation and do s.th.? Motivation 0.51 0.35 0.00 −0.05 0.38 0.14
Feel an intense emotional state? Feelings 0.19 0.82 0.28 −0.07 0.06 0.06
Experience an emotional state for a long time? Feelings 0.17 0.79 0.24 −0.06 0.06 0.04
Feel motivated to pay attention to the scene? Motivation −0.15 0.42 −0.08 0.06 0.08 0.05
Have a feeling of lump in the throat? Physiology 0.42 0.40 0.29 −0.09 0.14 −0.02
Show tears? Expression 0.15 0.39 0.01 −0.12 0.08 −0.13
Think it was important for somebody’s goal need? Appraisal 0.06 0.18 0.06 0.01 0.00 0.03
Experience muscles tensing? Physiology 0.45 0.21 0.49 0.01 0.22 0.04
Produce abrupt body movement? Physiology 0.19 0.10 0.48 0.10 0.19 0.09
Close your eyes? Expression 0.23 0.05 0.45 0.00 0.05 0.01
Have stomach trouble? Expression 0.35 0.37 0.45 −0.01 0.10 −0.04
Feel warm? Physiology 0.02 0.15 0.39 −0.02 0.10 −0.05
Have eyebrow go up? Expression 0.15 0.04 0.30 0.27 0.07 0.20
Press lips together? Expression 0.26 0.24 0.28 0.01 0.05 0.05
Have the jaw drop? Expression 0.06 0.09 0.23 0.26 0.10 0.12
aHeart rate Physiology −0.01 0.02 0.20 0.03 −0.06 0.02
aRespiratory rate Physiology 0.09 −0.04 0.15 0.05 0.05 0.06
Feel that the event was unpredictable? Appraisal 0.08 −0.02 0.09 0.77 0.01 0.06
Feel the event occurred suddenly? Appraisal 0.21 0.03 0.13 0.68 0.05 0.06
Think that the consequence was predictable? Appraisal 0.06 0.07 0.02 −0.42 0.09 0.05
Think the event was caused by chance? Appraisal 0.01 −0.04 −0.01 0.42 −0.04 −0.01
Want to destroy s.th.? Motivation 0.30 0.15 0.20 −0.06 0.73 0.05
Want to damage, hit or say s.th. that hurts? Motivation 0.35 0.18 0.18 −0.06 0.70 0.12
Think it violated laws/social norms? Appraisal 0.59 0.07 0.16 0.09 0.18 0.64
Think it was incongruent with your standards? Appraisal 0.61 0.06 0.20 0.06 0.16 0.62

components, including (i) a motivational component that causes
changes in action tendencies, (ii) an expression component that
implicates changes in motor behavior and action, (ii) a physi-
ological component that corresponds to changes in peripheral
autonomic activity, and finally, (iv) a feeling component that
reflects the conscious experience concomitant to changes in all
other components (Scherer 2009b). A series of 144 descriptors for
distinct features of each of these components has been defined in
the GRID instrument (Fontaine et al. 2013) in order to cover vari-
ous emotional experiences according to their frequent use in the
literature, cross-cultural adaptability, and common occurrence in
self-reports. In our study, we used the CoreGRID instrument, a
validated brief version of the GRID encompassing 63 semantic
items (Fontaine et al. 2013), among which we selected those
applying to our experimental paradigm and compatible with a
third-person perspective of emotional events. These features and
their links with main components are listed in Table 1.

Hierarchical clustering
To analyze similarity/dissimilarity between discrete emotions
in terms of their profile of component features, we applied a

hierarchical clustering analysis. To define this componential
profile, we computed the average value of CoreGRID items for
each discrete emotion class (emotion class of each rating was
based on its primary emotion category), which represents the
class centroids. Hierarchical clustering allows for grouping similar
items into 1 cluster and merges pairs of clusters as it moves up the
hierarchy. One advantage of such algorithm is the possibility to
interpret the similarity at different levels. Here, we used squared
Euclidian distance as the similarity measure between clusters
(Ward’s method).

Exploratory factor analysis
We applied factor analysis to all GRID items from all 4 com-
ponents to find the underlying commonality across different
items, allowing us to compare our data set with previous work
using similar analyses (Fontaine et al. 2007). Based on Kaiser’s
criterion, 6 factors were selected (see section Underlying Factors),
which accounted for 48% of total variance, and applied orthogonal
varimax rotation to simplify the expression of a particular factor
in terms of just few major items. The interpretation of each factor
is based on its relationship with specific GRID item set.
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Partial least square correlation
To identify consistent patterns of covariations among component
features and concomitant changes in brain activity patterns, we
employed Partial Least Square Correlation (PLSC), a multivariate
statistical modeling technique that extracts the commonalities
between neural activity and behavior through an intermediate
representation of latent variables (LV; Krishnan et al. 2011). In this
method, response and independent variables are projected to a
new space of LV, such that the latter has the maximal covariance.
Here, we included the behavioral ratings on all 32 CorGRID items
plus 2 physiology measures (HR and RR) on one hand, and fMRI
data from whole brain obtained for all emotional events across
all movies (n = 2,276) on the other hand. In this analysis, BOLD
activity from V voxels is stored in matrix XM×V with M rows as the
number of observations, and ratings of emotion experience are
stored in matrix YM×N where N is the number of behavior descrip-
tors. Columns in both X and Y are normalized to within subject
z-scores. The relation between X and Y is stored in a correlation
matrix R as R = YTX, which is then submitted to a singular value
decomposition (SVD) to obtain 3 different matrices as R = U�VT,
where U and V represent saliences values (loadings) for Y and
X, respectively. LV are computed as LX = XV and LY = YUthat
model the relationship between BOLD signal and behavioral data
(Abdi and Williams 2012). We assessed the significance of LV with
permutation tests (Efron and Tibshirani 1986; 1,000 iterations) and
LV with P-value < 0.01 were retained for interpretation.

We also verified our PLSC results in terms of statistical sig-
nificance and reliability using independent methodology based
on permutation tests and bootstrapping, respectively. Because
standard cross-validation techniques or power analysis are not
best applicable to the PLSC method, the optimal sample size and
generalizability of results cannot be calculated solely based on the
number of subjects or model parameters, but should instead be
tested based on the precision of the model estimation and its stan-
dard error (Marcoulides and Chin 2013). A robust method to assess
the precision of estimates is through resampling methods like
Monte Carlo simulation, with the most popular approach based on
bootstrap sampling (Efron and Tibshirani 1986). In our study, we
took a conservative bootstrap approach, in which we limited the
number of subjects used at every iteration of bootstrap to be ∼70%
of participants (two-thirds of sample). This guarantees that data
from ∼30% of the subjects are excluded at every iteration and the
estimates are solely based on the resampled data from a portion of
subjects. As can be inferred, this method also implicitly examines
the generalizability of the method to different set of samples and
allowed us to estimate the robustness of our results. To do so,
for each bootstrap sampling iteration, the PLSC procedure was
repeated [on a set of 14 randomly selected subjects (about 70%
of the subjects)] and the variance of each element of each LV was
computed over 1,000 iterations. The stability scores Sui and Svi for
the ith elements of factors u and v are obtained as Sui = ui

σ(ui)
and

Svi = vi
σ(vi)

, where σ (ui) and σ (vi) denote standard errors for ui

and vi where σ (ui) and σ (vi) denote standard errors for ui and
vi, respectively. Stability scores higher than 2.5 or lower than
−2.5 (corresponding to P < 0.01) were considered as significant,
indicating voxels that reliably respond to a particular condition.
Because resampling methods can cause axis rotation and alter
the order of LVs, we used Procrustes rotation (Ten Berge 1977)
to correct for such effect. This approach allowed us to identify
voxels with highest loadings for each LV, and emotion features
contributing most to each of these LVs. Results thus delineate
distinct brain-wide networks and the component feature profiles
associated with their activation, presumably underlying different

dimensions of emotion over various episodes. Importantly, this
patterning is obtained in a purely data-driven manner, without
assigning features to particular components or appraisals, and
without grouping them according to pre-defined discrete emotion
categories. Please also note that our participant sample size is
similar to other studies exploring social appraisal features with a
smaller stimulus data set (Skerry and Saxe 2015) and much larger
than in other recent work using machine learning approaches
with a similar comprehensive video data set (e.g. n = 5 participant
in Horikawa et al. 2020).

In addition, we ran a K-fold cross-validation technique, though
this is not standard for PLSC, in order to further test for the
generalizability and reliability of model using a different per-
spective (similar to machine learning methods). This procedure
yielded very similar results that are reported in the Supplemen-
tary Results, Section B, and further supported the generalizability
of our PLSC findings.

Results
As described above, the main part of our study presented a
group of healthy volunteers (n = 20) with a series of 40 video
clips, which were selected from a large data set validated in a
preliminary study so as to convey a large range of emotions.
Participants watched these video clips while whole-brain activity
was measured with fMRI and peripheral physiology was mon-
itored through HR, RR, and EDA. Movies were presented over
4 different sessions on separate days (10 movies in each, total
duration = 74 min). During the movies, participants were encour-
aged to get absorbed in the scenes and let their emotions freely
flow without any particular task. After each session, they were
presented with the same videos where particular excerpts con-
taining a salient or emotional event (between 1 and 4 excerpts
for each clip) were highlighted for assessment following a video
pause. Participants had to rate these events in terms of several
dimensions of emotional experience (using a 7-point Likert scale).
These ratings included (i) a series of 32 descriptors corresponding
to major emotion features identified by the CPM (GRID items,
see Table 1) and validated by previous psychology research across
several cultures (Fontaine et al. 2013) and (ii) a list of 10 dis-
crete emotion categories that could occur during movies (fear,
anxiety, anger, sadness, disgust, joy, satisfaction, surprise, love,
and calm). We subsequently used the 32 emotion features and 2
peripheral physiology measures (HR and RR) to identify consistent
covariations corresponding to coordinated patterns of emotional
responses, and then applied a multivariate modeling approach
to relate each of these patterns to distinctive brain network
activations. Because of high noise and frequent missing values
in some subjects, EDA was excluded from the final data set in
order to retain all participants for the fMRI analysis. Finally, we
also examined how the different components identified in our
model were modulated according to discrete emotion categories
and dimensions postulated in classic theories.

Behavioral and physiological measures
To illustrate the variability of elicited emotions, Fig. 3a presents
the histogram of the discrete emotion categories, selected by our
participants as the most dominant emotion during each of the
salient movie excerpts. Although the distribution of discrete emo-
tions is not uniform, it shows that, except for love, our stimulus
material and experimental design was successful in eliciting a
wide range of different emotions, allowing us to obtain a com-
prehensive survey of the componential space. The nonuniform
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Fig. 3. Histogram and hierarchical clustering of discrete emotions. a) Histogram of categorical emotions based on their frequency in the ratings of
119 emotional event by 20 participants (data from 2 participants were not complete). The red dashed line shows the ideal frequency if samples were
distributed uniformly. b) Hierarchical clustering of the discrete emotion profiles in the GRID space using Ward algorithm. The higher-level clusters
distinguish between positive and negative emotions. The lower-level clusters reflect a segregation of feelings in terms of pleasantness (green), surprise
(black), distress (blue), and annoyance or frustration (red).

Fig. 4. Histogram of GRID items. Histogram of ratings for all the 32 GRID items based on the number of times a specific rating (1–7) was selected across
all assessments (119 assessments per participant) and all 20 participants (the data from 2 participants were not complete). The abbreviation “s.b.” stands
for somebody.

distribution of emotion categories (unlike results from the movie
selection phase; see Materials and Methods) is because of the
fact that these ratings concerned short emotional episodes (single
events) and were obtained from a varying number of segments
across different video clips (unlike the more global judgments
made for whole movies during preselection). Moreover, single
events in a movie did not necessarily elicit the same emotion as
the global judgment made for an entire movie clip, which high-
lights the importance of using and characterizing short segments
for fMRI analysis.

In addition, a histogram count of the GRID features across
movie emotional events (Fig. 4) showed that ratings of all 32
items were generally well spread across the 2 ends of the con-
tinuum, with only a few items exhibiting a distribution skewed
toward the lower end (rated as 1). This bias was more evident
for features from the expression component, most likely because
of the passive condition of emotional experience during movie
watching that does not require any direct behavioral responses
or communication.

Altogether, these behavioral data demonstrate that our proce-
dure could successfully cover the whole componential space for a

range of different emotions and thus effectively test for patterns
of shared variability across the different stimulus conditions.

Finally, physiology recordings obtained during movies (see
Materials and Methods) confirmed significant bodily changes
across different emotions for HR [F(9, 2291) = 3.767, P <

0.001, η2 = 0.014)], RR [F(9, 2291) = 3.767, P < 0.001, η2 = 0.014],
and tonic EDA [F(9, 2029) = 3.415, P < 0.001, η2 = 0.014)]. No
reliable effect was found for phasic EDA [F(9, 2029) = 1.237, P =
0.268, η2 = 0.005)]. Please note that these physiology measures
were acquired during fMRI as objective indices to further assess
the GRID physiology component, as assumed in CPM, without
relying only on subjective reports of physiological changes that
might be less sensitive. We did not compute more sophisticated
characteristics of physiology parameters (e.g. variability) as in
some behavioral studies (Kragel and LaBar 2013), since such
indices were not part of the GRID descriptors and reliable
physiological data are difficult to record during concomitant
fMRI. However, in a separate analysis, we found that the
absolute mean and variance of HR, RR, and EDA could predict
appraisal GRID descriptors significantly above chance level,
whereas they did not reliably predict discrete emotion ratings
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Fig. 5. Discrete emotion profiles in GRID space. Average profile of each discrete emotion on the 32 GRID features and 2 peripheral physiology measures
(HR, RR) after within-subject normalization. For each discrete emotion, all assessments from all 20 participants with that discrete emotion label were
used. Each bubble corresponds to a z-score using an exponential scaling. The smallest bubble represents a z-score = −1.27, corresponding to “not at all,”
and the biggest bubble represents a z-score = +1.23 corresponding to “felt strongly.” Colors represent the different emotion components to which GRID
items belong to.

(Menétrey et al. 2022). These findings suggest that our measures
were robust enough to be used as GRID descriptors in subsequent
fMRI analysis, but insufficient to fully differentiate complex
emotional experiences by themselves (i.e. their information
may already be captured by other GRID descriptors; see
Materials and Methods and Supplementary Methods, Section A).
To fully characterize emotional responses in terms of physiology
processes, more analyses should therefore be conducted, which is
out of the scope of this study (see Kragel and LaBar 2013). A more
comprehensive analysis of the relationship between GRID items,
physiology recordings, and discrete emotion ratings is presented
in Menétrey et al. (2022).

Cluster analysis
To analyze the relation among different emotion categories within
the componential model space, we performed a hierarchical
clustering analysis on the average profile of each discrete emotion
along 32 GRID features plus 2 peripheral physiology measures of
HR and RR. As can be seen in Fig. 5, different features were present
to different degrees for different discrete emotions, whereas
several features were shared by more than 1 particular emotion.
Accordingly, the clustering results indicated a clear distinction
between positive versus negative emotions at the higher level

of differentiation (Fig. 3b), whereas 4 different clusters were
observed at the lower level representing, respectively, pleasant
feelings (joy, satisfaction, love, and calm), distress (fear, disgust,
and anxiety), annoyance (anger and sadness), and surprise.
Surprise showed a higher similarity to negative categories than
to pleasantness, possibly reflecting that it came mostly with
negative contexts in our movie data set.

Altogether, these findings demonstrate that theoretically
meaningful clusters can be derived from our set of GRID features,
fully in accordance with emotional dimensions commonly
considered in neuroscience studies. This, in turn, further validates
our experimental paradigm by showing it could successfully elicit
different emotion categories with expected characteristics.

Underlying factors
For completeness and comparison with prior psychology research
(Fontaine et al. 2007), we also performed an exploratory factor
analysis to recover common dimensions underlying the different
GRID features (Fontaine et al. 2013). Table 1 summarizes these
6 factors and their relative loadings. Overall, about 47.8% of the
total variance was explained by these 6 factors. The GRID items
most strongly associated with these 6 factors suggest they may be
linked to pleasantness (21.6%), arousal (7.6%), expression (5.9%),
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novelty (5.0%), action tendency (4.6%), and social norms (3.1%),
respectively. This accords with previous findings obtained with
similar component models (Fontaine et al. 2007). These results
also confirm that emotional experiences involve more than 2
dimensions of valence and arousal when explored across a variety
of conditions with ecological validity.

Taken together, these behavioral data converge to indicate that
a comprehensive differentiation of emotions would require not
only to go beyond valence and arousal dimensions, but also to
better characterize the commonality and specificity of differ-
ent types of emotions. Accordingly, this also implies that map-
ping the neural underpinnings of emotion requires a multivari-
ate approach that transcends valence-arousal representations or
simple oppositions between discrete categories, as we propose
with the componential approach in the next section.

Decomposing emotions into functional core
processes and their neural substrates
To determine how component processes of emotion are organized
in relation to functional brain systems, we collected fMRI data
from our 20 healthy participants while they watched the 40
emotional video clips, and then analyzed BOLD time-courses to
identify patterns of brain activity corresponding to systematic
covariation in their ratings of specific componential features dur-
ing the movies (see Fig. 2). For each participant, we used ratings
of each of the 32 GRID features for each of the 119 salient emo-
tional events selected from these movies (total of 2,276 surveys,
including 72′ 832 rating scores), plus the HR and RR z-score values
for these events.

To decompose emotion responses into core functional pro-
cesses, we applied a multivariate technique, namely PLSC (Krish-
nan et al. 2011), enabling us to analyze covariance in 2 feature
spaces: (i) the multidimensional structure of emotion ratings
along all GRID items (CPM), and (ii) the multidimensional acti-
vation patterns across all brain voxels. PLSC identifies a set of
orthogonal LVs for each space that express maximum cross-
covariance and thus represent shared information in the 2 spaces
(i.e. behavior and brain). In other words, this method allows for
modeling the functional relationship between the coordinated
mobilization of multiple emotion features and corresponding
variations in neural activity.

After preprocessing fMRI data according to standard pipelines
and normalizing behavioral ratings to within-subject z-scores,
the PLSC analysis was applied to the whole sample from our 20
participants. Statistical significance of components (P-values) was
calculated using permutation tests, and z-scores reflecting reli-
ability of loadings (a.k.a., saliencies) were estimated using boot-
strap ratio. To determine the generalizability of the method and
overcome limited sample issues, a conservative bootstrap strategy
was taken to further probe for data robustness across individuals
whereby, at every bootstrap iteration, only 14 randomly selected
subjects were used (i.e. one-third of the sample was excluded),
and the final behavioral loadings at the full group-level were
then estimated as the average loadings across all bootstrap iter-
ations. The standard deviation of each loading was considered
as a measure of stability of the loadings across the different
subsets of subjects and hence provided an estimate for the robust-
ness/generalizability of our results (see Materials and Methods for
details). In addition, we also performed a K-fold cross-validation
which produced very similar results (see Supplementary Results,
Section B).

The PLSC analysis across all GRID items and physiology
measures revealed 6 significant LV with P < 0.01. These LVs

represent distinct combinations of behavioral features with
concomitant brain patterns. Importantly, please note that LVs
are defined in terms of both their component features and
associated neural activity. Figure 6 shows the loading profile
along all GRID and physiology features for each LV identified
here: LV1 (P < 0.001, 19.0%), LV2 (P < 0.001, 11.0%), LV3 (P < 0.001,
6.0%), LV4 (P < 0.001, 5.1%), LV5 (P < 0.01, 4.6%), and LV6 (P < 0.01,
3.4%); numbers in parenthesis indicate P-value and percentage of
covariance explained, respectively. Positive or negative loadings
of particular features reflect the relative presence or absence
of these features, respectively. Their weighted sum represents
a specific combination linked to a particular brain activation
pattern, whose expression characterizes a given functional core
process (FCP) underlying the generation of an emotion response.
All maps were thresholded at positive or negative saliency values
of >2.5 or < −2.5 (P < 0.01).

The dominant behavioral profile of LV1 shows higher weight-
ings for several features related to the appraisal of values with
motivational aspects and the valence dimension of the feeling
component. As illustrated in Fig. 6, positive ratings for this LV
reflect events with low/no unpleasantness, low/no incongruence
with standards, a desire to continue/not to stop, and feeling
good/not feeling bad (among others). On the brain side, the
voxel-wise saliency map of LV1 exhibits significant positive
weights (>2.5) in ventromedial prefrontal cortex (VMPFC), lateral
orbitofrontal cortex (OFC), central/lateral amygdala, and ventral
tegmental area (VTA), and significant negative weights (<−2.5) in
anterior and dorsal insula, mid-cingulate cortex, thalamus, basal
ganglia (caudate and putamen), dorsal amygdala and substantia
innominata, as well as medial parietal and lateral occipital areas
(Fig. 7).

The second latent variable (LV2) shows higher weightings on
items related to appraisals of unexpected event and detection of
changes (i.e. sudden and unpredictable, with brief emotion inten-
sity), a pattern that can be interpreted as novelty detection (Fig. 6).
The corresponding brain saliency maps show significant positive
weights bilaterally in dorsomedial prefrontal cortex (DMPFC) and
dorsolateral prefrontal cortex (DLPFC), inferior frontal gyrus (IFG),
posterior cingulate cortex (PCC), together with large effects in sen-
sory (auditory and visual) cortices, as well as smaller activation
clusters in dorsal amygdala, hippocampus, and parahippocampal
gyrus (PHG). Negative saliency weights are much weaker and
limited, involving only very small parts of anterior insula and
rostral anterior cingulate cortex (ACC; Fig. 7).

The third latent variable (LV3) loads mainly on expression-
related features (such as closing the eyes, pressing the lips, rais-
ing eyebrows) along with feeling features related to pleasant-
ness and arousal (warm, good, intense, and lasting experience),
which together might encode generally pleasurable sensation
and hedonic impact. This LV exhibits significant positive salien-
cies in widespread sensorimotor areas, including the primary
somatosensory and motor cortices, particularly over the central
fronto-parietal operculum (face area), but also SMA, preSMA,
dorsal ACC, posterior insula, left ventral pallidum, VTA, and brain-
stem (central pons). Negative saliencies were again weak, essen-
tially limited to the PCC, inferior parietal lobule (IPL), and a small
sector of VMPFC, which may constitute parts of the default mode
network (DMN; Raichle 2015).

The latent variable LV4 unfolds mainly on appraisal compo-
nents related to expectation and goal settings, as well as moti-
vated attention and congruence with norms, without any con-
sistent loadings related to feelings. These features may reflect
encoding of goals and intentions (of someone else in movies) or
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Fig. 6. Loadings of PLSC. Loadings of PLSC for GRID items (behavioral) and peripheral measures corresponding to the 6 significant LV (1–6), respectively,
interpreted as: valence, novelty, hedonic impact, goal monitoring, goal relevance, and avoidance. Each loading vector corresponds to 1 brain activity
map that is shown in Fig. 7. The blue error bars indicate the standard deviation for each value that reflects the reliability of the loading when apply
bootstrapping; however, because of very small variation, they are not very visible.
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Fig. 7. Brain saliency maps. Brain activity maps of relative saliencies corresponding to each of the 6 significant FCP, a.k.a. LV, obtained by the PLS analysis
of GRID ratings. The red spectrum accounts for positive saliencies above +2.5 and blue spectrum corresponds to negative saliencies below −2.5.

violations of expectations. At the brain level, LV4 is associated
with positive saliency weights predominating in STS and temporal
pole, as well as in DMPFC and precuneus, partly overlapping with
social cognition and theory-of-mind networks (Amodio and Frith
2016). There were also smaller clusters in the temporoparietal
junction, IFG, and pallidum, all parts of the ventral attention
orienting network (Corbetta and Shulman 2002). Widespread neg-
ative saliency weights were found in superior parietal cortex
(intraparietal sulcus), DLPFC, ACC, and posterior SMA, overlapping
with dorsal attention networks.

The next significant latent variable LV5 loads selectively on
appraisal of event relevance for someone else with some features
of physiology (warmth and lump in the throat) and feeling com-
ponents (high intensity but no valence). There is also a relative
lack/suppression of aggressive motivational tendencies (wanting
to attack or damage), which, altogether, may reflect a state of
prosocial concern or caring for others. The brain saliency map
reveals a strong positive correlation with areas of the DMN, partic-
ularly MPFC and PCC, but also smaller clusters in bilateral anterior
insula, inferior parietal lobe, caudate, and brainstem (possibly
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overlapping with locus coeruleus). There are no consistent neg-
ative weights.

Finally, the last significant latent variable LV6 loads on
antisocial features (e.g. incongruence with norms), attention
and approach/attack, but also some degree of pleasant feelings
(good or calm), which might relate to curiosity/interest and
elements of aggression or active defense. The corresponding
brain saliency map shows positive weights in the amygdala, VTA,
medial OFC/VMPFC and superior frontal gyrus (SFG), as well as
somatosensory areas and PCC (Fig. 7), whereas negative saliencies
were mainly found in the bilateral anterior insula, lateral OFC,
rostral ACC, and posterior visual areas (Fig. 7). A summary of
average saliency values across cortical areas for each LV is
provided in Supplementary Results, Section A, Supplementary
Table 3.

The 6 LVs also disclosed distinct patterns of loadings for
the peripheral physiology measures (Fig. 6, last 2 columns, dark
green). Both HR and RR exhibited negative weights for LVs 5 and 6,
whereas LV2 was associated with negative weights and LV4 with
positive weights of HR alone (not RR). Both measures were only
weakly modulated by LVs 1 and 3. These physiology patterns seem
compatible with psychological processes putatively associated
with each LV (Harrison et al. 2013). However, similar LVs were
obtained when repeating our PLSC analysis without physiological
measures or when orthogonalizing physiological measures to the
motion parameters, suggesting the latter did not make a major
contribution to the results.

Taken together, the joint interpretation of behavioral loadings
and their associated brain activation patterns points to distinct
FCP that were mobilized in a coordinated manner and constituted
the major “building blocks” of the various emotions elicited by
movies. The robustness of these patterns across different indi-
viduals was backed up by our iterative bootstrap procedure (see
Materials and Methods) and cross-validation (see Supplementary
Results, Section B).

In order to further investigate the functional role of LVs iden-
tified above (Fig. 6) and examine their similarity with discrete
emotion categories, as rated by participants for the same event (as
in Fig. 5), we performed a correlation analysis (Pearson coefficient)
to relate each discrete emotion profile to the 6 different LVs. This
analysis highlighted that each of the different LVs identified by
our data-driven PLSC analysis contributed to different emotions,
but to variable degrees, and that they generally held meaningful
relationships with discrete categorical labels (see Supplementary
Results, Section B).

Comparison with classic emotion models
Finally, we asked how our componential model compared with
other approaches used in previous brain imaging studies which
typically characterize emotions in terms of valence and arousal
dimensions. To do so, we applied the same PLSC approach as above
but now using the feeling component alone, which encompasses
features corresponding to valence and arousal ratings as
employed in many studies (see Table 1). Remarkably, this feeling-
based analysis revealed that only 2 significant LVs emerged to
account for the observed configuration of behavioral and neural
data (see Supplementary Results, Section C). Behaviorally, 1 LV
mainly encoded a valence dimension (with high but opposite
loadings for feeling “good” and “feeling bad”) and the other
encoded arousal (with high loadings on “intense” and “long-
lasting” emotions). Neurally, corresponding brain saliencies were
fully consistent with previous findings in the literature for the 2
classic dimensions of valence and arousal (Knutson et al. 2014;
Meaux and Vuilleumier 2015), with predominant modulations

of the first LV in VMPFC, amygdala, VTA (positive loadings) as
well as insula, dorsal ACC, and thalamus (negative loadings),
and modulations of the second LV in insula, rostral ACC, and
brainstem (positive loadings). However, these 2 LVs showed much
less power in explaining the shared brain–behavior covariance
than our full componential model (see Supplementary Result,
Section C for details).

Discussion
Our study demonstrates a new data-driven approach to uncover
the neural substrates of emotion without imposing any a priori or
pre-defined categories, dimensions, or stimulus classes. Instead,
our experimental design relies on a previously defined theoretical
model (CPM) and established concepts of emotion in psychology
(GRID features) that go beyond dimensional or categorical models.
Our results reveal at least 6 distinct FCP, engaged in response to
emotional experiences across a large set of naturalistic movies,
and characterized as LV (1–6) linking particular combinations of
emotion features with particular patterns of brain-wide activity.
The 6 FCPs identified here appear to encode appraisal of value,
novelty, hedonic experience, goal monitoring, caring for others,
and approach tendency/curiosity. Their neuroanatomical under-
pinnings involve distributed brain networks, including regions
consistently implicated in emotion processing (e.g. amygdala,
VMPFC, insula, VTA) and also other regions (e.g. fronto-parietal
areas associated with sensorimotor function, social cognition,
attentional control), which accord well with appraisal theories
and componential models of emotion (Scherer 2009a; Fontaine
et al. 2013).

Importantly, in this framework, each FCP contributes to differ-
ent emotion types independently and to different degrees; hence,
1 particular FCP can be mobilized in more than 1 emotion as
illustrated by strong correlations observed between individual
FCPs and specific discrete emotions. We also found that some
of the FCPs have higher loadings on 1 particular component (e.g.
appraisal or feeling) although most include mixed features that
do not purely correspond to 1 unique component as traditionally
distinguished in CPM (see Fig. 1). This may reflect a limitation
of subjective ratings that fail to capture pure componential pro-
cesses, or more fundamental principles of brain function whereby
any cognitive or affective task emerge from the interaction of
multiple neural systems.

The FCP identified with the current methodology bear several
similarities with basic dimensions of “core affect” considered in
past research (such as valence or arousal; Russell 2003; Fontaine
et al. 2007), but also differ in important ways that offer novel
insights into the componential nature of emotions. FCP-1 clearly
resembles a bipolar valence dimension, often highlighted as the
dominant aspect of emotional experience across many studies
(Russell 2003). Here FCP-1-related bipolar elements of motiva-
tional values and feelings with brain regions implicated in affec-
tive evaluative processes (such as amygdala and VTA) and affect-
based decision-making (such as VMPFC, OFC, and insula). Mobi-
lization of this network is tightly associated with positive versus
negative emotion categories, and thus consistent with valence
being a major constituent of core affect (Russell and Barrett 1999).
However, an involvement of action features (e.g. urge to stop) and
brain areas (e.g. VMPFC) associated with motivation and decision-
making, but low loading on feeling intensity, suggest that FCP-
1 may relate to the theoretical construct of “wanting” (or not
wanting; Berridge 2009), rather than to the hedonic experience of
“liking” (Berridge 2009).

In contrast, FCP-3 is also characterized by elements of
pleasantness, but with high intensity feeling features and motor
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expression features, suggesting a more direct implication in
hedonic experience, reminiscent of the “liking” rather than
“wanting” aspect of valence (Berridge 2009). Accordingly, this FCP
shows strong positive correlation with joy and love, but negative
correlation with sadness and anxiety, like FCP-1 (Berridge 2009).
Neural activation in regions overlapping with motor face areas
in operculum and preSMA would be consistent with networks
controlling smiling and laughing (Caruana et al. 2015). Electrical
stimulation of medial premotor cortices may elicit both laughter
and mirth (Caruana et al. 2015), and covert activation of zygomatic
muscles is a reliable marker of positive valence (Delplanque et al.
2009). Unfortunately, because of technical limitations, facial EMG
was not collected in the MRI scanner. Our findings of 2 distinct
networks (FCP-1 and FCP-3) correlating with valence features
converge with growing evidence that this dimension may not
have a unique psychological or neural underpinning (Kron et al.
2015; Berridge 2019). Animal research suggests that hedonic
aspects of “liking” are represented in local “hotspots” of ventral
striatum (accumbens and pallidum), whereas motivational
aspects of “wanting” are encoded in more distributed sectors of
dopamine circuits (Berridge 2009). Here we observed differential
modulations of VTA and basal ganglia in both FCP-1 and FCP-3,
but no distinctive activation patterns within the striatum with
our current resolution and threshold. Nevertheless, predominant
increases in VMPCF and amygdala for motivational features but
in insula and sensorimotor operculum for pleasurable features
accord well with a differential recruitment of these areas during
the choice or expectation of rewards and the consumption of
rewards, respectively (O’Doherty et al. 2002; Small et al. 2008).

Another core process, FCP-2, appears to selectively encode
novelty, with several memory-related areas, sensory areas, and
prefrontal areas. The amygdala is also engaged, in keeping with
its role in novelty detection (Schwartz et al. 2003). This FCP is
highly correlated with ratings of surprise and may constitute
a key substrate for this non-valenced emotion. A prominence
of novelty neatly accords with theories of emotion that place
it as a frequent dimension after valence and arousal (Fontaine
et al. 2007), or an essential appraisal initiating emotion episodes
(Scherer 2009a). Our data suggest that novelty detection is not
only an important constituent of emotion but also critically relies
on memory functions evaluating contextual information. Notably,
however, FCP-2 is low on action features and feeling intensity,
suggesting it does not reflect a dimension of arousal or alertness.

The FCP-4 bore similarities with FCP-2 but with higher load-
ings on appraisals of goals, expectations, and attention, which
covaries with activation of brain networks mediating social cog-
nition and attentional reorienting mechanisms (Corbetta and
Shulman 2002). It also correlates with ratings of surprise and
anger. This pattern may reflect more complex responses to goal
interruption or shifting, based on representations of intentions
and action-outcome expectations. This accords with a previous
fMRI study using verbal scenarios (Skerry and Saxe 2015) where
appraisal features such as goal consistency, intention, or agency
accounted for discriminative neural signatures in theory-of-mind
networks, better than valence or arousal dimensions. More gen-
erally, these data further support appraisal theories according to
which goal conduciveness and goal obstruction are key elements
of emotion processing (Scherer 2009a).

FCP-5 is remarkable as it involves appraisal of goals (for some-
one else) with a striking mixture of high intensity feelings, no clear
valence polarity, and prominent physiology features, particularly
lump in the throat and warmth. This constellation is reminiscent
of the experience of “being moved,” an emotional response whose

nature and even existence is debated in the psychology literature
(Zickfeld et al. 2019). Recent conceptual analysis in philosophy
(Cova and Deonna 2014), however, argued that the state of “being
moved” may hold all necessary criteria to be considered a “basic”
emotion, similar to traditional kinds such as fear, anger, or hap-
piness (Ekman 1999). Moreover, FCP-5 correlates with 2 discrete
emotions of opposite valence, love and sadness, in agreement
with situations typically associated with reports of “being moved”
(e.g. attending a concert given by one’s child or goodbye to a
soldier leaving for war). To our knowledge, this emotion has never
been studied in neuroscience. Here, we find not only that ele-
ments of this experience emerged as a specific FCP, but also, they
distinctively mobilized midline brain areas overlapping with the
DMN. Intriguingly, DMN activity is associated with introspective
processing as well as access to self-related, affectively relevant
information in memory (D’Argembeau and Van der Linden 2004)
converging with the claim that “being moved” may reflect the
activation of core self-values (Cova and Deonna 2014) and our
interpretation that FCP-5 may encode social concern or “caring
for others” (Helm 2010).

Finally, FCP-6 has marginal significance, but shows a distinct
pattern with appraisal features related to antisocial informa-
tion and motivational features of active approach, attack, and
attention, positively correlated with discrete ratings of fear and
disgust. A bipolar activation map with increase in VTA, VMPFC,
and sensorimotor areas, but decrease in anterior insula and ros-
tral ACC, could putatively fit well with opponent processes of
approach/curiosity versus avoidance/aversion, another common
dimension in classic emotion theories (Sander et al. 2005).

Notably, the reliability of these factors across individuals was
verified via a bootstrap approach in which different subsets of
subjects (two-thirds of our sample) were randomly selected at
every iteration of resampling, allowing us to test for the robust-
ness/reproducibility of the LVs across a different group of subjects
(remaining third of our sample). These bootstrap results demon-
strated a very small variation for each factor, which implies a
good reliability of the different LVs and strong generalizability
across subjects. Therefore, despite natural variability in affective
experience across people, our results suggest that the 6 different
FCPs identified here were consistently present in different subsets
of participants.

While our study provides several novel insights concerning the
functional componential organization of emotions and their neu-
ral underpinnings, built on well-established theorizing (Scherer
2009a), it is not without limitations. As our approach to define
LVs (in both feature and brain space) is purely data driven, our
interpretation of FCPs necessarily implies post hoc speculations
based on extant knowledge and previous studies. This is not
without a risk of reverse inferences (Poldrack 2006), although
here brain activation patterns were confronted with pre-defined
behavioral features and concepts derived from precise theoretical
hypothesis in psychology (Fontaine et al. 2013). Moreover, our
findings appear consistent with other data-driven meta-analysis
(Kober et al. 2008; Lindquist et al. 2012; Wager et al. 2015), but
go beyond usual MVPA-based approaches with pre-defined cat-
egories or dimensions that do not readily account for the rich
variety but also similarity between emotions. The current data
therefore accord with theoretical accounts that argue against a
modular and fixed organization of emotions but emphasize the
role of interactive appraisal mechanisms (Scherer 2001; Sander
et al. 2005) and contextual factors in the psychological construc-
tion of an emotional experience (Barrett 2017b). However, our
work extends this framework by delineating specific functional
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components and corresponding brain networks engaged across
a range of emotion-eliciting situations, rather than linking emo-
tions to general conceptual categorization processes operating on
interoceptive and exteroceptive information that generate “core
affect” signals. Our study also goes beyond previous neuroimaging
work that provided support to multi-componential organization
of emotion networks based on post hoc meta-analysis (Kober et al.
2008; Wager et al. 2015), by designing our experimental paradigm
and analysis based on a set of pre-defined, theoretically driven
descriptors of specific components (including several appraisal
indices).

Another potential limitation of the current study is that our 6
FCPs were derived from a limited data set (containing 40 movies)
that may not embrace the whole emotion spectrum. In any case,
to the best of our knowledge, our stimulus set is still much larger
than any other standard neuroimaging studies in this field. Fur-
thermore, we cover a wide range of features previously validated
across a variety of emotional responses (Fontaine et al. 2013),
and surmise that similar FCPs would occur in other emotions not
elicited here (perhaps combined with additional networks).

In addition, emotions elicited by movies might most often
be vicarious, in that events are not directly happening to the
viewer in the real world, which may limit the generalization of
our results to first-person emotions and highlights the need for
using more immersive paradigms in future research to elicit first-
person emotions (e.g. using games or virtual reality). However,
such limitations appear even more severe in past research using
pictorial stimuli such as faces or scenes. Naturalistic elicitation of
emotions also implied that participants were not self-monitoring
and it is therefore hard to measure their level of attendance
to each video clip. However, during debriefing, all participants
admitted that they found all clips engaging and online monitoring
through eyetracker recordings ensured they stayed awake with
eyes open and looking at the screen. Also, we used a single HRF
function for every emotional event in movie clips to model the
BOLD signal, which is a standard practice for fMRI studies but
comes with potential limitations such as neglecting carry-over,
habituation, or sensitization effects. However, this should apply
equally to all emotion features and would limit our analysis
sensitivity rather than create spurious results. Moreover, our anal-
yses were performed over several hours of experiment from 20
participants and the total amount of both neural and behavioral
data is larger longer than most precious fMRI studies. In spite of
this and statistical tests confirming the reliability of results, it
would be insightful to run similar analyses over a larger pool of
participants and/or in a different context. Running similar studies
with higher temporal resolution could also help to shed light on
potential causalities in these processes.

We also note that we found no component uniquely associated
with peripheral physiology changes during emotion events. In our
fMRI analysis, we chose not to include physiology parameters
as nuisance regressors but only standard head motion-related
confounds, in order to maximize our sensitivity for detecting
concomitant brain patterns. However, this might also increase
the risk of spurious neural signals, although we presume this
is unlikely given the lack of consistent loading associated with
RR or HR in our analysis, and the lack of any systematic
correlation between head motion and physiology parameters
(see Materials and Methods). Nevertheless, there might be some
aspects of noise stemmed from HR (because of its actual
higher frequency than the fMRI images) that may not have
been accounted for, therefore additional research is required
to pinpoint brain processes governing peripheral physiology

effects while carefully ruling out noise confounds in fMRI signals.
Moreover, previous work (Menétrey et al. 2022) suggested that
peripheral physiology changes induced by emotion can be reliably
predicted by other GRID components, which might explain that
physiology indices showed no distinctive patterns overall in the
current study.

Lastly, a striking aspect of our results is the absence of a
FCP linking behavioral features and brain networks correspond-
ing to the construct of arousal, despite this being the second
major ingredient of “core affect” in classic theories of emotions
(Russell and Barrett 1999). This might stem from insensitive fea-
tures related to arousal and limited measures of physiological
responses, but this seems unlikely given our control analysis
based in feeling items that revealed 2 LVs consistent with valence
and arousal (at both the behavioral and neural levels). Alterna-
tively, our findings may support the notion that arousal does not
constitute a single well-defined functional process, but encom-
passes variable aspects of affect, vigilance, and autonomous ner-
vous functions (Satpute et al. 2019). Arousal may therefore emerge
as a single dimension only when using subjective affect ratings
and ignoring more comprehensive appraisal components. More-
over, our control analysis based on feeling items was found to
account for less variance in the data than our full componential
model, even though it could neatly replicate previous work on
valence and arousal, indicating that other component features
provide additional and discriminative information to characterize
the underlying functional organization of emotions across various
situations.

In sum, our study offers a new approach to study human emo-
tions using both theory-based and empirically validated param-
eters without pre-defined categories or dimensions. Our results
provide new insights into the functional structure of affective
processes and their relation to particular brain substrates, adding
support to componential models (such as the CPM or construc-
tionist framework) and shedding light on neglected emotions such
as “being moved.” In doing so, our work goes some way toward elu-
cidating the constitutive ingredients of emotions and linking them
to network accounts of brain function, using data-driven method-
ology. Nevertheless, we acknowledge that further studies are nec-
essary to verify these findings, confirm the replicability in differ-
ent contexts, and determine any causality among components.
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