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It has been hypothesized that resting state networks (RSNs), extracted from resting state functional magnetic res- 

onance imaging (rsfMRI), likely display unique temporal complexity fingerprints, quantified by their multiscale 

entropy patterns ( McDonough and Nashiro, 2014 ). This is a hypothesis with a potential capacity for developing 

digital biomarkers of normal brain function, as well as pathological brain dysfunction. Nevertheless, a limitation 

of McDonough and Nashiro (2014) was that rsfMRI data from only 20 healthy individuals was used for the anal- 

ysis. To validate this hypothesis in a larger cohort, we used rsfMRI datasets of 987 healthy young adults from the 

Human Connectome Project (HCP), aged 22-35, each with four 14.4-min rsfMRI recordings and parcellated into 

379 brain regions. We quantified multiscale entropy of rsfMRI time series averaged at different cortical and sub- 

cortical regions. We performed effect-size analysis on the data in 8 RSNs. Given that the morphology of multiscale 

entropy is affected by the choice of its tolerance parameter ( 𝑟 ) and embedding dimension ( 𝑚 ), we repeated the 

analyses at multiple values of 𝑟 and 𝑚 including the values used in McDonough and Nashiro (2014) . Our results 

reinforced high temporal complexity in the default mode and frontoparietal networks. Lowest temporal complex- 

ity was observed in the subcortical areas and limbic system. We investigated the effect of temporal resolution 

(determined by the repetition time 𝑇 𝑅 ) after downsampling of rsfMRI time series at two rates. At a low temporal 

resolution, we observed increased entropy and variance across datasets. Test-retest analysis showed that findings 

were likely reproducible across individuals over four rsfMRI runs, especially when the tolerance parameter 𝑟 is 

equal to 0.5. The results confirmed that the relationship between functional brain connectivity strengths and 

rsfMRI temporal complexity changes over time scales. Finally, a non-random correlation was observed between 

temporal complexity of RSNs and fluid intelligence suggesting that complex dynamics of the human brain is an 

important attribute of high-level brain function. 
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. Introduction 

The human brain is a complex hierarchy of modules that are dy-

amically interacting with each other at micro, meso and macro scales

 Bassett and Bullmore, 2006; Park and Friston, 2013 ). Anatomically

istinct, but functionally connected regions of the cortex that simul-

aneously fluctuate over time are referred to as resting state networks
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 RSNs ). RSNs are intrinsic organizations of functional connectivity in

he brain that are communicating with each other even in the absence

f overt cognitive tasks ( Beckmann et al., 2005; Biswal et al., 1995;

ox et al., 2005 ). These functional brain networks can be derived from

esting state functional magnetic resonance imaging (rsfMRI), and are

upporting a variety of sensory, cognitive and behavioural functions
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Fig. 1. Multiscale entropy patterns of 4 RSNs (default mode network or DMN, 

central executive network or CON, left frontoparietal network or LFN, right 

frontoparietal network or RFN) in 20 subjects reported in McDonough and 

Nashiro (2014) . The image, taken from McDonough and Nashiro (2014) , is pub- 

lished under theterms of Creative Commons Attribution Licence (CC BY), allow- 

ing for reproduction. 
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unctionality of RSNs contributes to a range of brain diseases including

pilepsy ( Gao et al., 2018 ), Alzheimer’s disease ( Brown et al., 2018 ),

utism ( Cherkassky et al., 2006 ), depression ( Greicius et al., 2007 ) and

chizophrenia ( Ohta et al., 2018 ). Although alterations of RSNs have

een subject to numerous studies, characterization of their temporal com-

lexity remains an open question in the brain sciences ( Bassett and Gaz-

aniga, 2011; Bassett et al., 2012; McDonough and Nashiro, 2014; Mi š i ć

t al., 2011; Pedersen et al., 2017; Sokunbi et al., 2014; Thompson et al.,

017; Wang et al., 2018a; 2018b ). In the context of this study, temporal

omplexity is referred to as a balanced dynamical behaviour between

ure regularity and complete irregularity in the time domain. This is

 significant challenge in modern neuroscience because temporal com-

lexity may provide a quantitative view of brain function at the phe-

omenological level which in turn, may lead to the development of more

fficient diagnostic and prognostic markers of brain diseases. 

Functional co-activations associated with RSNs fluctuate over time

 Chang and Glover, 2010; Liu and Duyn, 2013 ). Until recently, most

tudies would treat functional brain connectivity as a static entity. The

mergence of advanced neuroimaging techniques such as fast rsfMRI

ave opened up a new avenue for studying the dynamics of func-

ional connectivity ( Preti et al., 2017 ). There is now a consensus that

his dynamical behaviour resides between temporal order and disorder

 Goldberger et al., 1990; Goldberger, 1996; Lynn and Bassett, 2018 ).

emporal complexity of brain dynamics arises from interactions across

umerous sub-components in the brain ( McDonough and Nashiro, 2014 )

nd can be affected by internal and/or external factors such as sen-

ory inputs, attention and drowsiness ( Shine et al., 2019 ). Conceptu-

lization of this complexity includes but not limited to, self-similarity of

EG micro-state sequences ( Britz et al., 2010; Van De Ville et al., 2010 ),

ynamics of microscopic and mesoscopic neural networks in the brain

 Bassett and Bullmore, 2006; Valverde et al., 2015 ) and neuronal oscil-

ations associated with different brain regions ( Hawrylycz et al., 2012 ).

Several attempts have been made to characterize the temporal

omplexity of RSNs using rsfMRI data including time-frequency anal-

sis ( Chang and Glover, 2010 ), independent components analysis

 Allen et al., 2012 ), point process analysis ( Tagliazucchi et al., 2012 ),

liding window analysis ( Zalesky et al., 2014 ), phase synchrony analysis

 Omidvarnia et al., 2016; Pedersen et al., 2018 ), auto-regressive mod-

lling ( Liégeois et al., 2019 ) and nonlinear analysis ( McDonough and

ashiro, 2014; McIntosh et al., 2014; 2008; Pedersen et al., 2017 ) (see

reti et al., 2017 for a detailed review). An important form of temporal

omplexity in brain function can be observed through multiscale entropy

nalysis of RSN dynamics ( McDonough and Nashiro, 2014 ). Multiscale

ntropy ( Costa and Goldberger, 2015; Costa et al., 2002 ) quantifies the

ate of generation of new information in a dynamical process by com-

uting sample entropy ( Richman and Moorman, 2000 ) over multiple

emporal scales. Each scale provides a specific time resolution through

oarse-graining of the input signals. For example, random signals such

s white noise have high sample entropy values at fine scales (i.e., fast

uctuations) which drop gradually in value at large scales (i.e., slow

uctuations). On the other hand, complex signals such as random walk

r biosignals generate a more consistent sample entropy curve over dif-

erent time scales, due to repeating information-bearing patterns across

ultiple time resolutions ( Costa and Goldberger, 2015; Costa et al.,

002; Maxim et al., 2005; Wang et al., 2018a ). 

In this paper, we investigated if the dynamics of RSNs can be dif-

erentiated based on their temporal complexity, quantified via multi-

cale entropy. To this end, we aimed to validate the existence of mul-

iscale entropy fingerprints in rsfMRI-based RSNs. This hypothesis was

ested in McDonough and Nashiro (2014) using rsfMRI datasets of 20

ealthy subjects from the Human Connectome Project (HCP) ( Van Es-

en et al., 2012 ) via multiscale entropy analysis in four RSNs: default

ode, central executive, as well as the left and right frontoparietal net-

orks ( Fig. 1 ). Given the capacity of RSN complexity as an imaging-

ased marker of brain function in health and disease, we aimed to in-
2 
estigate this hypothesis in a larger sample cohort of 987 rsfMRI datasets

rom the HCP database. We included 8 RSNs in this study, with a par-

icular focus on to what extent rsfMRI results are dependent on the tol-

rance parameter 𝑟, embedding dimension 𝑚 and temporal resolution of

sfMRI in multiscale entropy analysis. We also conduced test-retest and

ffect-size analyses to delineate the reproducibility of RSN complexity

cross multiple rsfMRI scans and over subjects. We hypothesized that

emporal complexity of brain function is related to higher order cogni-

ive processes such as fluid intelligence or people’s capacity to reason

nd think flexibly. Lastly, we looked into the potential link between

unctional brain connectivity and temporal complexity of RSNs at dif-

erent time scales. 

. Materials and methods 

.1. RsfMRI data, parcellation masks and preprocessing 

We used a subset of the HCP database ( Van Essen et al., 2012 ) includ-

ng 987 rsfMRI datasets ( 𝑁 𝑠𝑢𝑏𝑗 = 987). Each subject participated in two

eparate rsfMRI sessions on two different days, with two acquisitions

er day, i.e., left to right and right to left slicings. We refer to these

ecordings as four fMRI runs throughout this paper. Each run was of

ength 14.4 minutes (or 1200 time points) with a voxel size of 2 × 2 × 2
illimeters and the repetition time ( 𝑇 𝑅 ) of 720 ms in a 3T scanner. The

ollowing preprocessing steps were applied on each dataset: 1) echo pla-

ar imaging gradient distortion correction, 2) motion correction, 3) field

ias correction, 4) spatial transformation, 5) normalization into a com-

on Montreal Neurological Institute space ( Glasser et al., 2013 ) and 6)

rtefact removal using ICA-FIX ( Salimi-Khorshidi et al., 2014 ). A parcel-

ation mask ( Glasser et al., 2013 ) was used to parcellate the gey matter

nto 360 cortical and 19 subcortical regions of interest ( 𝑁 𝑅𝑂𝐼 = 379). The

reprocessed datasets are publicly available at the HCP website under

n Open Access Data plan agreement. 

.2. Multiscale entropy analysis 

While there are several definitions of signal entropy in the literature,

ur focus here is on multiscale entropy analysis ( Costa and Goldberger,

015; Costa et al., 2002 ). This technique is an extended version of sample

ntropy ( Richman and Moorman, 2000 ) over multiple time scales. 

https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
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.2.1. Sample entropy 

Sample entropy is a signal complexity measure which treats each

hort piece of an input signal 𝐱 as a template to search for any neighbour-

ng templates throughout the entire length of the signal. A template 𝐗 

𝑚 
𝑖 

s defined as 1 : 

 

𝑚 
𝑖 
= { 𝑥 𝑖 , 𝑥 𝑖 +1 , ..., 𝑥 𝑖 + 𝑚 −1 } , 𝑖 = 1 , ..., 𝑁 − 𝑚 + 1 . (1)

here 𝑁 is the number of time points in 𝐱 and 𝑚 is the embedding dimen-

ion parameter. Two templates 𝐗 

𝑚 
𝑖 

and 𝐗 

𝑚 
𝑗 

are considered as neighbours

f their Chebyshev distance 𝑑( 𝐗 

𝑚 
𝑖 
, 𝐗 

𝑚 
𝑗 
) is less than a tolerance parameter

 . It leads to an 𝑟 -neighbourhood conditional probability function 𝐶 

𝑚 
𝑖 
( 𝑟 )

or any vector 𝐗 

𝑚 
𝑖 

in the 𝑚 -dimensional reconstructed phase space: 

 

𝑚 
𝑖 
( 𝑟 ) = 

1 
𝑁 − 𝑚 + 1 

𝐵 

𝑚 
𝑖 
( 𝑟 ) , 𝑖 = 1 , ..., 𝑁 − 𝑚 + 1 , (2)

here 𝐵 

𝑚 
𝑖 
( 𝑟 ) is given by: 

 

𝑚 
𝑖 
( 𝑟 ) = 

𝑁− 𝑚 ∑
𝑗=1 

Ψ( 𝑟 − 𝑑( 𝐗 

𝑚 
𝑖 
, 𝐗 

𝑚 
𝑗 
)) , (3)

here Ψ( . ) is the Heaviside function, defined as: 

( 𝑎 ) = 

{ 

0 𝑎 < 0 
1 𝑎 ≥ 0 . (4)

he Chebyshev distance 𝑑 is defined as: 

( 𝐗 

𝑚 
𝑖 
, 𝐗 

𝑚 
𝑗 
) ∶= max 

𝑘 
( |𝑥 𝑖 + 𝑘 − 𝑥 𝑗+ 𝑘 |, 𝑘 = 0 , ..., 𝑚 − 1) . (5)

ample entropy is then given by: 

𝑎𝑚𝑝𝐸𝑛 ( 𝐱, 𝑚, 𝑟 ) = lim 

𝑁→∞
𝑙𝑛 

 

𝑟 
𝑚 

 

𝑟 
𝑚 +1 

, (6)

here  

𝑟 
𝑚 

is the average of 𝐵 

𝑚 
𝑖 
( 𝑟 ) over all templates: 

 

𝑟 
𝑚 
= 

1 
𝑁 − 𝑚 

𝑁− 𝑚 ∑
𝑖 =1 

𝐵 

𝑚 
𝑖 
( 𝑟 ) . (7)

ince 𝑑( 𝐗 

𝑚 
𝑖 
, 𝐗 

𝑚 
𝑗 
) is always smaller than or equal to 𝑑( 𝐗 

𝑚 +1 
𝑖 

, 𝐗 

𝑚 +1 
𝑗 

) ,  

𝑟 
𝑚 +1

ill always take smaller or equal values than  

𝑟 
𝑚 

. Therefore, sample en-

ropy is always non-negative. The tolerance parameter 𝑟 plays a central

ole in any sample entropy analysis, because it defines the probability

f neighbourhood (i.e., similarity) between two templates in the recon-

tructed phase space. It is important to multiply 𝑟 by the standard de-

iation of 𝐱 to account for amplitude variations across different signals

 Richman and Moorman, 2000 ). In this study, we used the embedding

imension of 𝑚 = 2 and the tolerance parameter of 𝑟 = 0.5 for sample en-

ropy analysis, as adapted in McDonough and Nashiro (2014) . In addi-

ion, we used the tolerance parameter of 𝑟 = 0.15, a widely used option

n the literature (see Niu et al., 2018; Yang et al., 2011 as examples), as

ell as a range of embedding dimensions from 𝑚 = 3 to 𝑚 = 10. 

.2.2. Multiscale entropy 

Multiscale entropy extracts sample entropy after coarse-graining of

he input signal 𝐱 at a range of time scales 𝜏 ( Costa et al., 2002 ). A

oarse-grained vector 𝐱 𝜏 = { 𝑥 𝜏
𝑖 
} is defined as: 

 

𝜏
𝑖 
= 

1 
𝜏

𝑖𝜏∑
𝑘 =( 𝑖 −1) 𝜏+1 

𝑥 𝑘 , 𝜏 = 1 , 2 , ..., 𝜏𝑚𝑎𝑥 , 𝑖 = 1 , ..., [ 𝑁∕ 𝜏] , (8)

here 𝐱 1 = 𝐱. Following ( McDonough and Nashiro, 2014 ), we set 𝜏𝑚𝑎𝑥 
o 25. At the group level, we averaged the multiscale entropy curves

ver subjects and calculated the standard deviation at each scale. 
1 In all equations, scalar variables are in normal font, while vector variables 

re in bold. 

w  

S

3 
.2.3. Complexity index 

To reduce the dimensionality of multiscale entropy patterns to a sin-

le value, a complexity index is defined for the i th RSN as the area under

ach multiscale entropy curve over all scales, divided by the maximum

umber of scales (i.e., 𝜏𝑚𝑎𝑥 ) ( Weng et al., 2015 ): 

 𝑖 = 

1 
𝜏𝑚𝑎𝑥 ∫

𝜏𝑚𝑎𝑥 

1 
𝑆𝑎𝑚𝑝𝐸𝑛 ( 𝐱 𝜏

𝑖 
, 𝑚, 𝑟 ) 𝑑𝜏. (9)

.2.4. The role of rsfMRI temporal resolution 

Given the relatively short repetition time of rsfMRI time series in the

CP database ( 𝑇 𝑅 = 0.72 s), we investigated to what extent the observed

omplex dynamics of RSNs is sensitive to rsfMRI temporal resolution.

his is an important issue to check, because 𝑇 𝑅 values longer than 1 s

re common across research and clinical centres. We resembled longer

 𝑅 ’s in our datasets by downsampling of the rsfMRI time series in the

CP database. To this end, we calculated the complexity indices of RSNs

fter downsampling of the rsfMRI time series at the rates of 2 and 4, re-

embling the repetition times of 𝑇 𝑅 = 1.44 s and 𝑇 𝑅 = 2.88 s, respectively.

.2.5. Effect size analysis using the Hedges’ 𝑔 measure 

We quantified the difference between complex dynamics of RSNs by

air-wise effect size analysis of the complexity index distributions at

hree temporal resolutions (i.e., original 𝑇 𝑅 of 0.72 s and two downsam-

ling rates) as well as multiple combinations of the multiscale entropy

arameters (i.e., 𝑟 = 0.15, 0.5 and 𝑚 = 2 to 10). To this end, we used the

edges’ 𝑔 𝑖,𝑗 statistic, defined as ( Hedges, 1981 ): 

 𝑖,𝑗 = 

𝑀 𝑖 − 𝑀 𝑗 

𝜎𝑖,𝑗 
, (10)

here 𝑀 𝑖 and 𝑀 𝑗 are the group mean complexity indices of the 𝑖 th and
th RSNs, respectively, and 𝜎𝑖,𝑗 is the squared mean of the associated

tandard deviations computed as: 

𝑖,𝑗 = 

√ 

𝜎2 
𝑖 
+ 𝜎2 

𝑗 

2 
. (11)

he confidence interval and 𝑝 -value of the Hedges’ 𝑔 measures were cal-

ulated through bootstrapping (2000 random samplings of the original

ime series with replacement) 2 . 

.2.6. Test-retest analysis using the intra-class correlation coefficient 

In order to investigate the reproducibility of multiscale entropy

atterns extracted from RSNs at different temporal resolutions, we

omputed intra-class correlation coefficient of sample entropy values

t single time scales and over four rsfMRI scans ( 𝑁 𝑟𝑢𝑛 = 4). Following

 Hodkinson et al., 2013 ), we chose the third intra-class correlation coef-

cient measure defined in Shrout and Fleiss (1979) for test-retest anal-

sis as: 

 𝐶𝐶 𝑖 ( 𝜏) = 

𝐵𝑀 𝑆 𝑖 ( 𝜏) − 𝐸𝑀𝑆 𝑖 ( 𝜏) 
𝐵𝑀 𝑆 𝑖 ( 𝜏) + ( 𝑁 𝑟𝑢𝑛 − 1) 𝐸𝑀𝑆 𝑖 ( 𝜏) 

, (12)

here 𝐵𝑀𝑆 𝑖 ( 𝜏) and 𝐸𝑀𝑆 𝑖 ( 𝜏) are the between-subjects mean square and

he error mean square of sample entropy values, respectively, for the 𝑖 th 

SN at the time scale 𝜏. We considered the intra-class correlation coef-

cient values below 0.4 as poor reliability, between 0.4 and 0.6 as fair

eliability and between 0.6 and 0.8 as good reliability ( Hodkinson et al.,

013 ). 

.3. Temporal complexity of RSNs and cognition 

We also tested whether temporal complexity of rsfMRI is re-

ated to higher order cognition. For each subject ( 𝑁 𝑠𝑢𝑏𝑗 = 987),

e selected five well-validated domain-specific behavioural variables
2 The effect size analysis toolbox associated with Hentschke and 

tüttgen (2011) is available at the MATLAB File Exchange website. 

https://au.mathworks.com/matlabcentral/fileexchange/32398-hhentschke-measures-of-effect-size-toolbox
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 𝑁 𝑏𝑒ℎ = 5) involved in higher order cognition; i ) the Eriksen flanker task

 Flanker_Unadj - measuring response inhibition and task switching); ii )

he Wisconsin Card Sorting Test ( CardSort_Unadj - measuring cognitive

exibility); iii ) the N-back task ( WM_Task_acc - measuring working mem-

ry performance); iv ) the Ravens task ( PMAT24_A_CR - measuring fluid

ntelligence); and v ) the relational task ( Relational_Task_Acc - measuring

lanning and reasoning abilities). See Barch et al. (2013) , for full in-

ormation about behavioural variables included in the HCP. We defined

 multiple linear regression model with 𝑁 𝑏𝑒ℎ independent variables as

ollows: 

̂
 𝑖 = 𝛽𝑖 (0) 𝟏 + 𝛽𝑖 (1) 𝐛 1 + ... + 𝛽𝑖 ( 𝑁 𝑏𝑒ℎ ) 𝐛 𝑁 𝑏𝑒ℎ 

, (13)

here 𝟏 is a column vector of 1’s, 𝐌̂ 𝑖 ∈ ℝ 

𝑁 𝑠𝑢𝑏𝑗 ×1 is the predicted vector

f subject-specific complexity indices in the 𝑖 th RSN and 𝐛 𝑘 ∈ ℝ 

𝑁 𝑠𝑢𝑏𝑗 ×1 

s the associated vector of the 𝑘 th behavioural measure ( 𝑘 = 1 , ..., 𝑁 𝑏𝑒ℎ ).

or each estimated coefficient 𝛽𝑖 ( 𝑘 ) , we performed a 𝑡 -test at the signif-

cance level of 0.05 whether the coefficient is equal to zero or not. To

ssess whether the correlation coefficients between real complexity in-

ices 𝐌 𝑖 and their predicted associates 𝐌̂ 𝑖 are statistically significant,

e performed a permutation testing for each RSN where we permuted

he order of subjects in 𝐌 𝑖 , refitted the model and repeated this proce-

ure for 10000 times. It led to an empirical null distribution for each

etwork. 

To assess the contribution of each behavioural variable into the tem-

oral complexity of RSNs, we performed a bidirectional step-wise regres-

ion analysis where the independent variables were added or removed

ased on their importance to the fitted model in an iterative fashion at

he significance level of 0.05 ( Draper and Smith, 1967 ). The procedure

ontinues until no further improvement can be obtained in the goodness

f fit of the regression model. 

. Results 

.1. Simulation: multiscale entropy analysis of colored noise 

To demonstrate the capacity of multiscale entropy analysis for en-

oding signal dynamics, we simulated 100 realizations of four colored

oise signals (white, blue, pink and red) with 1200 time-points and com-

uted their multiscale entropy patterns ( 𝑚 = 2, 𝑟 = 0.15). See Fig. 2 -A, B

or exemplary realizations of the noise types and their associated power

pectral densities. As Fig. 2 -C shows, multiscale entropy curves of each

oise type are distinct and can be considered as their dynamical sig-

ature. The associated complexity index values are also an informative

ndicator of the time-varying nature in each noise type, except for white

nd red noise whose complexity distributions fully overlap ( Fig. 2 -D).

mong the four, blue and white noises lead to lower complexity indices,

hile pink and red noises resemble complex signals due to their 1/ 𝑓 𝛽

pectral density functions and fractal properties ( Costa et al., 2005 ). 

.2. RSNs are temporally complex 

We observed distinct multiscale entropy patterns between cortical

nd subcortical parts of RSNs (379 regions in total illustrated as blue

nd red curves in the middle rows of Figs. 3 and 4 ). A visual compar-

son between cortical/subcortical multiscale entropy curves and sim-

lated noise processes ( Fig. 2 -C) suggests that the entropy patterns

f higher-order RSNs are closer to the morphology of synthetic com-

lex signals such as pink noise and red noise, while subcortical re-

ions and limbic network are more similar to non-complex signals

uch as white noise and blue noise. This observation was more evi-

ent for the tolerance parameter 𝑟 = 0.5 compared to 𝑟 = 0.15 (top row

f Fig. 3 in contrast to the top row of Fig. 4 ). Our multiscale entropy

nalysis of RSNs at 𝑟 = 0.5, 𝑚 = 2 and 𝜏= 1 to 25 was in line with the

ndings of McDonough and Nashiro (2014) where the default mode

nd frontoparietal networks were studied. Possible differences between
4 
 McDonough and Nashiro, 2014 ) and our study may be due to the fact

hat we used a different brain parcellation and spatial definition of

SNs compared to ( McDonough, Nashiro, 2014 ). As the third rows of

igs. 3 and 4 illustrate, multiscale entropy patterns of RSNs preserve a

onsistent order of complexity index across 8 RSNs with the frontopari-

tal (FP) network and default mode network (DMN) as the most com-

lex and the subcortical (SUBC) and limbic (L) networks as the least

omplex RSNs. Visual (VIS) and somatomotor (SM) and ventral atten-

ion (VA) networks also sit in between. This ordering remains relatively

onsistent after changing of the multiscale entropy parameters, despite

ifferences in the morphology of RSN entropy patterns. The tolerance

arameter 𝑟 = 0.5 leads to a more stable morphology over different em-

edding dimensions 𝑚, while the entropy curves associated with 𝑟 = 0.15

epresent considerable amount of undefined values for dimensions 𝑚 ≥ 4

nd therefore, less discrimination between the temporal complexity of

SNs (bottom row in Fig. 4 ). The undefined values of multiscale entropy

re caused by the zero values of  

𝑟 
𝑚 

in Eq. (6) due to the lack of neigh-

ouring templates 𝐗 

𝑚 
𝑖 

and 𝐗 

𝑚 
𝑗 

at the tolerance parameter 𝑟 . The effect

ize analysis of the pair-wise comparisons across RSNs are illustrated in

ig. 6 and summarized in the first columns of Table S6 (for 𝑟 = 0.5 and

 = 2) and Table S7 (for 𝑟 = 0.15 and 𝑚 = 2). According to the tables, RSNs

re highly distinguishable based on their associated complexity indices

t both values of 𝑟 (Hedges’ 𝑔 of 2.33 ± 1.68 for 𝑟 = 0.5 and 2.55 ± 1.72 for

 = 0.15). 

.3. Head motion is temporally less complex than RSN dynamics 

A striking observation in the top rows of Figs. 3 and 4 is the distinc-

ive multiscale entropy pattern of head motion, quantified by frame-

ise displacement of each subject during the rsfMRI runs, in contrast

o the dynamics of RSNs. Frame-wise displacement of an rsfMRI record-

ng is defined as the sum of the absolute values of the derivatives of its

ssociated six realignment parameters ( Power et al., 2014 ). As the fig-

res suggest, head motion has a considerably lower temporal complexity

han rsfMRI time series which makes it comparable with the dynamics

f white and blue noises in Fig. 2 . This distinction is most obvious across

he lower time scales ( 𝜏 ≤ 10). Notably, an increase in the embedding di-

ension 𝑚 has a detrimental impact on the multiscale entropy patterns

f head motion at 𝑟 = 0.15 and increases the standard deviation at each

ime scale drastically (see Fig. 4 ). In fact, embedding dimensions above

 lead to very poor outcome at 𝑟 = 0.15. From this perspective, the choice

f 𝑟 = 0.5 is more appropriate for multiscale entropy analysis of rsfMRI

nd head motion, as it is more robust to the changes of embedding di-

ension. 

.4. Temporal complexity of RSNs is stronger at shorter 𝑇 𝑅 ’s 

Fig. 5 and Figs. S1 to S3 illustrate multiscale entropy curves of 8 RSNs

sing the tolerance parameters 𝑟 = 0.5, 0.15 and embedding dimensions

 = 2,3,4, at the downsampling rates of 2 (equivalent with a 𝑇 𝑅 of 1.44

) and 4 (equivalent with a 𝑇 𝑅 of 2.88 s). We observed that the morphol-

gy of entropy values was clearly influenced by the temporal resolution

f the underlying data (see Fig. 5 and Fig. S2 versus Fig. 3 for 𝑟 = 0.5

nd Figs. S1 and S3 versus Fig. 4 for 𝑟 = 0.15). This change was reflected

s a decrease in the mean values of the complexity indices across RSNs

see the bottom rows in all figures). Having said that, pair-wise discrim-

nation between the complexity index distributions of RSNs was still

reserved after downsampling (see the second and third columns of Ta-

les S6 and S7). However, a consistent reduction was introduced to the

air-wise Hedges’ 𝑔 statistics of effect size analysis in longer 𝑇 𝑅 ’s (from

.33 ± 1.68 to 1.83 ± 1.33 and 1.17 ± 0.79 for 𝑟 = 0.5 and from 2.55 ± 1.72 to

.06 ± 1.32 and 0.33 ± 0.22 for 𝑟 = 0.15). Fig. 6 illustrates the color-coded

edges’ 𝑔 measures of rsfMRI complexity index distributions using two

olerance parameter values at three temporal resolutions and using the

mbedding dimension of 𝑚 = 2. 
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Fig. 2. Multiscale entropy of white noise in black color, blue noise in blue color, pink noise in pink color and red (Brown) noise in red color ( 𝑚 = 2, 𝑟 = 0.15). For each 

noise type, 100 random realizations were generated. Column (A) Exemplary realizations in the time domain. Column (B) Shaded error bars of power spectral density 

functions associated with 100 realizations. (C) Distributions of multiscale entropy patterns over 100 realizations. Shaded regions show one standard deviation from 

the mean curve. (D) Distributions of complexity index values. 

Fig. 3. Top row : Multiscale entropy patterns of 8 RSNs as well as head motion (frame-wise displacement), averaged over 987 subjects and four rsfMRI runs, with 

the tolerance parameter 𝑟 = 0.5 and a range of embedding dimensions 𝑚 from 2 to 10. In all plots, each curve represents the average and the error bars demonstrate 

one standard deviation over subjects. The entropy curves have been color-coded according to their complexity indices. The multiscale entropy curve of head motion 

(labeled as FD ) has a distinct pattern compared to RSNs. Middle row : ROI-wise multiscale entropy patterns, averaged over 987 subjects and four rsfMRI runs for 

the same parameter sets as the first row. The entropy patterns associated with the cortical regions ( 𝑁 𝑅𝑂𝐼 = 360) are in blue color and associated with the subcortica 

regions ( 𝑁 𝑅𝑂𝐼 = 19) are in red color. The brain parcels were obtained according to Glasser et al. (2013) . Bottom row : Bar plots of the group-mean complexity indices 

associated with the RSN-wise multiscale entropy patterns in the first row. The RSNs have been sorted according to their group-mean complexity indices. In all plots, 

the bars are labeled as follows: FP, DA, DMN, VIS, SM, VA, SUBC, L. Abbreviation : FP = Frontoparietal, DA = Dorsal Attention, DMN = Default mode network, VIS 

= Visual, SM = Somatomotor, VA = Ventral Attention, SUBC = Subcortical, L = Limbic, FD = Frame-wise Displacement (extracted from head motion parameters). 

See Yeo et al. (2011) for the illustrations of RSNs. 
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Fig. 4. Top row : Multiscale entropy patterns of 8 RSNs as well as head motion (frame-wise displacement), averaged over 987 subjects and four rsfMRI runs, with 

the tolerance parameter 𝑟 = 0.15 and a range of embedding dimensions 𝑚 from 2 to 10. In all plots, each curve represents the average and the error bars demonstrate 

one standard deviation over subjects. The entropy curves have been color-coded according to their complexity indices. The multiscale entropy curve of head motion 

(labeled as FD ) has a distinct pattern compared to RSNs. Middle row : ROI-wise multiscale entropy patterns, averaged over 987 subjects and four rsfMRI runs for 

the same parameter sets as the first row. The entropy patterns associated with the cortical regions ( 𝑁 𝑅𝑂𝐼 = 360) are in blue color and associated with the subcortical 

regions ( 𝑁 𝑅𝑂𝐼 = 19) are in red color. The brain parcels were obtained according to Glasser et al. (2013) . Bottom row : Bar plots of the group-mean complexity indices 

associated with the RSN-wise multiscale entropy patterns in the first row. The RSNs have been sorted according to their group-mean complexity indices. Blanc panels 

represent undefined entropy values. In all plots, the bars are labeled as follows: FP, DA, DMN, VIS, SM, VA, SUBC, L. Abbreviation : FP = Frontoparietal, DA = Dorsal 

Attention, DMN = Default mode network, VIS = Visual, SM = Somatomotor, VA = Ventral Attention, SUBC = Subcortical, L = Limbic, FD = Frame-wise Displacement 

(extracted from head motion parameters). See Yeo et al. (2011) for the illustrations of RSNs. 

Fig. 5. The effect of downsampling on the 

multiscale entropy curves of HCP, averaged 

over 987 subjects and four rsfMRI runs. (A)- 

(C): Error bars of multiscale entropy curves 

after downsampling of rsfMRI time series at 

the rate of 2 for the embedding dimensions 

𝑚 = 2,3,4 and the tolerance parameter 𝑟 = 0.5 . 

The entropy curves have been color-coded ac- 

cording to their complexity indices (normal- 

ized area under their curve). (D)-(F): Mean 

plots of the complexity index values extracted 

from the multiscale entropy curves of (A)-(C), 

respectively. Abbreviation : FP = Frontopari- 

etal, DA = Dorsal Attention, DMN = Default 

mode network, VIS = Visual, SM = Somatomo- 

tor, VA = Ventral Attention, SUBC = Subcorti- 

cal, L = Limbic. See Yeo et al. (2011) for the 

illustrations of RSNs. 

6 
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Fig. 6. Hedges’ 𝑔 statistics obtained from effect size analysis of the complexity index distributions calculated for all pairs of RSNs. The analysis has been repeated 

for the embedding dimension 𝑚 = 2, the tolerance parameters ( 𝑟 = 0.15,0.5) and at three downsampling scenarios (no downsampling, downsampling at the rate of 2 

and downsampling at the rate of 4). The Hedges’ 𝑔 values of less than 0.2 imply small effect, 0.2 to 0.5 are considered as medium effect, 0.5 to 1.5 are deemed as 

large effect and above 1.5 represent very large effect. Abbreviation : FP = Frontoparietal, DA = Dorsal Attention, DMN = Default mode network, VIS = Visual, SM 

= Somatomotor, VA = Ventral Attention, SUBC = Subcortical, L = Limbic. See Yeo et al. (2011) for the illustrations of RSNs. 
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.5. Temporal complexity of RSNs is reproducible 

We performed a test-retest analysis to assess whether complexity of

SNs is reproducible across different rsfMRI runs of HCP. We computed

ultiscale entropy curves of 987 datasets for four rsfMRI runs of length

4.4 minutes separately (i.e., 4 ×1200 𝑇 𝑅 ’s). We computed the intra-

lass correlation coefficient of scale-dependent sample entropy values

ver all subjects and four sessions for 8 RSNs ( Yeo et al., 2011 ) and 25

ime scales. We repeated the test-retest analysis for two tolerance pa-

ameters 𝑟 = 0.15, 0.5, three embedding dimensions 𝑚 = 2,3,4 and three

sfMRI temporal resolutions. The results are presented as color-coded

aps in Fig. S5. As this figure shows, the tolerance parameter 𝑟 = 0.5

nd 𝑚 = 2 at the original temporal resolution of rsfMRI ( 𝑇 𝑅 = 720 ms)

ielded the greatest intra-class correlation coefficient scores. At all tem-

oral resolutions, reproducibility decreased from 𝑟 = 0.5 to 𝑟 = 0.15. Also,

n increase in the embedding dimension 𝑚 had a detrimental impact on

he reproducibility of RSN complexity indices at 𝑟 = 0.15, while the val-
7 
es associated with 𝑟 = 0.5 were almost unchanged. Given that intra-class

orrelation coefficient decreases as a function of greater downsampling,

t is possible that longer 𝑇 𝑅 ’s in the rsfMRI recordings have a negative

ffect on the reproducibility of RSN complexity. Amongst the 8 RSNs,

he default mode and frontoparietal networks had strongest test-retest

eliability. Lowest reproducibility was seen in the subcortical network. 

.6. Temporal complexity of RSNs correlates with higher order cognition 

A permutation test with 10000 shufflings over subjects showed that

orrelation coefficients associated with all RSNs were above the 95 th 

ercentile of the empirical null distributions (Fig. S4). This means that

he correlation between original and predicted rsfMRI complexity was

tatistically higher than expected by chance. We performed step-wise

egression analysis between five behavioural variables and complexity

ndices of 8 RSNs for 𝑚 = 2, 𝑟 = 0.15, 0.5 as well as no downsampling,

ownsampling at the rate of 2 and downsampling at the rate of 4 (6 dif-
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Fig. 7. (A) Grand-mean brain map of RSN complexity indices, (B) normalized 

standard deviation map of RSN complexity indices. Both maps were extracted 

from rsfMRI datasets of 987 HCP subjects, averaged over four resting state 

runs. Each dataset was parcellated using the Glasser atlas with 379 regions 

( Glasser et al., 2016 ). The complexity index is defined as the area under the 

curve of multiscale entropy. The complexity indices were z-scored to aid visu- 

alization. 
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Fig. 8. The relationship between functional connectivity strength and temporal 

complexity of brain regions across different RSNs. The results have been aver- 

aged over 987 subjects and four rsfMRI runs. The networks have been color- 

coded according to their temporal complexity. The 𝑥 -axis shows the time scales 

associated with the multiscale entropy patterns of RSNs. The 𝑦 -axis represents 

the spatial correlation between the ROI-wise functional connectivity strengths 

and their corresponding temporal complexity indices across different networks. 
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N  
erent conditions in total). The results have been summarized in Tables

8 to S13. As the tables show, fluid intelligence was the only winning

ariable in all RSNs under different scenarios. Amongst the five cogni-

ive measures, fluid intelligence (Variable 4) displayed statistically sig-

ificant (positive) regression coefficients ( 𝛽’s) with 8 RSNs at all tem-

oral resolutions for both tolerance parameters 𝑟 = 0.5 and 𝑟 = 0.15. We

orrected each set of 8 RSN-specific 𝑝 -values and 5 behavioural vari-

bles (i.e., 40 tests, in total) using the false discovery rate method at the

ignificance level of 𝑞-value no more than 0.05. It ensures that the likeli-

ood of false-positive results across significant regression variables stays

elow 5 % after multiple comparisons. In other words, the association be-

ween fluid intelligence and temporal complexity of RSNs is relatively

obust against the choice of tolerance parameter 𝑟 and downsampling of

he rsfMRI time series. 

.7. Spatial distribution of rsfMRI complexity 

Fig. 7 demonstrates the spatial distribution of complexity in-

ices across 379 brain regions according to the brain parcellation of

lasser et al. (2013) . The highest complexity indices in the brain map

f Fig. 7 -A are associated with FP, DMN and DA networks and the low-

st values correspond to subcortical areas and the limbic system. More

recisely, top five brain regions with the highest complexity values be-

ong to left and right inferior parietal cortex (PGs, left and right PFm

nd left PF). Also, bottom five brain regions with the lowest complex-

ty include left entorhinal cortex (EC), left and right nucleus accumbens

s well as left and right pallidum. On the other hand, the lowest vari-

bility in Fig. 7 -B was observed across regions with the highest mean

omplexity including left and right inferior parietal cortex (PFm and

eft PGs) as well as superior parietal cortex areas associated with DMN

IP1). In contrast, the highest variability was associated with left infe-

ior temporal sulcus (TE2a), left ventro-medial visual areas (VMV1), left

iddle temporal gyrus (TE1m), Right insular granular complex (Ig) and

ight lateral temporal cortex (TF). See Glasser et al. (2016) for more

nformation about specific functions of these brain areas. This finding

s consistent with our RSN specific analysis that signal complexity is

ighest in frontoparietal networks and DMN. Table S1 summarizes the

rain regions with highest/lowest mean complexity and variability of

omplexity at the group level. 

We also investigated the relationship between functional brain

onnectivity and multiscale entropy of RSNs over time scales

 McDonough and Nashiro, 2014 ). To this end, we extracted the func-

ional brain connectivity strengths of 379 brain parcels over four rsfMRI

uns leading to four brain maps for each subject. The functional con-
8 
ectivity strength of each ROI was defined as the sum of weights of

inks connected to that ROI. The links between ROIs were defined as the

air-wise correlation between their associated rsfMRI time series. We ex-

mined the spatial correlation between the average-run maps of sample

ntropy (i.e., scale-dependent multiscale entropy) and functional con-

ectivity strengths for each RSN separately. As Fig. 8 illustrates, there

s a negative correlation between functional connectivity and tempo-

al complexity of RSNs at fine scales (i.e., between 𝜏= 3 for subcortical

nd limbic networks to 𝜏= 5 for frontoparietal, default mode and dor-

al attention networks), while it turns to a positive correlation at coarse

cales ( 𝜏 ≥ 6). This observation is in line with the finding reported in

cDonough and Nashiro (2014) . 

. Discussion 

Our study validates the hypothesis of distinct multiscale entropy sig-

atures in functional brain networks and reinforces the previous findings

y McDonough and Nashiro (2014) . We also build on previous research

n several ways by: ( i ) increasing the number of subjects from 20 to 987,

nabling a statistically more robust characterization of RSN complexity

n the time domain, ( ii ) delineating temporal complexity in an additional

our RSNs, ( iii ) comparing two values of the tolerance parameter 𝑟 and

ultiple values of the embedding dimension 𝑚 for multiscale entropy

nalysis, ( iv ) investigating the relationship between the temporal com-

lexity of head motion and dynamics of RSNs, ( v ) investigating the effect

f temporal resolution on the complexity of RSNs, ( vi ) analyzing the re-

roducibility of complex dynamics in functional networks over multiple

ecording sessions, and ( vii ) showing that signal complexity is related to

igher-order cognitive processing. 

The conceptual definition of temporal complexity may vary depend-

ng on context and data. In the context of our study, we refer to tem-

oral complexity as a grey boundary between order and disorder over

ime. From this perspective, random fluctuations such as white noise

ave low temporal complexity, because they are completely disordered.

ote that temporal complexity is not necessarily equivalent with high
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npredictability or high randomness. On the other hand, highly ordered

ignals such as a pure sine wave also have low complexity. RsfMRI sits

n between these two exemplars because it represents spreading pat-

erns of structured activity across multiple frequency components and

emporal scales that are embedded in a random background ( Hutchison

t al., 2013; Preti et al., 2017; Richiardi et al., 2013; 2011 ). This com-

lex behaviour arises from functional interactions of numerous sub-

omponents in the brain representing a balanced tuning between order

nd disorder ( Bassett and Gazzaniga, 2011 ). Several internal and exter-

al factors such as sensory inputs, attention, drowsiness and imagination

ay also push brain dynamics towards either order or disorder, but sta-

ly ( Shine et al., 2019 ). It remains an open question of how to quantify

alanced fluctuations ( Kirst et al., 2016 ) in brain function and delineate

heir relationship with human behaviour and cognition. 

The dynamics of RSNs represent a continuum of multiscale entropy

haracteristics, from low complex regions across the entorhinal cortex

 Fischl et al., 2009 ) and subcortical areas to brain regions resembling

omplex noise types (i.e., pink and red noise) within frontoparietal and

efault mode networks ( Caspers et al., 2008 ). See Fig. 2 -C in contrast to

he first and second rows of Fig. 3 and Fig. 4 . Our results suggest that

he temporal complexity of RSNs is a highly discriminative feature that

annot be explained by head movement. Head motion, as quantified

y frame-wise displacement, represents a considerably lower temporal

omplexity than the RSN dynamics. This difference is reflected in the

ultiscale entropy patterns of these signals and is significantly affected

y the choice of the tolerance parameter 𝑟 and the embedding dimension

 . According to the results of this study, a tolerance parameter of 𝑟 =
.5 and an embedding dimension within the range of 2 to 5 lead to

n acceptable separation between RSN dynamics and head motion as

ell as discrimination over RSNs. Large embedding dimensions in the

ultiscale entropy analysis can increase the distance quantity 𝑑( 𝐗 

𝑚 
𝑖 
, 𝐗 

𝑚 
𝑗 
)

nd therefore, the probability of zero outputs occurring in the Heaviside

tep function in Eq. (3) . This is specially the case when small tolerance

alues are used for the multiscale entropy analysis. Examples include

he high occurrence of undefined entropy values for the combination of

 = 0.15 and 𝑚 ≥ 5 in the second and third rows of Fig. 4 . As presented

n Tables S8 to S13, fluid intelligence seems to have the strongest linear

elationship with the temporal complexity of rsfMRI compared to the

ther four behavioral measures. This measure refers to people’s ability to

rovide logical solutions to specific problems, in novel situations where

cquired knowledge cannot be retrieved ( Cattell, 1963 ). 

Vigilance is another important aspect of cognition whose influence

n RSNs has been studied before ( Laufs et al., 2012; Shen et al., 2016;

ong et al., 2013 ). It has been hypothesized that the temporal be-

aviour of RSNs is influenced by variations in vigilance ( Laufs et al.,

012 ). Maintaining a constant level of wakefulness is difficult during

esting state experiments, although HCP subjects are instructed to keep

wake and visually fixate on a cross on a screen. However, it is still

mportant to consider the potential impact of vigilance fluctuations on

he multiscale entropy patterns of RSNs and their associated complexly

ndices. This can also influence the interpretation of which functional

rain networks have more reliable brain complexity dynamics. The rela-

ionship between vigilance and temporal complexity of RSNs is regarded

o future work. 

Multiscale entropy patterns provide a more comprehensive picture

bout brain complexity than sample entropy at single time scales. In

act, single-scale sample entropy analysis could lead to misleading in-

erpretations about the complexity of brain regions and functional net-

orks. As demonstrated in the top rows of Figs. 3 and 4 , the entropy

alues associated with different RSNs may get reverse over large scales

for example, before and after 𝜏= 3 at the tolerance parameter 𝑟 = 0.5

nd the embedding dimension 𝑚 = 2). The distinction in complexity be-

ween cortex and subcortex could be partly related to lower temporal

ignal to noise ratio in rsfMRI time series within subcortical nuclei. This

ay be due to a higher vulnerability to thermal noise related to MRI

ystem electronics, gradient switching artifact and physiological noise
9 
ncluding cardiac pulsations and respiratory activity ( Wang et al., 2014 ).

his can be further investigated using 7T data, or multi-echo data, by

esting whether this distinction remains in data where the subcortical

ignal to noise ratio is improved. Figs. 3 and 4 show that multiscale

ntropy curves, and their associated complexity indices, are consider-

bly affected by the choice of the tolerance parameter 𝑟 and embedding

imension 𝑚 (see Omidvarnia et al., 2018 for another in-depth investi-

ation of the role of 𝑟 and 𝑚 in sample entropy). As the bottom rows of

he figures suggest, the relative network ordering of complexity indices is

 consistent discriminative feature across RSNs. The effect size of com-

lex signatures across RSNs decreases at smaller 𝑟 ’s (note the difference

etween the upper and lower rows of Fig. 6 ) and at lower temporal

esolutions (note the systematic reduction from left to right in Fig. 6 ).

aving said that, almost all of pair-wise Hedges’ 𝑔 statistics remain sta-

istically significant after bootstrapping (see Tables S6 and S7), also due

o our large sample cohort. The embedding dimension 𝑚 is an influential

actor in multiscale entropy analysis which controls the dimensionality

f the reconstructed phase space ( Omidvarnia et al., 2018 ). For a given

mbedding dimension 𝑚, a tolerance 𝑟, and a single time scale 𝜏, mul-

iscale entropy estimates the average logarithm of the probability that

f two segments of length 𝑚 in the data are closer than 𝑟 then two seg-

ents of length 𝑚 + 1 also have a distance less than 𝑟 . We tested a range

f values for 𝑚 throughout the study and found a consistent estimate of

ultiscale entropy for the tolerance parameter 𝑟 = 0.5 up to 𝑚 = 10 and a

evere loss of the estimates for 𝑟 = 0.15 for 𝑚 ≥ 4 at the original temporal

esolution of rsfMRI, i.e., 𝑇 𝑅 = 720 ms ( Fig. 3 vs. Fig. 4 ). The mean RSN

omplexity indices in the lower rows of Fig. 5 as well as Figs. S1 to S3

uggest that at longer 𝑇 𝑅 ’s the embedding dimension above 𝑚 = 3 may

educe the separability of RSNs (in particular, as the tolerance parame-

er 𝑟 = 0.15). Since HCP datasets consist of four rsfMRI recording sessions

er subject, we were in a good position to perform a test-retest analysis

f network-specific multiscale entropy. Fig. S5 illustrates the finding in

erms of two color-coded maps based on the intra-class correlation co-

fficient, a measure of reproducibility, extracted from network-specific

ample entropy distributions at single time scales. As the figure suggests,

ample entropy values over fine time scales ( 𝜏 ≤ 5) are more repeatable

han the values extracted at large scales. This finding was not surprising

ecause coarse-graining step of the multiscale entropy analysis at large

can remove original information from rsfMRI time series and reduce

hem into a series of random fluctuations. 

The biological underpinnings of multiscale entropy has been subject

o several studies in the recent years (e.g., Liu et al., 2019; McDonough

nd Nashiro, 2014; Wang et al., 2018b ). Ghanbari et al. (2015) hypoth-

sized that more predictable neural signals establish synchronized links

etween remote brain regions and, therefore, facilitate long-range in-

ormation processing of functional brain networks. Also, increasingly

andom signals are related to the local firing of neural populations. This

ichotomy has been also reported for coarse-fine time scales of multi-

cale entropy: fine scale values correspond to local information process-

ng of brain networks, while coarse scale values deal with long-range

ommunications ( McDonough and Nashiro, 2014; McIntosh et al., 2014;

akorin et al., 2011; Wang et al., 2018b ). Functional brain connectivity

ay play an important role here. In fact, functional brain connectivity

nd temporal complexity of RSNs represent a scale-dependant relation-

hip with a negative correlation at fine scales (small values of 𝜏) and a

ositive correlation at coarse scales (large values of 𝜏) McDonough and

ashiro (2014) . Our results not only reinforce this finding (see Fig. 8 ),

ut also they suggest that the brain regions with highest mean temporal

omplexity are mainly located across the default mode network, fron-

oparietal network and dorsal attention network (see Fig. 7 ). These re-

ions have also been reported as having high participation coefficients in

he functional brain networks and therefore, playing as connector nodes

n the brain ( Bertolero et al., 2018; 2015 ). The overlap between the

articipation coefficient and temporal complexity brain maps may sug-

est a link between RSN complexity and integration of various cogni-

ive functions in the brain. As Fig. 7 illustrates, the temporal complexity
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atterns of rsfMRI are asymmetrical across the brain (e.g. frontal, tem-

oral, and primary motor regions). This observation may be related to

he lateralization of human brain organization and cognition ( Witelson,

988 ). 

The impact of rsfMRI preprocessing has been subject to extensive

esearch (see Esteban et al., 2019; Power et al., 2012; Yan and Zang,

010; Zuo et al., 2013 , for examples). However, there is still no com-

lete agreement on the most appropriate rsfMRI preprocessing pipeline,

s this depends on several factors such as the MRI scanner type, scan-

ing parameters, subject-specific movement artifacts, health conditions

nd nature of the study (e.g., whether it is a resting state study or an

vent-related study). The rsfMRI datasets of this study were prepro-

essed using a customized pipeline for the HCP project that includes

CA-FIX ( Glasser et al., 2013 ). There is evidence suggesting that ICA-

IX is robust in reducing artefacts in large rsfMRI datasets. That is why

t has been the recommended rsfMRI preprocessing pipeline by the HCP

ecause it allows for combined cortical surface and subcortical volume

nalysis ( Glasser et al., 2013 ). Also, motion artefact removal using the

CA-FIX method ( Griffanti et al., 2014; Salimi-Khorshidi et al., 2014 )

as been shown to result in significantly improved RSN reproducibil-

ty, regardless of the recording conditions ( Pruim et al., 2015 ). The

hoice of brain parcellation is another impactful factor in the tempo-

al complexity analysis of rsfMRI which defines the spatial extent and

orphology of ROIs and RSNs. It is important to use non-overlapping

rain parcels (e.g., the brain atlas ( Glasser et al., 2016 ) used in tis study)

or defining RSNs in order to avoid any interference of complex dynam-

cs across brain regions. An example of an overlapping brain parcella-

ion is the definition of ROIs based on principal components of brain

unction. 

A limitation of multiscale entropy for temporal complexity analy-

is of functional brain networks originates from the general framework

f sample and multiscale entropy analyses as univariate methods. This

eans that the input signal to these measures is always one-dimensional.

n the context of this study, ROI-specific multiscale entropy patterns do

ot measure multivariate relationships between brain regions necessar-

ly. Although we considered pair-wise relationships between the com-

lexity distributions of RSNs (see Tables S6 and S7), it is not a substitute

or multivariate complexity measures. It speaks to the necessity of de-

eloping multivariate versions of sample/multiscale entropy measures

hich can deal with a more global picture of dynamical brain function

t once (for example, see Ahmed and Mandic, 2012 ). 

. Conclusion 

Functional brain networks represent distinctive signatures of tem-

oral complexity which can be quantified through multiscale entropy

nalysis of rsfMRI. This observation is robust over a large cohort of un-

elated subjects and reproducible over rsfMRI recording sessions. Head

otion has a significantly lower temporal complexity than RSNs. Also,

here is likely a non-random correlation between temporal complexity

f RSNs and higher-order cognition (fluid intelligence). 
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