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The human capacity to compute the likelihood that a decision is
correct—known as metacognition—has proven difficult to study in
isolation as it usually cooccurs with decision making. Here, we
isolated postdecisional from decisional contributions to metacog-
nition by analyzing neural correlates of confidence with multi-
modal imaging. Healthy volunteers reported their confidence in
the accuracy of decisions they made or decisions they observed.
We found better metacognitive performance for committed vs.
observed decisions, indicating that committing to a decision may
improve confidence. Relying on concurrent electroencephalogra-
phy and hemodynamic recordings, we found a common correlate
of confidence following committed and observed decisions in the
inferior frontal gyrus and a dissociation in the anterior prefrontal
cortex and anterior insula. We discuss these results in light of de-
cisional and postdecisional accounts of confidence and propose a
computational model of confidence in which metacognitive perfor-
mance naturally improves when evidence accumulation is con-
strained upon committing a decision.
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Upon making decisions, one usually “feels” that a given choice
was correct or not, which allows deciding whether to commit

to the choice, to seek more evidence under uncertainty, or to
change one’s mind and go for another option. This crucial aspect
of decision making relies on the capacity to monitor and report
one’s own mental states, which is commonly referred to as meta-
cognitive monitoring (1–3). One promising venue to unravel the
neural and cognitive mechanisms of metacognitive monitoring
involves investigating how, and to what extent, humans become
aware of their own errors (4). Typically, volunteers are asked to
execute a first-order task under time pressure (e.g., numerosity:
which of two visual arrays contains more dots) and afterward
perform a second-order task by providing an estimate of confi-
dence in their response (“how sure were you that your response
was correct?”). Confidence is formally defined as the probability
that a first-order response was correct given the available evidence
(5, 6). Distinct models have been proposed to explain how con-
fidence is computed: Some models consider confidence as a fine-
grained description of the same perceptual evidence leading to the
first-order decision (7), sometimes enriched with postdecisional
processes (8–10). Other models posit that confidence stems from
mechanisms different from those responsible for making that
decision (for review, see ref. 11). However, as of today, the con-
tribution of (post)decisional signals on confidence remains un-
clear, principally due to the difficulty of dissociating confidence
from first-order decision making.
Here we combined behavioral responses with multimodal

neuroimaging to identify the driving forces of confidence judg-
ments. Our paradigm allowed a controlled comparison of confi-
dence ratings for decisions that were committed (i.e., taken and

reported by participants) and decisions that were merely observed
(i.e., taken by a computer). In the active condition, 20 participants
were presented with two arrays of dots for 60 ms and were asked to
indicate which of the two arrays contained more dots by pressing a
button with the left or right hand (numerosity first-order task). At
the end of each trial, participants had to report their confidence in
their response being correct or incorrect using their left hand
(second-order task). The observation condition followed the exact
same procedure, except that confidence was conditional to a de-
cision performed automatically: Participants saw the image of a
hand over the right or left array of dots with identical yet shuffled
timings and choice accuracy (i.e., observation trials were a shuffled
replay of active trials; see Materials and Methods). They were then
asked to report their confidence in the observed decision. This
allowed us to measure confidence in committed (active condition)
compared to observed (observation condition) decisions while
keeping perceptual evidence and timing constant across condi-
tions. We reasoned that confidence in the active condition
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derives primarily from the quality of perceptual evidence and
from the monitoring of action signals associated with overt deci-
sions. In contrast, in the observation condition, confidence is still
based on a (covert) decisional process but is conditioned on the
observed decisions (thus requiring an additional step whereby the
covert and observed decisions are compared). Therefore, confi-
dence is orthogonalized from the decisional process and can be
studied independently. These assumptions were tested with a
bounded evidence accumulation model of confidence.
Both conditions were performed while recording simultaneous

electroencephalography (EEG) and functional magnetic resonance
imaging (fMRI), to constrain blood oxygenation level–dependent
(BOLD) correlates of confidence to electrophysiological processes
occurring immediately after the committed or observed decision.
That is, we identified neural signals related to confidence in
committed and observed decisions, independently from idiosyn-
cratic aspects of each condition prior to the decision (e.g., motor
command in the active condition, visual hand in the observation
condition).
Data collection was conducted in view of testing three pre-

registered hypotheses (https://osf.io/a5qmv). At the behavioral
level, assuming that signals associated with overt decisions inform
confidence judgments, we expected confidence ratings to better
track first-order performance for committed compared to observed
decisions based on the same amount of perceptual evidence. In-
spired by several findings showing a role of action monitoring for
confidence (e.g., refs. 10 and 12–15), we expected brain regions
encoding confidence specifically for committed decisions to be
related to the cortical network involved in action monitoring and
brain regions conjunctively activated in both conditions to reflect a
shared mechanism independent from decision commitment. Fi-
nally, we expected to find earlier correlates of confidence following
committed compared to observed responses, as efferent informa-
tion is available before visual information (16).

Results
The influence of decision commitment on second-order judg-
ments was assessed by comparing metacognitive performance for
committed compared to observed decisions. The first-order task
consisted of indicating which of two arrays contained more dots
(active condition) or observing a hand making that decision
(observation condition) (Fig. 1A). Confidence was measured on
a continuous scale quantifying the probability of being correct or
incorrect (ranging from 0: “sure error” to 1: “sure correct”). To
make valid comparisons between confidence ratings in commit-
ted and observed decisions, we verified that first-order parame-
ters dictating the decision were equated between conditions. By
design, the amount of first-order perceptual evidence (difference
of 13.1 ± 1.7 dots between the two arrays), response times (RT)
(385 ms ± 8 ms), and first-order accuracy (71.2% ± 1.0%, 95%
CI, according to a one-up/two-down adaptive procedure) were
identical in the two conditions (Materials and Methods).
We then turned to second-order performance, quantifying

metacognitive performance as the capacity to adapt confidence
to first-order accuracy. Here we report results for the main ex-
periment. A mixed-effects logistic regression on first-order ac-
curacy as a function of confidence and condition revealed an
interaction between confidence and condition (model slope:
odds ratios z = −2.90, P = 0.004; marginal R2 = 0.69), indicating
that the slope between confidence and first-order accuracy was
steeper in the active compared to the observation condition (Fig.
1B). Although small, this difference in metacognitive perfor-
mance was present in all participants we tested (Fig. 1B) and also
found when analyzing the data with tools derived from second-
order signal detection theory (area under the type II receiver
operating curve [AROC]: active condition = 0.92 ± 0.02; ob-
servation condition = 0.90 ± 0.03; Wilcoxon sign rank test: V =
163, P = 0.03; see SI Appendix). In addition, metacognitive

performance was correlated between conditions (R2 = 0.93, P <
0.001), suggesting partially overlapping mechanisms for moni-
toring committed and observed decisions. Of note, confidence
per se did not differ across conditions [t (19) = −0.19, P = 0.85,
Bayes factor [BF] = 0.23].
To assess the contribution of decisional signals to metacognitive

monitoring, we ran a linear mixed-effects model on first-order RT
as a function of confidence, accuracy, and condition. This model
revealed a triple interaction [F(1,4742) = 6.05, P = 0.014],
underscoring that in the active condition, RT for correct responses
correlated negatively with confidence, and response times for er-
rors correlated positively with confidence [F(1,26) = 23.70, P <
0.001; Fig. 1C]. No main effect of confidence [F(1,29) = 0.02, P =
0.89] or interaction between confidence and accuracy [F(1,19) =
1.34, P = 0.26] was observed in the observation condition (Fig.
1C). Together, these results indicate that confidence was modu-
lated by committed but not observed RT, and thus suggest the
importance of decisional signals and potentially motor actions to
build accurate confidence estimates.
To further characterize the effect of committing to a decision

on metacognitive performance, we ran a first follow-up behav-
ioral experiment comprising one session with speeded responses
(under 500 ms) as in the main experiment and one session during
which participants (n = 12) were given more time to provide
their first-order response (1,500 ms; accuracy session). We also
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Fig. 1. Experimental paradigm and behavioral results. (A) Experimental
paradigm: A participant lying in the fMRI bore equipped with an EEG cap
performs (active condition in red) or observes (observation condition in blue)
the first-order task and subsequently reports confidence in the committed or
observed decision using a visual analog scale. (B) Mixed-effects logistic re-
gression between first-order accuracy and confidence in the active (red) and
observation condition (blue). The histograms represent the distributions of
confidence for correct (Top) and incorrect (Bottom) first-order responses.
(Right) Individual slopes of the mixed-effects logistic regression indicating
metacognitive performance. (C ) Mixed-effects linear regression between
first-order RT and confidence for correct (in green) and incorrect (in red)
trials in the active (Left) and observation condition (Right). The histograms
represent the distributions of RT and confidence for correct and incorrect
first-order responses. Rightmost: Interaction term between first-order accu-
racy and confidence for RT in the active compared to observation condition.
Shaded areas represent 95% confidence intervals.
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included a third condition in both sessions, in which the first- and
second-order responses were reported simultaneously on a unique
scale. This allowed us to have an active condition (i.e., with a first-
order response), but without requiring a commitment to a decision
until the onset of the simultaneous response/confidence scale.
Moreover, this condition was randomly interleaved with the ob-
servation condition so that participants did not know whether they
should only observe and not respond until they saw the hand (SI
Appendix).
In brief, this experiment revealed that the advantage of meta-

cognitive performance for committed decisions was specific to
speeded responses and did not occur when participants were
given enough time to provide their first-order response (odds
ratios z = 2.20, P = 0.03; SI Appendix, Fig. S1A). In the speeded
session, we were able to replicate our finding of higher meta-
cognitive performance between the active and observation con-
dition (z = −2.68, P = 0.007) and found that metacognitive
performance in the active condition was also better than when
first- and second-order responses were provided simultaneously
(z = −2.44, P = 0.015). This finding shows that the metacognitive
advantage we report in the main experiment cannot be explained
by a lack of attention due to the fact that participants did not
have to give a first-order response.
To fully rule out the possibility that this metacognitive ad-

vantage stemmed from an attentional confound, we ran a second
follow-up analysis to prove that the level of alertness/attention
was equivalent between the active and observation conditions. For
this, we added a visual cue in 25% of the trials in both active and
observation condition (SI Appendix). Again, participants (n = 14)
had higher metacognitive performance in the active condition
(odds ratios z = −2.21, P = 0.027; SI Appendix, Fig. S1B), while
there was no evidence for performance differences in detecting
visual cues [average hits: 51.9% ± 14.9 in the active condition,
48.6% ± 12.9 in the observation condition, P = 0.29, t (13) = 1.09,
BF = 0.45; SI Appendix, Fig. S1C]. Altogether, these results vali-
date our first preregistered hypothesis that metacognitive perfor-
mance is better for committed compared to observed speeded
decisions.

Behavioral Modeling. In view of obtaining a mechanistic under-
standing of the way decisional and postdecisional evidence con-
tribute to confidence, we derived confidence in committed and
observed decisions using a bounded evidence accumulation model,
considered to be biologically plausible representations of evidence
accumulation in the brain (17, 18). Such models assume that ideal
observers commit to a first-order decision (D, Fig. 2A) once one of
two evidence accumulation processes (here, corresponding to evi-
dence for the left or right choice) reaches a decision boundary.
We first fitted five parameters (i.e., drift, bound, nondecision

time, nondecision time variability, and starting point variability;
seeMaterials and Methods) to first-order choice accuracy and RT
recorded for each participant during the active condition (SI
Appendix, Fig. S2). With these parameters, we simulated pairs of
evidence accumulation trajectories leading to first-order choices
and RT. We then derived confidence based on a mapping of the
state of evidence of the winning accumulator, following recent
findings that confidence is based solely on evidence congruent
with the decision (19, 20). To account for changes of mind, we
sampled accumulated evidence after a postdecisional period (tpd
in Fig. 2A and refs. 8 and 9). The exact timing of this postdeci-
sional period was taken from the EEG decoding results (Mate-
rials and Methods). The sampled evidence was then mapped to
the range of confidence ratings using a sigmoidal transformation
with two additional free parameters controlling for bias and
sensitivity.
Since metacognitive performance in the active and observa-

tion conditions was highly correlated, we modeled the observa-
tion condition with a similar underlying mechanism, except that

observed choices and RT were independent from the evidence
accumulation process, as in our paradigm. Our model assumed a
covert decision taken after the observed decision (oD in Fig. 2A).
As in the active condition, confidence was defined as a readout
of the winning accumulator. This (covert) confidence, however,
was conditioned on the covert decision and could be related to the
observed decision if the latter was congruent. Therefore, when
covert and observed decisions differed, we inverted the simulated
confidence. Alternative models of confidence are reported in SI
Appendix (SI Appendix, Fig. S3). Across participants, our model
fitted confidence ratings well (active condition: R2 = 0.70 ± 0.25;
observation: R2 = 0.61 ± 0.36; Fig. 2B and SI Appendix, Figs. S4
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Fig. 2. Bounded evidence accumulation model for confidence. (A, Upper)
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decision (D) is taken when the winning accumulator hits the decision
bound (dashed horizontal line). Here, the violet trace wins, producing a first-
order error. Confidence is assumed to be based on the state of the accu-
mulator corresponding to the first-order choice at the end of the postdeci-
sional period. Confidence in the observed response is based on the state of
the accumulator corresponding to the covert decision (cD) at the end of the
postdecisional period, except that evidence is “inverted” if the decision cD is
incongruent with the observed decision (cD ≠ oD). In both plots, the sigmoid
(square box) constrains the result to the [0,100] % interval. tpd is the post-
decisional time. (B) Histogram of the confidence ratings obtained during the
experiments, compared to the model simulations (thick line) for error (red)
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performance (see Fig. 1B for the actual behavioral results).
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and S5), suggesting that it represents a plausible mechanism of
confidence buildup for speeded decisions. Most importantly, the
confidence model for the active condition predicted better meta-
cognitive accuracy than the observation model, consistent with our
experimental data (Fig. 2C). As in the behavioral analysis, we ran
a mixed-effects logistic regression on first-order accuracy as a
function of confidence and condition, which revealed an interac-
tion between confidence and condition (odds ratios z = −6.01, P <
0.001), indicating that the slope between confidence and first-
order accuracy was steeper in the active compared to observa-
tion condition. Area under the AROC was also higher for the
active condition (0.942 ± 0.006 vs. 0.921 ± 0.007, Wilcoxon sign
rank test, V = 168, P = 0.019). Of note, these differences were not
explained by differences in the goodness of fit across subjects (R =
0.047; P = 0.85) or by differences in readout latency between
condition as using a single latency (320 ms) for all condition and
subjects yielded similar results. We could thus reproduce the lower
metacognitive performance found in the observation condition
only by detaching the decision process from the evidence accu-
mulation process leading to confidence.

EEG Correlates of Confidence. To isolate the neural correlates of
confidence for committed and observed decisions, we identified
which regions coactivated with EEG correlates of confidence
occurring exclusively within 500 ms after the first-order response
(i.e., postdecisional processes). We first modeled the EEG am-
plitude time-locked to the first-order response as a function of
confidence using mixed-effects linear regression, with first-order
RT and perceptual evidence as covariates of no interest (Mate-
rials and Methods). In the active condition, we found that EEG
amplitude correlated with confidence starting 68 ms following

the first-order response over centroparietal electrodes. Another
correlate of confidence was found 88 ms postresponse over fron-
toparietal electrodes, akin to an error-related negativity (ERN;
Fig. 3 A, bottom left and refs. 21 and 22). In the observation
condition, correlates of confidence were found on the same two
electrodes with similar topography (correlation between fronto-
central cluster in the active and observation conditions: rho =
0.88) but not before 200-ms postresponse (Fig. 3 A, Right).
We then turned to multivariate EEG decoding to derive a

single time-resolved proxy to confidence to be later used to inform
the fMRI analysis. Confidence predictions at each time point were
derived from a linear regressor taking the EEG-independent
components activation profiles as low-dimensional variables (n =
8 ± 3 for each participant; see Materials and Methods). Leave-one-
out performance was significant at the group level (nonparametric
permutation test, corrected P < 0.05) with a peak decoding per-
formance achieved 96 ms and 356 ms following committed and
observed responses (Fig. 3B; see SI Appendix, Fig. S7 for
individual decoding performances).
To dissociate early correlates of potentially “all-or-none,” bi-

nary error detection from fine-grained second-order confidence
estimates described as occurring 200 ms after response (23), we
selected two time points corresponding to local peaks in the
cross-validated decoding performance within an early (0 to 200 ms
postresponse) and late (200 to 450 ms) temporal windows
(Materials and Methods). The latency of the early peaks was
108 ± 22 ms in the active condition. There was no significant
decoding in the early time window in the observation condition.
Late peak latencies were 321 ± 31 ms in the active and 353 ± 27 ms
in the observation condition, with no significant difference
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The shaded areas represent 95% CI, and the horizontal dashed lines the chance level (P < 0.05, computed via nonparametric permutation tests corrected for
multiple comparisons). For each participant and condition, the output of the best decoder within an early and late time window was retrained on the whole
dataset and used as a parametric regressor to model the BOLD signal. (C) Brain areas coactivated with low decoded-confidence values in the early (Left) and
late time window (Right). All displayed BOLD activations are FWE-corrected (P < 0.05) at the cluster level with a threshold at P < 0.001. Not all brain regions
are labeled (SI Appendix, Table S4). The coronal view shows significant differences between the active and the observation condition for the labeled region
(AI for the early time window and aPFC for the late time window).
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between condition (P = 0.20, rank sum = 362.5). Individual la-
tencies of the peaks in the late time window were used for the
computational model. Finally, to show that our time-resolved
proxy of confidence was not driven by error monitoring alone
(i.e., different signal between correct and incorrect first-order
responses), we confirmed that the output of the decoder corre-
lated with confidence in correct responses only (SI Appendix).

Common and Distinct BOLD Correlates of EEG-Decoded Confidence.
We then sought to investigate the anatomical correlates of con-
fidence at specific timings, with the aim of disentangling BOLD
signal associated with pre- and postdecisional processes. For this,
we used EEG as a time-resolving proxy to the BOLD signal.
Namely, we retrained one decoder for each condition and time
window (i.e., at the latency corresponding to peak decoding per-
formance), using all available epochs. We then used the resulting
single-trial predictions as a parametric regressor to model the
BOLD signal, along with first-order RT and perceptual evidence
as covariates of no interest. The regions coactivating with decoded
confidence in the early time window included the bilateral pos-
terior medial frontal cortex (pMFC), the left inferior frontal gyrus
(IFG), anterior insula (AI), and middle frontal gyrus (MFG) (Fig.
3 C, Left). For the late time window (Fig. 3 C, Right), coactivations
with low decoded confidence were found in the bilateral pMFC
and IFG, the left precentral gyrus, IPL, AI, MFG, and anterior
prefrontal cortex (aPFC) for the active condition and in the left
IFG for the observation conditions (SI Appendix, Table S4). The
left IFG was thus commonly activated by low decoded confidence
in both conditions. Differences between coactivations in the active
and observation condition were found in the AI in the early time
window and in the aPFC in the late time window (Fig. 3C and SI
Appendix, Table S4). All of the reported activations were also
found in a standard BOLD analysis with regressor parametrically
modulated by confidence ratings rather than EEG-decoded con-
fidence (SI Appendix, Tables S1–S3).

Discussion
The present study evaluated the origins of confidence by com-
paring and modeling confidence judgments for committed and
observed decisions and identifying the neural correlates of confi-
dence with high spatiotemporal resolution. A group of 20 healthy
volunteers was asked to perform or observe a perceptual task and
then indicate their confidence regarding the accuracy of the
committed or observed decisions.

Metacognitive Performance for Committed and Observed Decisions.
Participants were able to adjust confidence to the accuracy of their
own perceptual decisions and to the accuracy of decisions they
observed (24). Yet, consistent with our preregistered predictions,
committed decisions were associated with a slight but consistent
increase in metacognitive performance compared to observed
decisions. Importantly, we could show that participants attended
the stimulus equally well in the two conditions, as they performed
similarly to detect a visual cue in a dual-task control experiment
(SI Appendix). This indicates that the difference in metacognitive
performance between conditions was not driven by differences in
task demand or attention. The difference in metacognitive per-
formance could reflect a relative decrease in the observation
condition due to inherent differences in the computation of con-
fidence. It could also reflect a relative increase in the active con-
dition, as the monitoring of motor signals related to first-order
decisions may serve to improve confidence (e.g., ref. 25). We ex-
amine these two possibilities in light of our follow-up experiments
and computational model.
First, we found in a follow-up experiment that metacognitive

performance for committed and observed decisions was equiva-
lent when participants were given more time to perform the first-
order task. This indicates that the metacognitive advantage (i.e.,

higher metacognitive performance in the active condition) we
describe occurred in speeded tasks in which errors are immedi-
ately recognized as such (26). As fast error detection is based on
the comparison between an action and its expected outcome (e.g.,
ref. 27), this result supports the existence of a relative increase of
metacognitive performance in the active condition due to action
monitoring. In addition, we found that metacognitive performance
in the active condition was better than another condition involving
simultaneous first- and second-order responses, in which by defi-
nition confidence could not be informed by a previous committed
decision. This brings another line of evidence for a relative in-
crease of metacognitive performance in the active condition,
supporting the view that decision commitment plays a role for
confidence. However, these data do not speak against a relative
decrease of metacognitive performance in the observation condi-
tion that could coexist. The results from our follow-up experi-
ments suggest that the cost of comparing covert and observed
decisions to produce confidence estimates is relatively low, as
metacognitive performance was not lower for observed vs. commit-
ted nonspeeded decisions.
We then turned to computational modeling to shed light on

the potential mechanisms at play in the active and observation
conditions using a bounded accumulation model (7, 17, 28, 29)
assuming a continuation of evidence accumulation after the first-
order decision (8, 9). Crucially, through this procedure, the path
of second-order evidence accumulation in the active condition is
constrained by the first-order decision boundary, which trans-
lated into confidence estimates with lower variance compared
to observed responses which impose no constraint on evidence
accumulation (7.07 ± 0.75 vs. 8.86 ± 1.09, Wilcoxon signed rank
test, V = 32, P < 0.001). This prediction was verified a posteriori
in our behavioral data, as we found higher variance for confi-
dence ratings in the observation vs. active condition (6.71% ±
0.92 vs. 7.33 ± 1.15, Wilcoxon signed rank test, V = 45, P =
0.024). Our model reproduced first-order RT and choice accu-
racy in the active condition, confidence ratings in both condi-
tions, and, importantly, the metacognitive differences observed
behaviorally. This was achieved without relying on extra parame-
ters for the observation condition. We thus favor such a parsi-
monious account of our data, compared to models speculating on
differences in attention or difficulty between conditions that re-
quire extra parameters and are at odds with results from our
follow-up experiments. Alternative models which required tuning
the parameters of evidence accumulation did not improve the fit
of our data.
The notion that committing to (but not observing) first-order

decisions sharpens confidence estimates is corroborated by studies
showing that metacognitive performance increases when RT are
taken into account to compute confidence (30), and decreases in
case motor actions are irrelevant to the task at play (31), or when
the task-relevant motor action is disrupted by transcranial mag-
netic stimulation over premotor cortex (12). The role of motor
signals for metacognition is also supported by recent results in-
dicating that confidence is modulated in presence of motor activity
related to first-order responses (14, 15, 32, 33). Further, alpha
desynchronization over the sensorimotor cortex controlling the
hand performing that action was found to correlate with confi-
dence (13). Together, these empirical results suggest that confi-
dence is not solely derived from the quality of perceptual evidence
but involves the perception–action cycle. By comparing committed
and observed decisions in a controlled way, we could test a direct
prediction derived from these studies and document its neural and
computational mechanisms.

Confidence-Related Brain Activations. In line with our preregistered
hypothesis, we found early correlates of confidence for committed
but not for observed decisions in frontocentral EEG activity
resembling the ERN involved in error detection (23) and in
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frontoparietal activity resembling the centroparietal positivity in-
volved in evidence accumulation (34). To address the possibility
that early correlates of confidence in observed decisions do not
appear in event-related potentials but involve multivariate elec-
trophysiological patterns, we built a decoder of confidence based
on whole-scalp EEG. Coherently with the univariate results de-
scribed above, our decoder could explain confidence better than
chance level in the time vicinity of committed decisions (96 ms
postresponse), while significant decoding performance was only
attained 356 ms after observed decisions. The absence of early
correlates of confidence in the observation condition was expected
as participants could not possibly assess first-order accuracy before
perceiving the observed decision (refs. 16, 35, and 36; see SI Ap-
pendix, Fig. S6 for an analysis of lateralized readiness potentials).
Of note, the output of the confidence decoders still explained
confidence when considering only correct responses and were thus
not solely driven by dichotomic error detection (23, 26).
We then examined the neural substrate of early and late EEG

correlates of confidence by assessing their BOLD covariates
through the fusion of EEG and fMRI data (37). For that, we
parametrically modulated the BOLD signal using the output of
the confidence decoders based on whole-scalp EEG, thereby
obtaining a time-resolved description of fMRI data (29). This
method allowed us to constrain our search to neural events oc-
curring in the vicinity of the committed/observed first-order re-
sponse, contrary to traditional fMRI analysis in which the BOLD
activity related to confidence may be contaminated by prereq-
uisites of confidence computation (e.g., quality of numerosity
representation and alertness), as well as its by-products (e.g., the
act of reporting confidence on the scale). In the active condition,
we found that activity in the pMFC, IFG, MFG, and insula was
negatively related to decoded confidence both during the early
and late decoding window. These regions are likely to relate to
early error processing based on the monitoring of errors/conflicts
surrounding the first-order response (refs. 38–41; see ref. 42 for a
review). Furthermore, Murphy et al. (43) showed that similar
error-related feedback signals from the pMFC informmetacognitive
judgments through the modulation of parietal activity involved in
evidence accumulation. Other regions including the IPL, precentral
cortex, and aPFC were found specifically in the late decoding
window, which hints at their involvement in late processes at play
for the computation of graded confidence estimates (44, 45).
In the observation condition, the only region coactivated with

late electrophysiological correlates of confidence was the left IFG,
adjacent to the cluster we found in the active condition. This
suggests the role of left IFG operating similarly around 300 ms
whether a decision is committed or observed. The IFG shows
common activity between action execution and observation (46).
One could argue that our behavioral results are influenced by the
choice of presenting a hand instead of simply highlighting the left
or right stimulus. One previous study showed that disrupting the
IFG impaired action understanding only when a hand was dis-
played (compared to a dot; ref. 47). However, in our study, the
difficulty of the task does not stem from the understanding of the
action but from the metacognitive evaluation of perceptual evi-
dence. We thus favor a role of the IFG in transforming sensory
evidence into confidence. Indeed, the IFG was shown to be in-
volved for domain-general confidence (48). It is also involved in
multisensory integration to form a decision (49) and its functional
connectivity with sensory regions is modulated by sensory evidence
(50). In our study, we show that when dissociating confidence from
perceptual evidence, the IFG still tracks confidence, contrarily to
other regions such as the pMFC or the aPFC.
By contrast to decision-independent activations in the IFG,

activity in the aPFC—commonly referred to as a key region for
confidence (51–57)—and interior insula was negatively related to
confidence in committed decisions. This relation was significantly
stronger in the active compared to the observed decision revealing

that these regions may underlie a putative role in linking first-
order decisional signals allowing early error detection to inform
fine-graded confidence estimates derived from the quality of per-
ceptual evidence (53). A recent study also found evidence that the
aPFC was more activated during confidence rating than during
decision making (58). Beyond error detection, the aPFC could
operate by linking other sources of information to inform confi-
dence, including the history of confidence estimates over past
trials (59). Although this claim deserves further investigations, it
extends a recent proposal by Bang and Fleming (60) arguing that
the aPFC is involved in reporting rather than computing confi-
dence estimates per se. All regions activated in the EEG-informed
fMRI analysis were replicated in a standard fMRI analysis and are
in accordance with a recent meta-analysis of confidence-related
BOLD activations (61).

Conclusions
We combined psychophysics, multimodal brain imaging, and
computational modeling to unravel the mechanisms at play when
monitoring the quality of the decisions we make, in comparison
to equivalent decisions we observe. Our behavioral and modeling
results indicate that committing to a decision leads to increases
in metacognitive performance, presumably due to the constraint
of evidence accumulation by first-order decisions. The compar-
ison of confidence judgments in active and observed decisions is
constrained by the inherent differences that exist at the first-
order level (e.g., the presence of a motor action for active but not
for observation first-ordered decisions or the presence of a visual
cue indicating the observed response only). We considered this
comparison meaningful as all possible first-order parameters
were equated between conditions. However, even under constant
perceptual evidence, this comparison relies on the postulate that
first-order performance itself is held constant between condi-
tions, an assumption which remains latent as by definition it
cannot be measured in the observation condition.
This is why future studies on decisional and postdecisional

contributions to confidence judgments may also manipulate
postdecisional evidence, leaving first-order performance intact to
avoid confounding variables that may jointly influence first- and
second-order behavior. Here, we mitigated the risk of having our
results confounded by differences in terms of first-order processes
by focusing on the neural origins of confidence after the first-order
decision was made using a correlational approach. By focusing the
analysis of neural signals on processes independent from decision
making, we isolated two main brain regions: the IFG as a key
region contributing to confidence in both committed and observed
decisions and the aPFC as a region related to confidence specif-
ically when confidence was congruent with decisional signals.

Materials and Methods
Experimental Model and Subject Details. The experimental paradigm, sample
size, and analysis plan detailed belowwere registered prior to data collection
using the Open Science Framework (https://osf.io/a5qmv).

Twenty-five healthy volunteers (12 females, mean age = 24.6 ± 1.43 y)
from the student population at the École Polytechnique Fédérale de Lau-
sanne took part in this study in exchange for monetary compensation (20
Swiss francs per hour). All participants were right-handed, had normal
hearing and normal or corrected-to-normal vision, and no psychiatric or
neurological history. They were naive to the purpose of the study and gave
informed consent. The study was approved by the ethical committee of the
canton of Geneva, Switzerland (Commission Cantonale d’Ethique de la
Recherche study no. 2017-00014). Five subjects were excluded from the anal-
ysis: Data from three participants were not analyzed due to technical issues
during recording (high electrode impedance preventing data collection for
safety reasons) and two participants were excluded as they could not perform
the first-order task fast enough. The sample size was predefined based on
power analyses conducted on pilot data, leading to a power of 0.88 (95% CI =
0.80, 0.94) with a sample size of 25 participants.
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Methods.
Experimental paradigm. All stimuli were prepared and presented using Python
2.7. Each trial started with the display of a 4° by 4° fixation cross presented for
500 to 1,500 ms (uniform random distribution, optimized apriori to maxi-
mize design efficiency; see ref. 62). Then two square boxes (size 4° by 4°)
situated on each side of the fixation cross (center-to-center eccentricity of 8°)
were flashed for 60 ms. In total, the two boxes contained 100 dots (diameter
0.4°) distributed unequally among them. Boxes and dots were displayed at
maximum contrast on a black background. In the active condition, partici-
pants were asked to indicate which box contained most dots by pressing a
key in less than 500 ms (first-order task). Responses slower than 500 ms were
discouraged by playing a loud alarm sound. In the observation condition,
participants were instructed to observe the image of a hand (6° by 6°) per-
forming the first-order task by appearing on the side of the screen corre-
sponding to one of the two boxes. They were told that the hand was
controlled by a computer performing at about the same level as them to
discriminate the box containing most dots. Responses in the observed con-
dition corresponded to those in the active condition in a shuffled order, so
that accuracy and RT were kept constant across conditions (discussed below).
After the first-order response (button press or visual hand onset), a mask
composed of two boxes filled with 100 dots each appeared in order to in-
terrupt perceptual processing and ensure that the two conditions were
similar in terms of visual input. After a period of time corresponding to 2 s
from stimulus onset, a visual analog scale appeared instead of the mask, and
participants were asked to use it to report how confident they were about
their own first-order response (active condition) or about the observed first-
order response (observation condition). The scale was shown for 6.5 s, with
marks at 0 (certainty that the first-order response was erroneous), 0.5 (un-
sure about the first-order response), and 1.0 (certainty that the first-order
response was correct). A cursor moved back and forth along the scale at slow
speed (3°/s), and participants had to press the left button at any moment
when the cursor was at their chosen confidence level. The initial position
and direction of the cursor was randomized and always passed through each
position of the scale at least twice so that participants had one more chance
were they to miss the first pass of the cursor.

Each experimental run was divided into four blocks of 12 trials, alternating
between active and observation blocks. Each run started with an active block,
and first-order responses in that block were shuffled and replayed in the
following observation block. Importantly, the relation between RT, choice,
and perceptual evidence was kept, as we shuffled trial order only. The ex-
periment comprised six experimental runs, totaling 144 trials per condition.
During the active condition, the task difficulty was adjusted by an automatic
one-up/two-down staircase procedure to make the first-order performance
rate converge to 71%. The perceptual difficulty (defined as the difference in
the number of dots between the two boxes) was decreased by one after one
incorrect response and increased by one after two consecutive correct re-
sponses. The perceptual difficulty was pretuned to individual perceptual
abilities by performing 96 trials of the active condition without confidence
ratings prior to entering the scanner.
Data collection. EEG data were recorded at 5,000 Hz using a 63-channel setup
(BrainAmp direct current amplifier; BrainProducts GmbH) synchronized to
the scanner’s internal clock. Impedances of all channels were kept below
10,000 ohms before entering the scanner. BOLD signal was recorded in a 3T
Prisma Siemens scanner with a 32-channel coil. We used an echo-planar
imaging sequence (repetition time [TR] = 1,280 ms, echo time [TE] = 31 ms,
flip angle [FA] = 64°) with 4x multiband acceleration. We acquired 64 slices
of 2- × 2- × 2-mm voxels without gap (field of view [FOV] = 215 mm) with
slice orientation tilted 25° backward relative to the AC–PC line so as to in-
clude the cerebellum. Structural T1-weighted images were acquired using a
MPRAGE sequence (TR = 2,300 ms, TE = 2.32 ms, FA = 8°) with 0.9- × 0.9- ×
0.9-mm voxels (FOV = 240 mm).
Quantification and statistical analysis.

Behavioral analysis. Trials in which no first-order (2.0%) or second-order
response (2.9%) was provided were excluded. RT were defined as the time
elapsed between stimulus onset and response button press (active condition)
or onset of the visual hand (observation condition). Trials with RT smaller than
200 ms or higher than 500 ms (due to the loud sound) were also excluded
from further analysis (13.1%). Finally, trials from the observation condition
during which the participant mistakenly pressed the response button were
also excluded (12.6%). As the exclusion criteria are notmutually exclusive, this
resulted in a final number of trials of 119 ± 5 trials in the active condition and
118 ± 5 trials in the observation condition, out of 144 possible trials.

All continuous variables were analyzed using mixed-effects models, using
the lme4 (63) and lmerTest (64) packages in R. Inclusion of random effects
was guided by model comparison and selection based on maximum

likelihood ratio tests. The significance of fixed effects was estimated using
Satterthwaite’s approximation for degrees of freedom of F statistics (65). All
statistical tests were two-tailed. Metacognitive performance was modeled
using mixed-effects logistic regression between first-order accuracy and con-
fidence, with random intercept for participants and random slope for confi-
dence. The slope of the model was interpreted as a metric for metacognitive
performance (i.e., capacity to adjust confidence based on first-order accuracy).
We chose this framework to analyze confidence as it is agnostic regarding the
signals used to compute confidence estimates (i.e., decisional compared to
postdecisional locus; see refs. 4 and 8), and the mixed-model framework allows
analyzing raw confidence ratings even if they are unbalanced (e.g., in case
participants do not use all possible ratings).

Behavioral modeling. Our models of confidence build upon a bounded
evidence accumulation model predicting first-order RT and choice accuracy;
for every time point t (sampled at a frequency of 1,000 Hz), each accumulator
corresponded to the cumulative sum of independent draws from a normal
distribution with unit variance and mean equal to the drift rate (v and −v for
congruent and incongruent choices). The decision bound was modeled as a
fixed threshold B. Nondecision times were modeled by a normal distribution
with mean tnd and SD tndstd. To model early errors, we added starting point
variability; we allowed each accumulator to start in a nonzero state, uni-
formly distributed between 0 and zvar times the decision bound B.

At each iteration of the optimization procedure (discussed below), we
generated n = 1,000 surrogate trials consisting in the state of the two ac-
cumulators over time and corresponding choice and RT. All parameters
were fitted for the active condition, through a Nelder–Mead simplex log-
likelihood maximization, comparing observed and simulated distribution of
RT with a Kolmogorov–Smirnov test. To separate correct and error trials, the
sign of RT was inverted for error trials. We constrained the parameters to
positive values by applying an exponential transformation of the variables
f(x) = exp(x), except for nondecision time and nondecision time variability
which were constrained to [0,1] s by a sigmoid transformation f(x) = 1/(1 +
exp(−x)). We repeated the procedure with values of zvar between 0 and 1
(steps of 0.1) and choose the model resulting in the lowest log likelihood.

As the state of the evidence accumulation is unconstrained, we used a
second stage fitting procedure to map these values to the 0-to-1 confidence
scale. For the active condition, we sampled evidence for confidence as the
state of the winning accumulator (n = 1,000) at a latency corresponding to
individual peak performance in EEG-decoded confidence plus an 80-ms motor
component corresponding to the time between the decision and the actual
motor response (66). To map the evidence to a 0-to-1 confidence scale, we
used a sigmoid function:

C= expððX1E+X2ÞÞ=ð1+ expðX1E+X2ÞÞ,

with C the resulting simulated confidence, E the accumulated evidence, and
X1, X2 two free parameters corresponding to the sensitivity and the bias of
the mapping.

For the observation condition, we assumed that confidence was readout
from an identical evidence accumulation process, albeit disconnected from
the computer’s decisions (and RT). We thus simulated an additional 1,000
surrogate trials for the observation condition but time-locked the post-
decisional readout of confidence to the shuffled RTs from the active con-
dition. The confidence readout was based on the accumulator with highest
value, thus assuming a covert decision at the time of the readout. We then
fitted the parameters of the mapping as in the active condition but inversing
confidence (c′ = 1 − c) when the chosen accumulator deferred from the
computer’s decision.

EEG preprocessing. MR-gradient artifacts were removed using sliding
window average template subtraction (67). The TP10 electrode on the right
mastoid was used to detect heartbeats for ballistocardiogram artifact re-
moval using a semiautomatic procedure in BrainVision Analyzer 2. Data
were then filtered using a Butterworth, fourth-order zero-phase (two-pass)
bandpass filter between 1 and 10 Hz, epoched [−0.2, 0.6 s] around the re-
sponse onset (i.e., the button press in the active condition or the appearance
of the virtual hand in the observation condition), rereferenced to a common
average, and input to independent component (IC) analysis (68) to remove
residual ballistocardiogram and ocular artifacts. In order to ensure numerical
stability when estimating the independent components, we retained 99% of
the variance from the electrode space, leading to an average of 19 (SD = 6)
components estimated for each participant and condition. ICs were then
fitted with a dipolar source localization method (69). ICs whose dipole lied
outside the brain, or resembled muscular or ocular artifacts were eliminated.
A total of 8 (SD = 3) components were finally kept. All preprocessing steps
were performed using EEGLAB and in-house scripts under MATLAB (The
MathWorks, Inc.).
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EEG univariate analysis. EEG-evoked potentials were analyzed at the single-
trial level using a mixed-effect linear regression for each channel and time
point. Eachmodel included confidence or uncertainty as dependent variables,
with first-order RT and perceptual evidence (i.e., the difference in number of
dots between the right and left side of the screen) as fixed effects, and a
random intercept by subject. The significance of fixed effects was estimated
using Satterthwaite’s approximation for degrees of freedom of F statistics,
with familywise error correction for multiple comparisons. No random slopes
were added to avoid convergence failures. All analyses were performed using
the tidyverse (70) environment in R (R Core Team).

EEG multivariate analysis. We derived a low-dimensional description of the
electrophysiological correlates of confidence using multivariate pattern
analysis on single trials. We built independent linear models in the temporal
domain for each single sample within the epochs’windows, with all of the ICs
retained as features. The models were evaluated using leave-one-out cross-
validation to avoid overfitting, and goodness of fit was measured by R2. The
leave-one-out cross-validation models were also used to define the time
point of maximum decoding capability within two time windows of interest
([0 to 200] and [200 to 450] ms postresponse). Once this time point was
obtained for each window and participant, the respective EEG values esti-
mated from the linear regressor were fed to an EEG–fMRI informed analysis
(discussed in the next section).

Chance level for decoding performance was computed using permutation
statistics corrected for multiple comparisons, by repeating the whole eval-
uation process 1,000 times while shuffling confidence rating across trials.
An empirical, corrected distribution of the null hypothesis under which
R2 was not significantly different from zero was built by taking, for each
permutation, the maximum statistics of the R2 throughout the whole epoch
window evaluated. The corrected measure of chance level was then esti-
mated based on the desired confidence of this distribution (fixed at = 0.05).

EEG-informed fMRI analysis. The functional scans were realigned, resliced,
and normalized to Montreal Neurological Institute space using the flow
fields obtained by diffeomorphic anatomical registration through exponential
linear algebra (DARTEL; ref. 71). The normalized scans were smoothed using a
Gaussian kernel of 5 mm full width at half maximum. The preprocessing was
done using SPM12. To find brain regions coactivated with decoded con-
fidence, we built a generalized linear model consisting of two stick functions
(one for each condition), parametrically modulated by four variables: the
output of the EEG confidence decoder at two time points postresponse cor-
responding to peak R2 confidence decoding during the early (0 to 200 ms) and
late (200 to 450 ms) time windows, the RT, and the numerosity difference of
the trial. Empirical cross-correlation between regressors confirmed limited
colinearity for both the active (max(abs(R)) = 0.31 ± 0.02) and observation
condition (max(abs(R)) = 0.27 ± 0.02). Excluded trials as defined in the be-
havioral analysis section were modeled by two separate regressors (one for
active and one for observation) and their spatial and temporal derivatives. We
added six realignments parameters as regressors of no interest. All second-
level (group-level) results are reported at a significance-level of P < 0.05 using
cluster-extent familywise error (FWE) correction with a voxel-height threshold
of P < 0.001. We used the anatomical automatic labeling atlas for brain
parcellation (72).
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