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The emerging field of graph signal processing (GSP) allows 
one to transpose classical signal processing operations (e.g., 
filtering) to signals on graphs. The GSP framework is gener-

ally built upon the graph Laplacian, which plays a crucial role in 
studying graph properties and measuring graph signal smooth-
ness. Here, instead, we propose the graph modularity matrix as 
the centerpiece of GSP to incorporate knowledge about graph 
community structure when processing signals on the graph 
but without the need for community detection. We study this 
approach in several generic settings, such as filtering, optimal 
sampling and reconstruction, surrogate data generation, and de-
noising. Feasibility is illustrated by a small-scale example and a 
transportation network data set as well as one application in hu-
man neuroimaging where community-aware GSP reveals rela-
tionships between behavior and brain features that are not shown 
by Laplacian-based GSP. This work demonstrates how concepts 
from network science can lead to new, meaningful operations on 
graph signals. 

Introduction
Network science is a multidisciplinary field that accounts for 
complex structures of data, providing new interpretations of 
datasets in diverse scientific disciplines, ranging from the hu-
manities to physics and biomedicine. Naturally, the analysis 
of network data relies on methods from graph theory but also 
from statistical mechanics, statistical inference, advanced vi-
sualization, and domain knowledge from applied fields. More 
recently, GSP emerged as a new research theme at the intersec-
tion between signal processing and graph theory, with a par-
ticular focus on processing graph signals that associate values 
to the nodes of the graph. In many cases, the graph Fourier 
transform (GFT) was defined by the eigendecomposition of 
the graph Laplacian; i.e., the eigenvectors of the Laplacian 
are considered graph Fourier basis vectors, and the associated 
eigenvalues are graph frequencies [1]. Such a GFT can then 
generalize various classical signal processing tools to graphs 
[1], [2], such as the wavelet transform [3], as well as theoretical 
considerations about graph uncertainty principles [4].
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The graph Laplacian defines the second-order derivative on 
the graph and, therefore, is linked to smoothness, but alterna-
tive operators can explore other properties of graphs and graph 
signals. For example, community structure is a particularly 
interesting concept from network science where nodes inside a 
community are more strongly interconnected than with the rest 
of the graph [5], [6]. Community structure turned out to be pres-
ent and relevant for a broad range of applications in sociology [7], 
transportation [8], biology [9], and neuroscience [10]. In practice, 
communities can be found by maximizing the modularity index 
that evaluates the density of connections within clusters against a 
degree-matched graph where no cluster preference exists [11]. In 
Laplacian-based spectral clustering, the Laplacian eigenvectors 
with the smallest nonzero eigenvalues are considered because 
they optimize the convex relaxation of the graph cut criterion 
[12]. Similar to this, one approach for community detection is to 
compute the eigendecomposition of the modularity operator and 
then consider the eigenvectors with the largest eigenvalues [5]. 

In this article, we set the foundations for community-aware 
GSP by introducing the modularity operator at the heart of the 
framework. This allows one to define GSP operations that are 
aware of the graph community structure but without the need 
of explicit community detection.

GSP
We consider an undirected graph, G N, ,E= ^ h  with node set 
N  of cardinality N and edge set E. G  can also be represented 
by the N N# weighted adjacency matrix ,A  whose entry a ,i j  is 
nonzero and indicates the edge weight for an edge E,i j !^ h  that 
runs from node i to node .j  For an undirected graph, A is sym-
metric; i.e., it holds that a a, ,i j j i=  and .A A= R  We will refer to a 
subgraph, G N E, ,S S S= ^ h  by its node set N NS 1  and assume 
ES  containing all edges ,i j^ h between nodes in N .S  A graph 
signal associated with G  is a vector, ,x RN!  that attributes val-
ues xi  to the nodes , , , .i N1 2 f=  The neighborhood of node i
is defined as the set of nodes Ni  connected to it. A graph shift 
operator is defined as a linear operator on the space of signals, 
such that each entry of the shifted graph signal is a linear com-
bination of input signal values, which often only involves neigh-
boring entries to the one at hand [2]. Therefore, the shift operator 
can be represented by a symmetric matrix, ,S RN N! #  that as-
sociates weights s ,i j  to edges ,i j^ h such that .x Sxshift =  We will 
consider graph operators H  that are shift-invariant under S and, 
thus, satisfy H Hx xS S=  and can be represented as a matrix 
polynomial of S [13], i.e., /H ( )p h ,S Sk k

kK
0= = =  with maxi-

mum degree of N 1–  due to the Cayley–Hamilton theorem.
The eigendecomposition of the shift operator provides 

the factorization

,S U UK= R (1)

where [ , , ]U u uN1 f=  contains the N eigenvectors and K =
, ,diag N1 fm m^ h is a diagonal matrix with the corresponding 

eigenvalues. This allows us to write the graph operator H
alternatively as H ( )p diag ,S U U U Uh H= = =R Ru u^ h  where 
the entries /h p hK

i i k k i
k

0m m= = =
u ^ h  of Hu  yield the spectral 

characterization of the graph operator. For the perspective of 

GSP, a given shift operator S defines the GFT of the graph 
signal x  as (1):

, ,andx U x x Ux= =Rt t (2)

where U  is defined as in (1) and xt  contains the spectral coef-
ficients of the GFT. The graph operator H  can then be imple-
mented elegantly in the graph Fourier domain as

H ( ) ,p px x S x U U x UHxout K= = = =R u t^ h (3)

which allows one to directly specify Hu  in terms of a spec-
tral window (e.g., low-pass, bandpass, and high-pass) for graph 
filtering operations [13]. Beyond filtering, other operations 
have been extended to the graph domain, such as stationarity 
analysis [14], wavelet transforms [3], and convolutional neural 
networks [15].

One common choice for S  is the weighted graph adja-
cency matrix A  [2], [16]. Another one is the Laplacian ma -
trix ,L D A= -  where , , ,k k kdiagD N1 2 f= ^ h is the degree 
matrix with / ,ak ,

N
i j i j1= =  the weighted degree [3], [17]. For 

the latter, the eigenvalues are sometimes referred to as graph 
frequencies and reflect smoothness in terms of the signal vari-
ation norm of the corresponding eigenvectors [13]. For a graph 
signal ,x  its smoothness is measured by the quadratic form

,q a x x xx Lxx ,L i j
i j

i j i
i

N

i
2

1

2m= - = =R

! =

t^ ^h h/ / (4)

which shows that measuring smoothness in the spectral do-
main can be done by weighting with the graph frequencies. 
The example in Figure 1 illustrates the Laplacian eigende-
composition for a simple graph and will be discussed in more 
detail later.

Community structure
Communities refer to dense subgraphs P N,c 1 , , ,c C1 f=

which are well separated from each other, and manifested at 
the “mesoscale” level between local nodal and global graph 
properties [5]. A large number of measures have been proposed 
with the purpose of discovering the community structure of 
an observed graph. For our aim, it is insightful to first revisit 
the graph Laplacian as it relates to one aspect of community 
structure, which is quantifying the separation between sub-
graphs. Specifically, the splitting of a graph into two mutually 
exclusive subgraphs P1  and P2  can be encoded by a vector, 
,s  whose entry s 1i =+  or 1-  indicates whether a node, ,i  be-

longs to the first or second subgraph, respectively. The graph 
cut size—the number of connections running between the two 
subgraphs—can then be related to the Laplacian as

.R a
s s

a
2
1

2
1

2
1

4
1 s Ls,

,
,i j

s s

i j

i j
i j

,

i j

i j

= =
-

= R

!

c m/ / (5)

Optimizing R by convex relaxation of s  (i.e., allowing the en-
tries to take any value) leads to the well-known spectral clus-
tering [12]. The eigenvector of L  with the smallest nonzero 
eigenvalue (also known as the Fiedler vector) provides the 
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solution to the bipartition problem. Recent work has also used 
graph wavelets to enable multiscale subgraph discovery [18].

The network-science view on community structure considers 
the adjacency matrix as a realization of an underlying stochastic 
model that defines edge probabilities within and between sub-
graphs. Stochastic block models (SBMs) [19] are the best-known 
generative models that can express assortativity (preferential 
connectivity within a node’s subgraph, leading to community 
structure) but also dissortativity (preferential connectivity to a 
subgraph to which the node does not belong) and core–periph-
ery structure (densely interconnected core and periphery to the 
core). SBMs can be fitted by statistical inference to an observed 
graph or can generate random graphs with predefined structure. 
Modularity, denoted by ,Q  is a specific graph measure derived 
from stochastic considerations that quantifies the density of sub-
graphs by comparison to a null model:

( ) ( )

,

Q a z
s s

a z

M

2
1

2
1

2
1

4
1

2
s A kk s

, ,
,

, ,i j i j

s s

i j

i j
i j i j

Q

,
i j

i j

= - =
+

-

= -
R

R

=

c

c

m

m

1 2 3444 444

/ /

(6)

where s is a vector encoding the graph partition into two com-
munities, /z k k M2,i j i j=  is the edge probability between nodes 
i and j  according to the null model, / /M k 2N

i i1= =  is the total 
edge weight, and Q  is the modularity matrix. Choosing this 

null model allows for comparisons against a reference that pre-
serves the graph degree distribution (i.e., / /a z, ,

N N
i j i jj j1 1== =

for , ),,i N1 2f=  with edges placed evenly [11]. Hence, Q
encodes the difference between edge densities in the origi-
nal graph and in a degree-matched null model. This model is 
known as the configuration model and is commonly used to de-
fine ,Q  but other null models can be considered [11], [20], [21].

The solution to maximizing Q  is found by spectral clus-
tering using the eigenvectors of Q  with the largest eigenval-
ues, identifying “modules” with high assortativity. Similarly, 
“antimodules” with high dissortativity can be found by 
minimizing modularity. In fact, Q  is a rank-one perturba-
tion of ,A  and, consequently, Weyl’s inequality informs us 
that eigenvalues ( )

i
Q
m  and ( )

i
A
m  of Q  and A  are interleaved, 

i.e., ,( ) ( ) ( ) ( ) ( ) ( )
N N1 1 2 2

A Q A Q A Q
g$ $ $ $ $ $m m m m m m  where the se -

quences of eigenvalues are in descending order. This result 
confirms that the modularity matrix of any simple undi-
rected graph (that is, without self-loops) has both positive 
and negative eigenvalues [22]. The existence of both posi-
tive and negative eigenvalues implies that such a graph can 
be analyzed in terms of modular and antimodular spectral 
components of .Q  Eigenvectors with zero eigenvalues are 
modularity neutral; e.g., the constant vector 1 is in the kernel 
of Q  due to .1 0Q $ =

Further illustration of the differences between spectral 
properties of L and Q is provided in Figure 1 for a toy graph 

u1
(L)

u1
(Q)

u2
(L)

u2
(Q)

u3
(L)

u3
(Q)

u10
(L)

u10
(Q)

L-Eigenvalues Q-Eigenvalues

Smoothness of
Q-Eigenvectors

Modularity of
L-Eigenvectors

3

2

1

0

–1

–2

–3

M
od

ul
ar

ity

Modular

Antimodular

Nonsmooth

Smooth

2 4 6 8 10
Eigenvector Index

(a)

(b) (c)

10

8

6

4

2

0

S
m

oo
th

ne
ss

FIGURE 1. The eigenvalues and eigenvectors of the graph Laplacian (L) and modularity (Q) matrices. (a) Underlying graph structure (top), corresponding 
L (blue) and Q (red) eigenspectra (solid lines), and quadratic forms of smoothness and modularity (dotted lines). (b) Corresponding degree-matched null 
model used to compute Q (6). (c) Selected eigenvectors of L (blue) and Q (red) matrices. The value and sign of eigenvectors’ entries are reflected by the 
height and up-down direction, respectively, of the vertical bars.
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with N 10=  nodes, 5 of which form a strong (fully connected) 
community and the others are weakly connected. Figure 1(a)
shows the graph and a plot of eigenvalues ( )

i
L
m  (blue solid line) 

and ( )
i
Q
m  (red solid line) in the conventional ascending and 

descending order, respectively. To better highlight the differ-
ences between the corresponding eigenvectors u( )

i
L  and ,u( )

i
Q

respectively, we also plot smoothness u Lu( ) ( )
i i
Q QR

 of modular-
ity eigenvectors (blue dotted line) and modularity u Qu( ) ( )

i i
L LR

of Laplacian eigenvectors (red dotted line) (the quadratic form 
associated with the modularity matrix will be formally intro-
duced in the “Community-aware GSP” section). Figure  1(b)
shows the degree-matched null model graph / .M2kkR  Several 
eigenvectors u( )

i
Q  and u( )

i
L , , ,i 1 2 3 10=^ h are presented in Fig-

ure 1(c). Although u( )
i
L  values are optimized for smoothness, 

they show high values at specific nodes [except the constant 
eigenvector ,u( )

1
L  with zero eigenvalue]. Therefore, the Fiedler 

vector, ,u( )
2
L  with lowest graph cut size, does not provide a cor-

rect partitioning. The eigenvectors of ,Q  though, are optimized 
for the modularity index, and u( )

1
Q  provides a conspicuous split 

between the communities. Q also has a constant eigenvector, 
,u( )

4
Q  with zero smoothness. Curiously, the modularity of u( )

3
L  is 

actually the highest among the Laplacian eigenvectors but still 
does not provide a convincing partitioning. Eigenvectors of Q
with negative eigenvalues, such as ,u( )

10
Q  are driven by smooth-

ness across modules and signal variability within modules.

Community-aware GSP
The Laplacian operator L  is the common choice of shift opera-
tor in GSP [1], [15], [16] from which the GFT and all operations 
are derived. Instead, we propose to use the modularity matrix 
Q as the shift operator. Interestingly, the modularity matrix is 
a nonlocal operator, since the second term that originates from 
the null model “spreads out” the signal over the whole graph 
according to the degree distribution—and not only the local 
neighborhood. Based on this generalized notion of shift opera-
tor, we will obtain GSP operations that become aware of the 
graph community structure but without the need for explicit 
community detection. Given a graph signal ,x  its modularity is 
computed by the quadratic form

( )q a x x
a

a x

.x x Qx,
, ,

,

,
,

Q i j
i j

i j
i j

i j

i j
i j

i
2

= - = R
c m

/ /
/

(7)

Since Q is not positive semidefinite, ( )q xQ  can take positive 
and negative values, depending on whether signal variations 
follow modular or antimodular organization [11]. Thus, the 
quadratic form ( )q xQ  is not a variation norm of the graph sig-
nal ,x  which is needed for some GSP operations, such as regu-
larization. We overcome this limitation by introducing

( ) ,q x x Q xQ = R ++ (8)

based on ,Q I Qmax
( )Q $m= -+  where ( )Q

maxm  is the largest eigen-
value of Q and I  is the identity matrix. Since Q+  is positive 
semidefinite, q xQ+ ^ h is a nonnegative function of .x  A low 
value of q xQ+ ^ h reflects that the graph signal x  follows the 

modular organization of the graph. On the contrary, a high 
value of q xQ+ ^ h is obtained for graph signals reflecting the 
antimodular organization. In other words, q xQ+ ^ h can be in-
terpreted as the modularity-based graph signal variation of .x
Minimization of this metric is achieved by the eigenvectors 
of Q+  that define the spectral basis of a GFT exploiting the 
modularity of graph signals. Since Q+  and Q have the same 
eigenvectors with eigenvalues that are reversed and shifted, 
the eigenvectors of Q define a proper GFT basis that is built 
up according to modularity/antimodularity. Similarly, denot-
ing Q Q I( )

min
Q
$m= --  allows one to define a variation norm, 

q ,xQ-^ h  that encodes antimodular organization in low values 
while exploiting the same spectral basis, since Q-  also has the 
same eigenvectors as .Q

We now illustrate the utility of community-aware GSP tools 
using data from the OpenFlights Airports Database (https://
openflights.org/data.html), which consists of 3,281 airports and 
67,202 routes [Figure 2(a)]. Graph nodes denote airports that are 
connected by an undirected binary edge if there exists an airline 
route between them. Node colors reflect a graph signal, com-
puted as the sum of both departing and incoming flights at each 
airport, which was then demeaned and scaled to unit variance. 
We considered a ground truth community structure based on the 
continent to which each airport belongs, resulting in a partition 
of the nodes into the following six communities: Europe, Africa, 
Asia, Oceania, North America, and South America [8]. The inset 
of Figure 2(a) depicts the total number of flights leaving from or 
arriving at the airports in the eastern part of the North American 
continent. It can be seen that the Atlanta airport (ATL) has more 
traffic than John F. Kennedy Airport (JFK) in New York and that 
the vast majority of airports have very low traffic.

Filtering
From the general definition of GSP filtering proposed in (3), 
community-aware filtering uses the modularity-based spectral 
domain with a spectral window :hu

,diagx U U xhout

H

= R

=

u

u

^ h> (9)

where U contains the eigenvectors of .Q  While low- and high-pass 
filtering are natural operations when using the Laplacian GFT, 
modularity-based GFT allows one to define a modular filter 
(i.e., hu  has nonzero weights on spectral components with pos-
itive eigenvalues) or an antimodular filter (i.e., hu  only has non-
zero weights on spectral components with negative eigenvalues).

The community-aware filtering was applied to the graph 
signal of Figure 2(a) and was compared to a Laplacian-based 
filtering. The passband, that is, the range of eigenvalue indices 
with nonzero filter weights, of the modular (antimodular) filter 
includes all 1,125 (1,159) strictly positive (negative) eigenvalues 
of ,Q  and the smooth (nonsmooth) filter was matched so as 
to capture the same number of spectral Laplacian components 
[Figure 2(b)]. Within a passband [ , ],N N1 2  the ith entry of 
hu  was set to //i k N

N
k1

2m m=  for modular, antimodular, and 
nonsmooth filterings and to //1 i k N

N
k1

2m m- =  for the smooth 
filtering, which accounts for the strength of modularity or the 
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FIGURE 2. The application of the GSP framework on OpenFlights. (a) Graph nodes correspond to airports, and an edge connects two nodes when at least 
one flight connects the two corresponding airports. Graph signal (number of flights at each airport) is reflected in nodes’ colors. The inset shows a zoom 
on JFK and ATL airports. (b) Eigenvalues of the graph Laplacian (blue) and modularity matrix (red). Dashed gray lines and arrows represent limits of 
the filtering passbands, left for modular and smooth, right for antimodular and nonsmooth. (c) Laplacian filtering of the graph signal shown in panel (a) 
yields smooth and nonsmooth signals, and (d) community-aware filtering yields modular and antimodular signals. The value of within-community vari-
ability ( )CT  is shown for the four filtered signals.

smoothness of the components. Finally, for each filtered sig-
nal, we computed a measure of within-community variability, 
denoted ,CT  defined as the standard deviation of the filtered 
signal values within a ground truth community, averaged over 
the six communities.

As shown in Figure 2(c), the Laplacian-based filtering 
extracts smooth and nonsmooth parts of the graph signal. The 
smooth signal tends to capture widespread fluctuations over 
the graph, whereas the nonsmooth signal contains rather local-
ized peaks that partially correspond to the extreme values in 
the original signal (e.g., ATL and JFK airports), suggesting 

that the underlying community structure is not a predominant 
feature encoded in Laplacian-filtered signals. In contrast, the 
modular signal detailed in Figure 2(d) reflects the community 
structure of the underlying graph by the clusters of high val-
ues in North America, Europe, and Asia. This effect is further 
supported by within-community variability CT^ h that is lower 
in the modular signal than in the smooth one. In other words, 
modular-based filtering can be seen as promoting smoothness 
within communities. On the contrary, the antimodular signal 
promotes variability within communities, as this signal shows 
higher CT  than the nonsmooth signal.
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To further explore the roles of particular nodes in the differ-
ent filtering operations, we focus on two airports: ATL and JFK. 
While these two airports are both highly connected, as seen 
from Figure 2(a), they play different roles in the graph com-
munity structure. Indeed, ATL has a within-community z-score 
degree Zin^ h [9] of 8.98 and an outside-community z-score 
degree Zout^ h of 5.97, while for JFK, we have .Z 4 22in =  and 

. .Z 15 29out =  Therefore, ATL has stronger connections within 
its community than between communities, and vice versa for 
JFK. For Laplacian filtering, the signal values of both JFK and 
ATL are evened out in the smooth signal and stand out in the 
nonsmooth signal [insets of Figure 2(c)]. However, communi-
ty-aware filtering picks up differences between these airports 
by a relatively stronger value of JFK in the modular signal and 
of ATL in the antimodular signal [insets of Figure 2(d)]. Since 
modularity-promoting filtering favors smoothing within the 
communities, the value of the strongly within-community con-
nected ATL will be more reduced than that for JFK. The large 
value of ATL is captured in the antimodular signal, as it stands 
out with respect to values of its within-community neighbors. 
This suggests that the modular/antimodular signal identifies 
nodes with high values and strong intermodular/intramodular 
connectivity. Overall, the results reveal that community-aware 
filtering can attenuate or enhance values of nodes according to 
their connectivity within or between communities.

Finally, the need for the eigendecomposition of Q  in (9)
can be circumvented by implementing the filtering operation 
in the vertex domain by a polynomial matrix function, ( ),p Q
as suggested in (3), which is equivalent to applying the spectral 
window .pH K=u ^ h  To further improve computational effi-
ciency of filtering for large-scale but sparse graphs, one can 
break down the operation Qx  into / M1 2 ,Qx Ax kk x= - R^ h
where the first term is a sparse matrix–vector multiplica-
tion and the second term can be evaluated by consecutively 
computing k xR  and then multiplying the resulting scalar 
with / .M2k  Therefore, the dense matrix Q never needs to be 
stored explicitly. For an undirected graph with Ml edges and
N nodes, computing Ax  takes O M2 l^ h time and Lx  takes 
O ,M N2 +l^ h  (in big O notation). The term / M1 2 kk xR^ h  has 
complexity of O .N^ h  Consequently, Qx  takes O ,M N2 +l^ h
identical to .Lx  For a polynomial filter of order K applied to a 
large sparse graph, this reverts to O .KMl^ h

Optimal sampling and reconstruction
Finding the subset of nodes from which a signal can be opti-
mally reconstructed has been extended to the graph domain in 
the context of band-limited graph signals x Bx U U xR= = R

[4], where U  contains the eigenvectors of the shift operator 
and R is a diagonal matrix indicating the passband. The noisy 
graph signal ,y x n= +  with n  additive independent and 
identically distributed noise, is sampled into ,x Rys =  where 
the diagonal matrix R  indicates with 0’s and 1’s the sampled 
nodes. Reconstruction denotes the procedure of finding xrec

from ,xs  such that the mean squared error x xE 2
2

rec -8 B is 
minimized [4]. The minimization condition further extends to 
the choice of optimal sampling procedure, since sampling at 

specific nodes can limit the potential performance of the sub-
sequent reconstruction. One of the solutions [4] to the problem 
of finding (sub)optimal sampling and reconstruction defines 
sampling as finding R*  via

.argmaxR U R F
R

R= R* (10)

Solving (10) amounts to selecting nodes for the optimal sam-
pling subset for which the columns of UR R  have the highest l -2

norm. Given the graph signal xs  sampled at nodes defined in 
,R*  the reconstruction follows:

,x V V x1
rec sW= R- (11)

where V  and W  contain the eigenvectors and eigenvalues 
of BR BR* .

We explore how well the graph signal presented in Fig-
ure 2(a) can be reconstructed using this framework and con-
sidering either L  or Q as the shift operator. We set to 500 the 
number of nodes to be sampled and use a spectral band includ-
ing 200 components with lowest L^ h or highest Q^ h positive 
eigenvalues. The set of optimal nodes in these two cases is 
given in Figure 3.

The Laplacian-based sampling subset is composed of more 
peripheral nodes with low degree . . ,1 78 1 01!^ h  whereas the 
modularity-based sampling contains nodes with high degree 

. . ,53 12 43 61!^ h  which are important for inter- and intracom-
munity connectivity. Only two nodes were found to belong to both 
subsets. An interpretation for this is that while the Laplacian 
framework focuses on preserving values on nodes where that 
value is hard to predict due to their low connectivity, the mod-
ularity framework maximizes predictability of all nodes by 
selecting nodes with high degree. This is in accordance with 
the assumption that traffic at a well-connected airport could 
be a good predictor of the traffic at airports connected to it. 
Finally, the average reconstruction error is found to be signifi-
cantly lower ( . ,p 0 011  paired t test over nodes) for the modu-
lar-based framework than for the Laplacian-based framework 
(0.0001 ! 0.0002 versus 0.0006 ! 0.0037). This result sup-
ports the relevance of the modularity matrix as the shift opera-
tor rather than the Laplacian in applications where community 
structure is pertinent.

Surrogate data generation
Surrogates play an essential role in nonparametric statistical 
testing to provide data under the null hypothesis, i.e., random-
izing measurements while also preserving some properties. 
For instance, phase randomization preserves the moduli of the 
Fourier coefficients while their phases are randomized, lead-
ing to surrogate data with the same autocorrelation properties 
as the original data. This framework was extended to graph 
signals using the Laplacian, yielding surrogate data that 
preserve the smoothness of the original graph signal [23]. 
We propose to transpose this method to community-aware 
representations to preserve modular organization of a given 
graph signal. In particular, a community-aware surrogate sig-
nal xsurr  of the graph signal x  is given by
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,x UCxsurr = t  (12)

where xt  is the modularity-based GFT of x  and C  is a di-
agonal matrix with random entry 1 or ,1-  thereby preserving 
the modularity index of the original signal. The null distribu-
tion of any test statistic can then be obtained from multiple 
realizations of xsurr  and compared against its value for the 
empirical signal .x  This could be refined to a more specific 
null model by only changing the signs of (anti)modular com-
ponents, i.e., entries in C  corresponding to positive (negative) 
eigenvalues of .Q

We applied this framework to the signal of Figure 2(a) by 
permuting signs of 1) all Laplacian-based, 2) all modularity-
based, 3) only modular, and 4) only antimodular spectral coef-
ficients. For each case, we generated 10,000 surrogate samples 
that were used to test whether the original signal value is high-
er than expected under the null hypothesis. The test used an a
level of 0.05, Bonferroni corrected for multiple comparisons. 
In 1) and 2), no nodes were found with values significantly dif-
ferent from their surrogates, but when only randomizing mod-
ular (antimodular) components, 16 (2) airports revealed higher 
values than expected.

These airports had lower values of . .Z 0 35 0 16in !-^ h
than . . ,Z 0 18 0 03out !-^ h  indicating these nodes have stronger 
connectivity with other communities. Considering the results of 
the filtered signal values of JFK and ATL [Figure 2(d)], one could 
expect that high signal values at these nodes can be explained by 
the underlying community structure. However, surrogate testing 
showed they cannot be explained by community structure alone. 
Similarly, two “outlier” airports are identified when only ran-
domizing signs of antimodular spectral coefficients. The results 
illustrate the complementary roles of modular and antimodular 

parts to describe a graph signal. In the context of OpenFlights, 
this corroborates the assumption of relevant community struc-
ture being present in the graph that is only accounted for by 
modularity-based GSP and can then be used to assess to what 
extent graph signals follow this underlying graph structure.

Denoising
Another generic GSP operation is the recovery of the graph signal 
x  from its noisy observation .y x n= +  The variational formula-
tion puts forward a data-fitting term and a regularization term:

argmin ,x y x Px2
2

x
$n- + R (13)

where n  is the regularization tuning parameter and the qua-
dratic form of P  reflects prior knowledge about .x  A classi-
cal choice is ,P L=  which corresponds to assuming that the 
graph signal x  should be smooth on the graph. Since L  is posi-
tive semidefinite, the cost function in (13) is convex and has a 
unique optimal solution. The same is true if P  is chosen as Q+

and Q-  [cf. (8)] to favor modular or antimodular organization 
of ,x  respectively.

Performance of these reconstruction approaches is illus-
trated using the original signal of Figure 2(a). This signal was 
normalized to unit norm, corrupted with additive Gaussian 
noise of different variance, ,2v  ranging between 0.01 and 1, 
and the optimal value of n  was determined using an oracle 
approach. For small to intermediate noise levels, we found that 
imposing a modular structure on x  (i.e., )P Q= +  yielded the 
best performance [root-mean-square (RMS) error is 0.0048 for 

.0 012v =  and 0.0083 for . ].0 252v =  The error increases by 
an order of magnitude (0.0106 for .0 012v =  and 0.0168 for 

. )0 252v =  when using a Laplacian regularizer (i.e., ),P L=

Optimal Subset for Smooth Signals

Optimal Subset for Modular Signals

FIGURE 3. The optimal subset of 500 nodes for subsampling smooth (blue) or modular (red) signals of bandwidth 200.
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whereas for antimodular regularization (i.e., )P Q= -  simi-
lar values of RMS are reached (0.0096 for .0 012v =  and 
0.0145 for . ).0 252v =  The advantage of modular regulariza-
tion decreases for larger noise, and the reconstruction errors 
become comparable when 12v =  (all errors above 0.15).

The assumptions of the different regularizers can be summa-
rized as follows: Laplacian L^ h favors smoothness of the graph 
signal by measuring differences between adjacent nodes; modular-
ity Q+^ h favors smoothness of the graph signal between nodes 
weighted by their closeness community-wise (assortative mix-
ing); and antimodularity Q-^ h favors smoothness of the graph 
signal between nodes weighted inversely by this closeness (dis-
sortative mixing). An explanation of the superior performance 
of modularity-based regularization in the present example is 
that similarly high air traffic is more bound to modular orga-
nization than to neighborhood relationships; e.g., low traffic of 
a small island airport connected to several high-traffic mainland 
hubs of different communities would lead to a high signal varia-
tion through the Laplacian lens but not through the modularity 
lens, since the island is not close to the large communities. In 
the end, it is the nature of the graph signal and how it relates to 
the underlying graph structure that will motivate the use of one 
or the other regularizer.

Validation for neuroimaging
The results presented in the previous section are built from a 
flight network with known community structure. Likewise, 
many real-world networks exhibit community structure; there-
fore, we expect the proposed framework to provide a more 
appropriate way to analyze the corresponding graph signals. 
We further illustrate the benefits of community-aware GSP 
in a validation experiment using brain anatomical and func-
tional data from the Human Connectome Project [24] using 
a parcellation of the cerebral cortex .N 360=^ h  The graph 
structure was defined by counting the number of fiber tracts in 
diffusion-weighted magnetic resonance imaging (MRI) [25], 
and the graph signals are the activity patterns at different time-
points obtained from functional MRI (fMRI) time series re-
flecting activity in each brain region [24]. For each region, the 
timecourse was z-scored (centered and unit variance).

The experiment consisted of exploring the link between 
brain imaging data and 62 behavioral scores for 181 healthy 
volunteers. To that aim, functional time series were filtered 
using either the anatomical graph Laplacian or modularity 
matrix by following the procedure described in the “Filter-
ing” section, and the filtered time series yielded, for each 
subject, a power metric reflecting (non)smoothness or (anti)
modular structure of brain function in each brain region 
[26]. The link between these measures and the 62 behavioral 
scores was then computed using a nested cross-validation 
scheme, and the R2  coefficient of determination was used to 
quantify the strength of the association between brain func-
tion and behavior.

Figure 4 shows the values of R2  for the 62 behavioral mea-
sures and different bandwidths. It can first be seen that in most 
cases, using a narrow bandwidth yields stronger ,R2  which 

suggests that the information of interest is captured in the 
very first (non)smooth or (anti)modular eigenvectors. We also 
observe that community-aware filtering reveals links between 
brain function and behavior that are not captured by Lapla-
cian-based filterings. For example, the antimodular function-
al signal shows strong links with various personal character 
traits, while the modular signal mainly captures information 
about cognitive features.

Conclusions and outlook
Measures of community structure have been extensively used 
in network science to probe the organization of complex net-
works. Importantly, the tools that have been developed for pro-
cessing graph signals expressed on these networks are based 
on the graph Laplacian and, thus, are blind to the underlying 
community structure. We proposed making GSP community-
aware, not by detecting communities but by defining opera-
tions based on the modularity matrix. This provides a natural 
interpretation of the modularity spectrum in terms of modular 
and antimodular contributions, although it requires adaptation 
when a variation metric is needed. We showed, using several 
examples, that community-aware GSP acts meaningfully dif-
ferently compared to classical GSP. Considering the variety of 
datasets with community structure, the proposed framework 
will find its use in a wide range of fields and applications.

One extension of Laplacian- and modularity-based GSP is 
to account for directed graphs. We believe this is beyond the 
scope of this article, but the interested reader is referred to 
[27] for defining Laplacian-based spectral bases of directed 
graphs or modularity matrices for directed graphs [28] using 
in- and out-degrees of nodes. Another extension of the com-
munity-aware GSP framework could include different null 
models in the modularity criterion. Specifically, the Bernoulli 
model preserves the average degree [11], whereas the con-
figuration model can be modified to exclude self-loops [20] 
or to consider possible correlation between degrees of nodes 
[21]. Finally, communities could also be defined at the level of 
edges instead of nodes to deal with overlapping communities 
[29] or even triangles and higher-order simplicial complexes, 
as in higher-order Laplacian-based topological GSP [30].
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