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Preprocessing  utility  in  ICA  has not  previously  been  demonstrated.
We prove  the  strong  necessity  for  preprocessing  in  preparation  for  ICA.
Low-pass filtering  parameters  are  needed  to  improve  ICA.
Simple Gaussian  smoothing  is as  efficient  than more  complex  denoising  methods.
Noise reduction  seems  to  have  the  most  effect  on  increasing  component  independence.
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a  b  s  t  r  a  c  t

Independent  component  analysis  (ICA)  is  a suitable  method  for decomposing  functional  magnetic  res-
onance imaging  (fMRI)  activity  into  spatially  independent  patterns.  Practice  has  revealed  that  low-pass
filtering  prior  to ICA may  improve  ICA  results  by reducing  noise  and  possibly  by  increasing  source
smoothness,  which  may  enhance  source  independence;  however,  it eliminates  useful  information  in
high  frequency  features  and  it amplifies  low  signal  fluctuations  leading  to  independence  loss.  On  the
other  hand,  high-pass  filtering  may  increase  the  independence  by  preserving  spatial  information,  but
its denoising  properties  are  weak.  Thus,  such  filtering  strategies  did  not  lead  to simultaneous  enhance-
ments  in  independence  and  noise  reduction;  therefore,  band-pass  filtering  or more  sophisticated  filtering
methods  are  expected  to be more  appropriate.

We  used  advanced  wavelet  filtering  procedures,  such  as wavelet-based  methods  relying  upon  hard
and soft  coefficient  thresholding  and  non-stationary  Gaussian  modelling  based  on geometrical  prior
information,  to denoise  artificial  and  real  fMRI  data.  We  compared  the  performance  of  these  methods

with  the performance  of traditional  Gaussian  smoothing  techniques.

First, we  demonstrated  both  analytically  and  empirically  the  consistent  performance  increase  of  spatial
filtering  prior  to  ICA  using  spatial  correlation  and  statistical  sensitivity  as  quality  measures.  Second,  all
filtering  methods  were  computationally  efficient.  Finally,  denoising  using  low-pass  filters  was  needed
to  improve  ICA,  suggesting  that  noise  reduction  may  have  a  more  significant  effect  on  the  component

reser
independence  than  the  p

. Introduction
Functional magnetic resonance imaging (fMRI) is a non-invasive
echnique based on blood oxygen level-dependent (BOLD) effects
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vation  of  information  contained  within  high  frequencies.
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(Ogawa et al., 1990) that provides information on the spatiotempo-
ral dimensions of brain functions. Various statistical methods have
been developed to extract BOLD signals from fMRI data (Lange et al.,
1999). Among such methods are univariate procedures, includ-
ing time–frequency analyses (Mitra et al., 1997), correlation-based
methods (Bandettini et al., 1993), and ANOVA-like approaches,

as the widely used statistical parametric mapping (SPM) (Friston
et al., 1994; Friston, 1995). These approaches share common inher-
ent weaknesses because they do not define the intrinsic structure
of the haemodynamic response. Additionally, they require prior
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ssumptions regarding the fMRI signal statistics, and they ignore
he relationships among voxels.

To overcome these drawbacks, multivariate methods, such
s principal component analysis (PCA) (Moeller and Strother,
991) or independent component analysis (ICA) (Comon, 1994),
epresent elegant alternatives. McKeown, followed by Calhoun,
emonstrated the applicability of spatial (McKeown et al., 1998;
alhoun and Adali, 2006) and temporal (Calhoun et al., 2001b,
003) ICA models to fMRI data for which the fundamental theorems
f identifiability, separability, and uniqueness could be ensured
Comon, 1994; Eriksson and Koivunen, 2003, 2004). Moreover,
CA modelling does not impose constraints on the model in that
patial and temporal patterns of brain activity are statistically
ndependent, follow non-Gaussian distributions, and are mixed
ogether (McKeown and Sejnowski, 1998; Hyvärinen and Oja, 2000;
yvärinen et al., 2001).

BOLD effects are small with 1–5% signal changes for 1.5 Tesla
RI  data (Bullmore et al., 1999) and are corrupted by noise and

ther artefacts stemming from a variety of sources (Edelstein et al.,
986). The signal-to-noise ratio (SNR) of fMRI data, therefore, is

ow and the potential for inaccurate ICA results is non-negligible.
lthough ICA incorporates denoising techniques by isolating the
oisy independent components and by reducing the data through

nitial PCA processing, practice has shown that prior spatial fil-
ering improves ICA (Hyvärinen and Oja, 2000; Calhoun et al.,
001a; Hyvärinen et al., 2001; Khullar et al., 2011). Alternatively, Li
roposed an iterative filtering–projection operation on the source
ample space to achieve a feature-selective ICA (Li et al., 2007). In
his light, it is also worthwhile to mention a recent study that inves-
igated group-level ICA and the influence of inter-subject variability
Allen et al., 2012).

Because we are interested in denoising tools that act on the spa-
ial dimensions, we focused our interest on a spatial ICA model.
ow-pass and high-pass filtering may  be proposed to enhance ICA
erformance. Low-pass filters, such as Gaussian smoothing, are
imple though computationally efficient denoisers. Because active
patial sources in fMRI are assumed to be localized and smooth
ue to vascular point spread functions that produce local correla-
ions (Malonek et al., 1997; Calhoun et al., 2001a),  we hypothesize
hat enhanced source smoothness may  increase source indepen-
ence. However, such denoisers simultaneously eliminate high
requency features containing information that is useful for esti-

ating the (de)mixing matrix and amplify low signal fluctuations,
hich leads to independence loss (Hyvärinen et al., 2001). By

ontrast, high-pass frequency filters preserve spatial information
hat may  contribute to increases in the independence, but their
enoising properties are weak (Hyvärinen et al., 2001). Accord-

ngly, the best filtering effects may  be obtained using filtering
ethods that increase the independence and reduce the noise.

uch effects are expected from band-pass filters and wavelet-
ased techniques (Hyvärinen et al., 2001). However, the utility of
rior filtering has previously been only qualitatively characterized
Calhoun et al., 2001a)  and within the context of a novel inte-
rated wavelet-based framework, ICA was applied in the wavelet
omain and performance of this scheme was only compared to
rior smoothing (Khullar et al., 2011). Hence, a systematic anal-
sis assessing the utility of prior denoising and the performance
f various denoising methods is lacking. Therefore, we applied
onventional Gaussian smoothing techniques to data prior to ICA
nd compared the results with those of two different wavelet-
ased denoising techniques. Although MRI  data are corrupted by
ician noise that is multiplicative (Gudbjartsson and Patz, 1995;

ijbers et al., 1998; Wink and Roerdink, 2004, 2006), it is now
nderstood that Rician noise becomes Gaussian inside MR brain

mages (Gudbjartsson and Patz, 1995; Wink and Roerdink, 2006).
he first technique tested was a wavelet routine that performs
e Methods 213 (2013) 105– 122

coefficient thresholding in the transform domain, with applications
to biomedical imaging that have been widely discussed in the lit-
erature (Ruttimann et al., 1998; Alexander et al., 2000; Turkheimer
et al., 2000; Zaroubi and Goelman, 2000; Ghugre et al., 2003). The
second method tested for comparison employed a novel stochas-
tic image model based on a non-stationary Gaussian modelling
within the Bayesian framework. This method uses geometrical
image prior information derived from the local image structure in
the non-decimated wavelet domain (Voloshynovskiy et al., 2005).
Benchmarking demonstrated the best efficiency with respect to
processing standard images in a comparison with the best denois-
ing methods (Pignat et al., 2005). Its denoising properties respect
local information, thereby preserving local image features. This
technique may  be suitable for ICA.

Thus, the main purposes of this paper are (1) to demonstrate
analytically and empirically the strong necessity for denoising prior
to ICA and (2) to define the best filtering method, as determined
by ICA performance. We  expect that the identification of filtering
parameters will improve ICA and may  reveal which data features
principally influence ICA.

The rest of the paper is organized as follows. The first sec-
tion is divided into two parts. The first part presents the ICA
and demonstrates the applicability of filtering prior to ICA; the
second part describes the three denoising methods: the sim-
ple Gaussian smoothing and two more sophisticated techniques
based on the wavelet transform in conjunction with shrinkage
and non-stationary Gaussian modelling. Procedures for generat-
ing simulated noisy data are described in Section 2. The results
are presented in Section 3. The spatial denoising efficiency of all
filtering methods was  quantified in terms of the signal-to-noise
ratio (SNR). Subsequently, spatiotemporal correlations and statis-
tical classification criteria were applied to the resulting statistical
ICA map  and ICA time course. Finally, Section 4 concludes the paper
with a discussion of results.

2. Theory

2.1. ICA modelling

The main goal of linear ICA models for fMRI analysis is to link
component maps and their time courses to the acquired fMRI data.
Xt,v, with t = 1, 2,. . .,  T and v = 1, 2,.  . .,  V, is a matrix that represents
the observed fMRI images, where V is the number of voxels placed
individually in separated columns and T are the rows of the time
series for each voxel v. Sk,v, k = 1, 2,. . .,  K, is the set of statistically
independent sources, with K the number of independent compo-
nents placed in one row. Hence, Xt,v results from the linear mixing of
a set of statistically independent sources Sk,v with a mixing matrix
At,k. In matrix form, the ICA model for fMRI data becomes:

X = AS. (1)

ICA identifies a demixing matrix Wk,t such that the indepen-
dent components in each row of Ŝk,v (which approximates S) can
be deduced from the following demixing expressions (Egolf et al.,
2004):

Ŝ = WX  (2)

and

X = W−1Ŝ. (3)

W is a square matrix of full rank such that the inverse W−1 exists

and W−1 = A when Ŝ → S.

In this paper, the implementation of ICA is based on the prin-
ciple of maximizing the statistical independence of the estimated
components using Infomax (Bell and Sejnowski, 1995; Hyvärinen
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t al., 2001), which maximizes the joint entropy or information
ow. In information theory, a set of independent random variables
ith a uniform joint probability density function has maximum

oint entropy, and the random variables are mutually independent
Cover and Thomas, 2006). Therefore, the principal goal of Infomax
s to seek the demixing matrix W that maximizes the entropy of Ŝ,
(Ŝ) (Egolf et al., 2004):

(Ŝ) = 1
N

N∑
k=1

ln(pŜ(Ŝk)). (4)

For a more detailed presentation of Infomax, see Stone (2004).

.2. Analytical applicability

ICA decomposes signals corresponding to independent sources
y separating a signal of interest from artefacts and other noisy
omponents. This explains why, in theory, prior filtering is not
ecessary, although filtering has proven to be useful in practice.
yvärinen demonstrated the applicability of filtering on one-
imensional data (Hyvärinen et al., 2001). We  present here an
nalytical extension that may  be applied to fMRI images.

According to the convolution theorem, multiplication in the
ransform domain (Fourier, Wavelet, etc.) is equivalent to con-
olution in the initial domain. Thus, filtering of Xt,v to give X ′

t,v
orresponds to multiplying Xt,v from the right by a matrix Mv,v such
hat, in matrix form:

′ = XM = ASM = AS′, (5)

o,

′ = AS′, (6)

here S′ represents the denoised independent components.
The same filtering matrix M is applied to the mixtures X and to

he independent components S. Otherwise, the components in S′

re not mixed with each other because the matrix M is, by def-
nition, a component-wise filtering matrix. Because the mixing

atrix A remains unchanged after filtering, W may  be estimated
nd applied to the original data X to obtain the independent com-
onents. Once prior filtering is analytically validated, the question
emains as to why data denoising is useful and which type of filter-
ng methods should be applied.

.3. Practical applicability

Two reasons may  underlie the expected benefits of prior spatial
ltering. Because the noise of X perturbs estimation of the demixing
atrix W during entropy maximization, denoising preprocessing

teps improve the identification of source components. Secondly,
OLD sources are assumed to be smooth. Therefore, we hypothesize
hat enhancing the smoothness of the data may  increase the inde-
endence of BOLD sources by maximizing the uniform distribution
f the sources, which leads to a higher joint entropy.

Low-pass filters, which act as smoothers, can be strong denois-
rs (Worsley et al., 1996) and improve the estimation of the
emixing matrix and source independence. However, they also
uppress the spatial details encoded in the high-frequency com-
onents that are necessary for estimating the demixing matrix.
ow-pass filters do not take into account fine-grained local infor-
ation in the data, such as the juxtaposition of flat regions, textures,

nd edges. Hence, non-active bordering areas become correlated
ith the haemodynamic sources, thereby blurring the source bor-

ers and hampering detection precision.

By contrast, high-pass frequency filters preserve source inde-
endence by reducing slow fluctuations and by keeping the useful
igh frequency details. Nevertheless, they remain weak denoisers
e Methods 213 (2013) 105– 122 107

and yield poor improvements in the estimation of the demixing
matrix.

An ideal filtering method would be one that increases the inde-
pendence of the components while removing noise, meaning that it
should provide a compromise between low- and high-pass filtering
(Hyvärinen and Oja, 2000; Hyvärinen et al., 2001). Wavelet-based
methods using shrinkage, particularly non-stationary Gaussian
modelling within Bayesian frameworks, may  have the prerequisite
denoising profiles.

3. Materials and methods

3.1. Filtering methods

3.1.1. Gaussian smoothing
A Gaussian filter is, by definition, a linear low-pass frequency fil-

ter that convolves fMRI images with a Gaussian kernel defined by
a Gaussian function. Gaussian filters increase the SNR by remov-
ing noise, as stated in the matched-filter theorem (Rosenfeld and
Kak, 1982; Worsley et al., 1996). Elimination of the high frequency
components of noise, where most of the white noise signal energy is
concentrated, leads to SNR improvement. The smoothing strength
can be numerically controlled by adjusting the full width at half-
maximum (FWHM) of the Gaussian. A broad panel of Gaussian
kernels was  applied to measure the efficiency of these filters. Sev-
eral statistical packages for neuroimaging analysis propose this
filtering method (Gold et al., 1998). Gaussian denoising is also at
the heart of the Statistical Parametric Mapping (SPM) software
package (Wellcome Department of Imaging Neuroscience, London
UK, http://www.fil.ion.ucl.ac.uk/spm/).

3.1.2. Wavelet-based denoising by wavelet domain thresholding
Rician noise in MR  images follows a Gaussian distribution in

practice. Therefore, wavelet-based filtering methods that assume
white Gaussian noise (WGN) have been developed in the past
several years due to their analytical strength and wide applicabil-
ity in the biomedical domains. The application of spatial wavelet
transforms exploits the sparsity of data representations in the
wavelet domain, which improves the robustness of modelling
(Ruttimann et al., 1998; Turkheimer et al., 2000; Van De Ville et al.,
2004). Hence, denoising schemes by wavelet domain threshold-
ing have been developed. For many reasons, spline bases (Unser,
1999) possess optimal properties for approximating biomedical
images: they have the smallest L2 error and they are well-localized
in both the time and frequency domains due to their smooth-
ness. Moreover, fractional spline wavelets (Blu and Unser, 2000;
Unser and Blu, 2000) are particularly useful because they are sym-
metric and orthonormal. Indeed, symmetric wavelets avoid the
introduction of phase distortions between different decomposi-
tion levels (Turkheimer et al., 1999), and orthonormal wavelets
transform white noise into white noise (Hilton et al., 1996). Denois-
ing has been pursued using schemes based on thresholding detail
coefficients in the wavelet domain. They are characterized by the
amount of smoothness inserted into the denoised image (Blu and
Unser, 2000; Unser and Blu, 2000).

In this paper, we  used the spm wavelet software (Wink and
Roerdink, 2004). This software includes the fractional spline wavelet
package (Blu and Unser, 2000; Unser and Blu, 2000), which con-
structs symmetric orthonormal spline wavelets of real-valued
degree, and the Wavelab package (Buckheit and Donoho, 1995),

which contains various schemes for wavelet-based denoising by
hard and soft thresholding of wavelets coefficients and by other
shrinkage methods (Donoho and Johnstone, 1994, 1995). For each
scheme, we  applied a broad range of wavelet-level decompositions,

http://www.fil.ion.ucl.ac.uk/spm/
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pline real-valued degrees and progressive thresholds of wavelet
oefficients according to the Oracle principle.

.1.3. Non-stationary Gaussian modelling based on geometrical
rior information in the wavelet domain

Based on the accepted assumption that MRI  noise is Gauss-
an, we present here a new denoising method developed by
oloshynovskiy et al. (2005).  This technique uses a stochastic image
odel based on prior geometrical information regarding the local

tructure of the image in the critically sampled and non-decimated
avelet transform domain. Because real images are non-stationary,

hey proposed to split the image into several non-overlapping
ubregions that could be modelled as locally stationary; the local
ariance of each subregion could then be estimated using an
daptive maximum likelihood estimator. Because the filtering per-
ormance was enhanced in the wavelet domain, they applied a
artition technique and an adaptive local variance estimation in
he transform domain. To avoid the Gibbs phenomenon, a non-
ecimated wavelet transform without downsampling was used
Chrysafis, 2000). In addition, the authors developed a novel algo-
ithm that preserves the denoising performance of their method
ithout enhancing the computational complexity: this is the

o-called edge process modelling, which decreases residual cor-
elations in the high frequencies. This algorithm also takes into
ccount the differences in the local statistics within each subre-
ion: it treats flat areas as non-stationary zero-mean Gaussian, and
dge regions as locally stationary non-zero mean Gaussian with
ery low variance. In terms of the spatial SNR, the denoising per-
ormance was demonstrated on fMRI data in comparison with the
avelet transforms and Gaussian smoothing (Pignat et al., 2005,

007).
Denoising strength can be modulated by two parameters:

he size of the selected subregion and the prior noise variance
ntroduced during computation of the Bayesian estimate in the local
ubband. A range of window sizes for delimiting the subregion and

 wide panel of progressive noise standard deviations (SD) were
sed in our study. This method is developed in the appendix.

.2. Data and experience

.2.1. Data
Artificial data that simulate multiple brain activity in space

nd in time, were chosen for a quantitative comparison of the
ffects of filtering on ICA, because the time series and some of
heir statistical characteristics, as noise variance, SNR, or BOLD
ize, could be previously defined. To avoid uniform flat regions
ith low voxel amplitudes in which Rician noise may  be estimated
sing a Rayleighian distribution rather than a Gaussian distribu-
ion (Gudbjartsson and Patz, 1995; Wink and Roerdink, 2006), a
ull brain template comprising different BOLD regions was prefer-
ble to isolated BOLD areas. To approach a realistic situation and to
alidate the ICA results obtained with the synthetic data, analysis
as extended across hybrid data corresponding to real echo-planar

mages (EPI) acquired during rest; several regions of interest (ROI)
ere then selected onto which various simulated haemodynamic

unction were added.

.2.1.1. Artificial data. The BrainWeb Simulator (Kwan et al., 1996)
as used to generate a 3D noise-free template that corre-

ponded to a T2*-weighted MR  brain image with the following
arameters: modalities, T2; image size, 185 × 217 voxels of

 mm × 1 mm × 1 mm;  noise, 0%; and intensity nonuniformity, 0%.

e selected slice 108, which held the right inverted omega shape

f the precentral gyrus (radiological orientation), and data segmen-
ation was carried out by SPM. Because wavelet denoising prefers
quare images of power 2, the template was reduced to 128 × 128
e Methods 213 (2013) 105– 122

voxels and partially centred on the right inverted omega shape of
the precentral gyrus, giving a new template image T(v), where v
denotes the voxel location. T(v) was repeated 80 times to form a
constant time-series template, T(v, t), in which t is the time index
of the voxel v. Including the inverted omega shape, we defined four
cortical BOLD ROIs of 579, 529, 402, and 369 voxels respectively,
and one empty rectangular area of 500 voxels inside the white mat-
ter; these five ROIs were labelled fr(v) and indexed by r = {1, 2, 3, 4,
5}. Between ROIs 2 and 3, f2(v) and f3(v), we delimited an area of
intersection containing 190 voxels, where the activity of both ROIs
was afterwards superimposed. For easy reference, the five regions
of interest are named thereafter as follows: aROI1, aROI2, aROI3,
aROI4 and aROI5 (Fig. 1a–e). From each ROI a binary BOLD mask,
Mr(v), was  created. Constant time-series of fr(v) was labelled fr(v, t).

We used the convoluted binary meander time course proposed
by the Vanderbilt web page (former http://www.vuiis.vanderbilt.
edu/fmriphantoms/) (Pickens et al., 2005) to generate a
haemodynamic response function (HRF) with the following
temporal parameters: period of 20 scans, 1 scan per second (s),
maximum amplitude of 1, onset delay (OD), 1 s, time to pick (TP),
6 s, and FWHM,  about 9 s. This reference HRF (HRF1) was then
modulated to create two  additional HRFs (HRF2 and HRF3) with
different temporal characteristics: OD of 7 and 0 s respectively, TP
of 6 s for both, and FWHM,  about 8 and 6.8 s, respectively. We  gen-
erated also a default-mode activity with the same duration (HRF4),
represented by a low frequency (0.025 Hz) sine wave (Cordes et al.,
2001) of one cycle (40 scans) and of maximum amplitude of 1. The
HRFs and the sine sequence were then repeated 4 and 2 times,
respectively, to obtain 4 different time series of 80 scans, hs(t) with
index s = {1, 2, 3, 4}. Matched by indexes, such as r = s giving u = r = s
for r,s = {1, 2, 3, 4}, HRFs and the time series of the first four ROIs
were then superimposed, by adding hu(t) on each voxel of fu(v,t).
Because brain activation measured by fMRI corresponds to a signal
change of 1–5%, we multiplied the HRFs by appropriate factors, pu,
so that the peak of hs(t) corresponded to an increase of 5% and 4%
against the baseline of each BOLD voxel, for f2(v, 1) and for f1,3,4(v,
1), respectively (Fig. 1a–e):

fu(v, t) = fu(v, 1) +
(

hu(t)
pufu(v, 1)

100

)
= fu(v, 1)

(
1 + puhu(t)

100

)
; (7)

it is worth noting that the time course inside the intersection of
aROI1 and aROI2, was  elicited by their respective HRF, using a linear
convolution model (Fig. 1a–c). Finally, we took aROI5 as a ventricu-
lar space (Fig. 1e), inside which cerebrospinal fluid was modelled
by a Brownian motion based on a Wiener process in space and time.

The final noise-free template time-series containing all ROIs
time course, F0(v, t), was  then defined as

F0(v, t) =
{

fu(v, t), inside the BOLD regions,

T(v, t), otherwise.
(8)

Before proceeding to the corruption of F0(v, t) with noise,
two realizations, Z1(v) and Z2(v), of independent and identically
distributed Gaussian noise Z1, Z2∼N(0, �2

z ) with zero-mean and
known variance, were generated. We  repeated Z1(v) and Z2(v) 80
times following a first-order autoregressive AR(1) process with
� = 0.5, to obtain correlated time-series:

Z1(v, t) = �Z1(v, t − 1) + ε(v, t) (9)
and

Z2(v, t) = �Z2(v, t − 1) + ε(v, t) (10)

http://www.vuiis.vanderbilt.edu/fmriphantoms/
http://www.vuiis.vanderbilt.edu/fmriphantoms/
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Fig. 1. The noise-free image template with the BOLD ROIs shown in red and their respective HRF template: the left chart shows the real time series of one voxel within the
BOLD  area and the right chart the same time series degraded by Rician noise of 10 dB (green) and of 20 dB (blue). (a) aROI1: ROI1 with superimposed HRF1 (peak increase
of  4% against the baseline); image template degraded by Rician noise of 10 dB (extreme right). (b) aROI2: ROI2 with superimposed HRF2 (peak increase of 5% against the
baseline); image template degraded by Rician noise of 20 dB (extreme right). (c) Time course inside the intersection of aROI1 and aROI2 (red circle), elicited by their respective
H eak in
i late (
d  to col

w
R
(

X

RF,  using a linear convolution model. (d) aROI3: ROI3 with superimposed HRF3 (p
ncrease of 4% against the baseline); representation of aROI5 inside the image temp
ata;  HRF: haemodynamic response function). (For interpretation of the references

here ε is a white noise process, ε∼N(0, �2
z ). Introduction of white

ician noise in a 2D noise-free image, X(v), could be computed as
Gudbjartsson and Patz, 1995; Wink and Roerdink, 2004)
˜ (v) =
√

(X(v) + Z1(v))2 + Z2(v)2. (11)
crease of 4% against the baseline). (e) aROI4: ROI4 with superimposed HRF4 (peak
BOLD: blood oxygen level-dependent; aROI: region of interest within the artificial
our in this figure legend, the reader is referred to the web version of the article.)

The Rician distributed noise in this created noisy image has a SD
that can be approximated as
�R ∼= �Z

√
2 − �

2
(12)

(Gudbjartsson and Patz, 1995; Wink and Roerdink, 2004).
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This method was applied to our time-series template, F0(v, t), for
egradation purposes, and a noisy correlated time-series template,
1(v, t) was obtained as

1(v, t) =
√

(F0(v, t) + Z1(v, t))2 + Z2(v, t)2. (13)

The SNR was defined prior to generating the noisy template
ime-series. From the standpoint of improving the efficiency of the
reprocessing filtering function, we selected two different SNRs: a

ow SNR of 10 dB (Fig. 1a), for which ICA could not detect the active
OLD regions, and a higher SNR of 20 dB (Fig. 1b), for which at least
ne BOLD area could be detected by ICA without denoising. We
sed the following formula to calculate the SNR of our noisy data
ith t = 1 and v = V corresponding to all voxels for time 1, such that

1
1 = F1(V, 1), with the noise-free original data, F1

0 = F0(V, 1):

NRF1
1

= 20 log10

�F1
0

�1
= 20 log10

�F1
0

�F1
1

−F1
0

, (14)

here �1 is the SD of the noise of the image calculated after sub-
racting F1

0 from F1
1 .

Because the SD of the noise-free data, �F1
0

, is known, both SNRs

ere computed with iterative changes in �2 until the expected
NR values of 10 dB and 20 dB were reached. Subsequently, the
btained variance, �z(�z = 230.92 for SNR = 10 dB) and �z =
1.97 for SNR = 20 dB, was used to generate all other noisy time-
eries data, Ft

1 = F1(v, t) (Fig. 1a–e), ∀t such that t ∈ {2, 3, 4, ..., 80}.
Statistical control of the noise was then performed on both F1

1 .
ccording to the statistical characteristics of the Rician noise in
R images, the noise outside the brain is Rayleigh distributed,
hile the noise inside the brain approximates a Gaussian distri-

ution (Gudbjartsson and Patz, 1995; Wink and Roerdink, 2006).
fter subtracting F1

0 from F1, we empirically measured the SD of
oth types of noise: the SDs of the Gaussian noise (�Ze ) and of
he Rician noise (�Rc ) were locally calculated inside and outside
he brain, respectively. The results were close to the real values,
Z and �R from Eq. (12), proving statistically the consistency of
ur artificial data corrupted numerically by Rician noise. For the
ata set with a noise of 10 dB, �Zc (�Zc = 229.37) and �Rc (�Rc =
54.12) approached �Z (�Z = 230.92) and �R(�R = 151.28) while
or the lower noisy data (20 dB), �Zc (�Zc = 71.89) and �Rc (�Rc =
8.04) equalled practically �z(�z = 71.97) and �R(�R = 47.15).
s the whole image was used to determine all SNR of the study,
e calculated its noise SD �1, whose results were 242.91 and

6.82 for the noisy data with a SNR of 10 dB and of 20 dB,
espectively.

Finally, the denoised F1(v, t) was labelled F2(v, t), where � was
he filter function

2(v, t) = �(F1(v, t)) (15)

.2.1.2. Hybrid data. To improve the ICA under conditions that
losely resemble real conditions, hybrid data were gener-
ted. A resting state data set was collected on a 1.5 Tesla
hilips machine, which was configured as followed: EPI GRE,
R/TE/Flip = 2 s/30 ms/80◦, FOV = 220 mm,  matrix = 128 × 128 × 400
ith 1 axial slice, spatial resolution was 1.7 mm × 1.7 mm  × 4 mm.
e  chose slice 8, which contained the right inverted omega shape

f the precentral gyrus. The first 15 “dummy” scans were excluded
or longitudinal equilibrium, and the 80 subsequent scans were
elected.

Including the inverted omega shape, we defined four cortical
OLD ROIs of 157, 153, 84, and 76 voxels respectively; they were
abelled gr(v) and indexed by r = {1, 2, 3, 4}. For easy reference, the
our regions of interest are named thereafter as follows: hROI1,
ROI2, hROI3, and hROI4 (Fig. 2). We  simulated brain activity in
he time series of each ROI by superimposing the same HRF, hr(t), as
e Methods 213 (2013) 105– 122

for the artificial data, using the same procedure. As the underlying
noise and signal could not be controlled, HRF increase of different
percentages was  used to evaluate ICA performances in various sit-
uations. Hence, we multiplied each hr(t) by a defined factor such
that its peak corresponded to an increase against the baseline of,
respectively, 2% for hROI3, 3% for hROI1 and hROI4, and 4% for hROI2
(Fig. 2). It should be recalled that HRF of hROI4 is a sinusoid function
of low frequency mimicking a BOLD resting-state activity.

3.2.2. Independent component analysis
ICA was performed using the Matlab-based

Group ICA of the fMRI Toolbox (GIFT), version 1.3d
(http://icatb.sourceforge.net/gift/) (Calhoun et al., 2004; Egolf
et al., 2004). We  chose the Infomax algorithm (Bell and Sejnowski,
1995) because this approach, which implements higher-order
statistical information, yielded consistent fMRI data analysis
results (Correa et al., 2007). The first 20 independent components
were calculated using the default parametrical options. Because
Infomax is iterative with a random starting mixing matrix, several
independent applications of ICA to a single data stream may
produce variable results. Hence, ICA was  iteratively applied 10
times to ensure recording of the best results. Spatially independent
components were expressed as statistical Z-score activation maps,
which indicated the contribution of each voxel to an independent
component.

3.2.3. Spatial SNR
Compared to conventional methods, wavelet-based filters and

non-stationary Gaussian modelling in the wavelet domain pro-
vided the best filtering results. The denoising power of each method
was measured in terms of the spatial SNR as defined in Eq. (14).
First, the SNR indirectly controls the accuracy of the filtering algo-
rithms, and secondly, it permits a comparison of the best denoising
parameters with those parameters that optimize the ICA. Hence,
we expected to identify the filtering type (low-pass, high-pass, or
band-pass) used to ameliorate the ICA performance and the image
features that are crucial for ICA. The first scans of the noisy and
denoised data were used to calculate the SNR.

3.2.4. Statistical criteria
We compared the effectiveness of denoising in the spatial

dimension with control of the temporal dimension. Because the
independent components are statistical Z-score activation maps,
thresholding may  be used to define the active brain areas that are
statistically related to the BOLD mask. Functional neuroimaging
inference tests multiple hypotheses, which leads to classical multi-
ple comparison problems that must be corrected (Genovese et al.,
2002). The false discovery rate (FDR) was chosen to control the
expected proportion of incorrectly rejected null hypotheses (type
I errors) with a significance level of  ̨ = 0.05, thereby giving a cor-
rected value for Z that was  then used to threshold the maps.

The thresholded Z-scores activation maps, Cr(v), were then sta-
tistically related to their corresponding BOLD masks, Mr(v), with
the aid of different statistical criteria, such as:

1. the spatial correlation using the following correlation coefficient
formula, sCCr:

sCCr =
∑I

i=1

∑J
j=1(Mr(i, j) − M̄r)(Cr(i, j) − C̄r)∑ ∑ 2∑ ∑ 2

(16)

I
i=1

J
j=1(Mr(i, j) − M̄r) I

i=1
J
j=1(Cr(i, j) − C̄r)

where C̄r indicates the mean of the statistical maps, M̄r indi-
cates the mean of their related BOLD mask, and I, J, indicate the

http://icatb.sourceforge.net/gift/
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Fig. 2. The hybrid data composed of an EPI resting-state template with the selected BOLD ROIs shown in red and their respective HRF template: the right chart shows the
real  time series of one voxel within the BOLD area (blue) and the same time series with the superimposed HRF template (orange), which is depicted in the left chart. (a)
hROI1:  ROI1 with superimposed HRF1 (peak increase of 3% against the baseline). (b) hROI2: ROI2 with superimposed HRF2 (peak increase of 4% against the baseline). (c)
Time  course inside the intersection of hROI1 and hROI2 (red circle), elicited by their respective HRF, using a linear convolution model. (d) hROI3: ROI3 with superimposed
HRF3  (peak increase of 2% against the baseline). (e) hROI4: ROI4 with superimposed HRF4 (peak increase of 3% against the baseline). (EPI: echo planar imaging; BOLD: blood
oxygen level-dependent; hROI: region of interest within the hybrid data; HRF: haemodynamic response function). (For interpretation of the references to colour in this figure
legend,  the reader is referred to the web version of the article.)
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Fig. 3. (a) The noise-free image template with the selected BOLD ROIs shown in red (left) and the sICA activation maps from the noise-free template (right). (b) Best sICA
activation maps from the data degraded by a Rician noise of 10 dB without prior filtering for a significance level of 0.05 (top left) and after denoising with FDR correction:
Gaussian  smoothing (top right), filtering with non-stationary Gaussian modelling in the wavelet domain (bottom left), and wavelet denoising by soft thresholding (bottom
right).  (c) Best sICA activation maps from the data degraded by a Rician noise of 20 dB without prior filtering for a significance level of 0.05 (top left) and after denoising
with  FDR correction: Gaussian smoothing (top right), filtering with non-stationary Gaussian modelling in the wavelet domain (bottom left), and wavelet denoising by soft
thresholding (bottom right). The associated filtering parameters are detailed in Tables 1 and 2 (BOLD: blood oxygen level-dependent; sICA: spatial independent component
a . (For 
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nalysis; FDR: false discovery rate; aROI: region of interest within the artificial data)
o  the web version of the article.)

image size. Significance level of sCCr was set at  ̨ = 0.05. Only
insignificant correlation is mentioned in the results.

. the sensitivity, Sn,  a statistical measure related to the concept of
type II error:

n = TP
TP + FN

(17)

nd the specificity, Sp,  closely linked to the concepts of type I errors,

p = TP
TN + FP

(18)

here TP, TN, FN, and FP mean true positive (correct active voxel
nside the BOLD area), true negative (correct non active voxel out-
ide the BOLD area), false negative (incorrect non active voxel inside

he BOLD area), and false positive (incorrect active voxel outside the
OLD area), respectively.

To strengthen the accuracy of the detection of the real ROIs, we
ssessed the time correlation between the associated time course,
interpretation of the references to colour in this figure legend, the reader is referred

hs(t), of their best Z-map component with its corresponding added
HRF time-series:

tCCr =
∑T

t=1(hr(t) − h̄r)(cr(t) − c̄r)√∑T
t=1(hr(t) − h̄r)

2
√∑T

t=1(cr(t) − c̄r)2
(19)

where h̄r indicates the mean of the HRF time course and c̄r indicates
the mean of the best component time series.

As FWHM of the Gaussian smoothing indicates the smoothness
grade introduced in the filtered data, we  performed for the arti-
ficial data a mean square error and a minimal SNR assessment
between the image filtered by the latter and the denoised images
with both of the wavelet-based methods. The purpose is to provide
an equivalent order of the “smoothness” obtained with the wavelet
techniques.

4. Results
4.1. Spatial SNR

For the first set of noisy data (SNR = 10 dB), best Gaussian
smoothing enhanced the SNR to 10.61 dB for a low FWHM of
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Table 1
Summary of the best statistical ICA performances in terms of spatial correlation and sensitivity after FDR correction, shown for all aROIs of the artificial data
degraded by Rician noise of 10 dB. Inclusion of the sensitivity and of the correlation coefficient that are related to the best spatial correlation and sensitivity
respectively. Best result for each aROI is outlined in red and in italic.
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FDR: false discovery rate; aROI: region of interest in the artificial data; GS: Gau
of  wavelet coefficients; FWHM:  full width at half maximum; SD: standard d

 mm,  but, as expected, maximal gain was obtained using the
ifferent wavelet techniques. Among the thresholding methods
hat were superior to conventional smoothing techniques, hard
hresholding using a wavelet level decomposition 1 and spline
egree 1 rendered the best SNR (SNR = 11.45 dB) for a threshold
f 2.5. With the same spline and decomposition parameters, SNR
fter soft thresholding was lower (SNR = 11.4 with a threshold of
). Moreover, non-stationary Gaussian modelling gave a maxi-
al  SNR (SNR = 12.82 dB) for a prior noise of 266.91, while SNR
as slightly reduced (SNR = 12.73 dB) with the exact calculated

D of the noise, �I = 242.91.  A small window of 3 voxels was
eeded.

With regard to the second set of noisy data (SNR = 20 dB), Gauss-
an smoothing was not able to improve the SNR (best SNR = 17.46 dB
or FWHM = 1 mm),  meaning that even with reduced low-pass
trength, it mainly eliminated important information from the
mage. Once more, wavelet-based methods performed the best
n terms of denoising. The best SNR (SNR = 20.64 dB) was again
btained using a hard thresholding with wavelet parameters set
o 1 for both level and spline degree and for a threshold of 2;
oft thresholding could not ameliorate the SNR. Non-stationary
aussian modelling provided the best results, with a SNR of
2.32 dB, for a prior noise SD of 86.5 and small window size
3 × 3 voxels). Optimal conditions are theoretically achieved for
he calculated noise SD SD(�I = 76.82), but the result is slightly
ower with a SNR of 22.23 dB for the same window size; this
low SNR difference, also observed for the 10 dB data set, may  be
xplained by the fact that the calculated noise variance estimates
he Rician noise, which follows a Rayleighian distribution out-
ide the brain (Gudbjartsson and Patz, 1995; Wink and Roerdink,

006).

The SNR results suggested several observations: all methods
erformed optimally in terms of denoising if their parameters were
et such that they approximated band-pass rather than low-pass
 smoothing; NSGM: non-stationary Gaussian modelling; WThr: thresholding
on.

filters; wavelet-based filters, particularly non-stationary Gaussian
modelling, demonstrated superior denoising (Pignat et al., 2005).

4.2. Artificial data

4.2.1. Artificial data without noise
As a proof of ICA functionality, we  first applied it on the noise-

free artificial data; results showed the detection of the exact BOLD
regions in separated ICA components, except for the Brownian
motion inside ROI5 that could not be isolated (Fig. 3a).

4.2.2. Artificial data corrupted by noise
As the specificity for the statistical maps of the BOLD regions

remained unremarkably high with and without prior denoising
(Sp > 0.97), the results are therefore not shown. Likewise, ROI5
could not be isolated in a spatial component regardless of the con-
dition (no prior denoising versus prior denoising); hence, its results
are neither presented nor discussed in Sections 4.2.2.1 and 4.2.2.2.

4.2.2.1. Artificial data with a SNR of 10 dB. Best results for all denos-
ing methods with regard to their optimal filtering parameters,
and compared to no prior denoising, are summarized in details in
Table 1.

Applied to the noisy data without prior filtering, ICA was  unable
to detect any activation patterns of the BOLD regions (insignificant
correlation for each ROI) even with a low threshold of the Z-score
maps (  ̨ < 0.05) (Fig. 3b).

By contrast, denoising significantly improved the ICA. Gaussian
smoothing allowed all BOLD regions to be outlined with application
of a progressive FWHM from 5 mm to higher values. The best spa-

tial correlations were obtained using low-pass filtering parameters
(FWHM > 16 mm)  for all ROIs because the Gaussian kernel covered
almost their surface. It is noted that less smoothing strength was
needed to detect aROI3 (Fig. 3b).
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Table 2
Summary of the best statistical ICA performances in terms of spatial correlation and sensitivity after FDR correction, shown for all aROIs of the artificial data
degraded by Rician noise of 20 dB. Inclusion of the sensitivity and of the correlation coefficient that are related to the best spatial correlation and sensitivity
respectively. Best result for each aROI is outlined in red and in italic.
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FDR: false discovery rate; aROI: region of interest in the artificial data; GS: Gau
of  wavelet coefficients; FWHM:  full width at half maximum; SD: standard d

We  applied, then, the filter based on non-Gaussian modelling
n the wavelet domain. All denoising properties, from low-pass to
igh-pass filtering, were evaluated using several subregion sizes
firstly sizes of 15 × 15, 20 × 20, 25 × 25, and 30 × 30 voxels, and
hen around the size having given the best results, 30 × 30, namely
rom 26 × 26 to 34 × 34 voxels), and progressive prior noise SD, �i =
I + 100 ∗ i for i ∈ {−2, −1, 0, 1, . . . , 20}, with �I = 242.91.
rom �i = 242.91 (aROI4) to �i = 442.91 (others ROIs) and
or all window sizes, BOLD detection was effective. Again,
e observed that the best-detected BOLD areas were statisti-

ally obtained using denoising parameters that introduced the
trongest low-pass filters. The largest subregions (around a win-
ow size of 30 × 30 voxels) and very high values of �i gave the
est spatial correlations: from �i = 642.91 (aROI3),  to �i =
42.91 (aR11 and aRo12) and to �i = 1142.91 (aRO14)
Fig. 3b). Finally, we applied wavelet-based denoising techniques
sing a coefficient thresholding approach. Both shrinkage methods
ith all available decomposition levels (1 to 6), a broad panel of

pline degrees (from 0 to 5) and progressive coefficient threshold-
ng (from 5 to 55), were applied. The best results were obtained
sing soft thresholding with high threshold values and levels of
avelet decomposition (3 and 4), which correspond to denoising
arameters that produce a low-pass filtering function (Fig. 3b);
smoothness” orders were equivalent for the optimal detection of
he four ROIs.

The above results demonstrate the utility of prior ICA denois-
ng when the data are badly degraded by noise for which Gaussian
moothing and, to the nearly same extent, wavelet-based filter-
ng methods seem particularly adapted. Otherwise, oversmoothing
arameters were needed to optimize the ICA performance, whereas

he opposite was  observed for spatial SNR maximization; it is
oteworthy that the ICA performances tended to plateau with
rogressive oversmoothing strength regardless of the denoising
ethods.
 smoothing; NSGM: non-stationary Gaussian modelling; WThr: thresholding
on.

For aROI1, aROI3 and aROI4, Gaussian smoothing and the
non-stationary Gaussian method achieved maximal BOLD region
detection with filtering parameters providing equivalent “smooth-
ness” orders, while the wavelet thresholding technique needed
parameters performing higher smoothing strength. In contrast,
the non-stationary Gaussian method allowed a better detection of
aROI2 for a lower “smoothness” order in comparison to the other
methods. When compared to the others ROIs, aROI3 needed less
smoothing strength to be outlined with highest precision in terms
of spatial correlation (Fig. 4). Finally, aROI4, which yielded a sinu-
soid signal of low frequency, benefited substantially from prior
denoising and showed little sensitivity to the denoising strength
of the various filters (Fig. 4). However, the detected time course
was not significantly correlated to its initial HRF.

4.2.2.2. Artificial data with a SNR of 20 dB. As for the previous sec-
tion, best results for all denoising methods compared to no prior
denoising, are summarized in Table 2.

Applied to the noisy data without prior filtering, ICA enabled
visual detection of aROI4; albeit spatial correlation of aROI2 and
aROI3 was  significant, only few voxels within these areas could be
visually identified and the sensitivity remained extremely low for
both regions; however, the correlation of the ICA time courses of
all aROIs was significant (Fig. 3c).

As for the previous set of synthetic data, denoising signifi-
cantly improved the ICA. Gaussian smoothing was applied with
progressive FWHM values from 4 to 14 mm.  All Gaussian kernel
widths yielded well-delimited BOLD areas, even with very low
FWHM.  However, optimal ICA detection of ROI1 was achieved
for higher FWHM values; probably the Gaussian kernel had to

cover a higher surface of the BOLD area, as the latter could not
be outlined by ICA without prior denoising (Fig. 3c). For non-
stationary Gaussian modelling, we applied the same subregion
sizes as above and a progressive prior noise SD of �i = �I + 50 ∗
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Fig. 4. ICA performance after denoising, for data degraded by a Rician noise of 10 dB. The coefficient of spatial correlation (Y-axis) between the BOLD mask and the best
activation maps (FDR correction) for each aROI (aROI1, top left; aROI2, top right; aROI3, bottom left; aROI4, bottom right) is plotted against the filtering parameters: the
FWHM  of the Gaussian smoothing kernel (red diamond and first X-axis in red), the prior noise SD used for the non-stationary Gaussian modelling (green triangle and second
X-axis  in green), and the values used to perform soft thresholding of wavelet coefficients (blue circle and third X-axis in blue). Criteria of “smoothness” equivalence (SNR
and  mean square error) were used to fit all X-axis and chart titles contain the indication of the HRF increase rate against the baseline (BOLD: blood oxygen level-dependent;
aROI:  region of interest in the artificial data; FWHM:  full width at half maximum; SD: standard deviation; GS: Gaussian smoothing; NSG: non-stationary Gaussian; WThr:
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hresholding of wavelet coefficients; HRF: haemodynamic response function). (For
he  web version of the article.)

 for i ∈ {−1, 0, 1, . . . , 10}, where �I was the calculated SD of
he noise (�I = 76.81). Better BOLD detection with significant cor-
elation was effective for all denoising parameters, except for
ROI1 that was outlined with higher low-pass filtering parame-
ers (�i ≥ 226.81) (Fig. 3c). Finally, the wavelet method based on its
oefficients thresholding produced practically similar effects on the
CA. We  used both shrinkage methods with all available decompo-
ition levels (1–6), a broad panel of spline degrees (from 0 to 5) and
rogressive coefficient thresholding (from 2 to 98). Best ROIs detec-
ion was achieved for soft shrinkage, but with a level of wavelet
ecomposition reduced to 2–3 (Fig. 3c).

As observed in the data corrupted by the higher level of noise
10 dB), prior filtering was also useful for analysis of slightly
egraded images and all methods provided optimal results when
arameters were set to effectively perform low-pass filtering;
asic denoising through Gaussian smoothing gave globally the best
esults, whereas the performance of both of the wavelet methods

ame very close to Gaussian smoothing.

The filtering parameters differed from those needed to maxi-
ize the spatial SNR.
pretation of the references to colour in this figure legend, the reader is referred to

This statement can be illustrated quantitatively with the results
of the non-stationary Gaussian method and its denoising param-
eters used to optimize ICA: the smoothing parameters inserted a
higher noise variance-optimized ICA (�i ≥ 376.81) determining a
“smoothness” order equivalent to the one given by a FWHM ≥ 5
in Gaussian smoothing, whereas a maximal SNR required a close
approximation of the true noise variance (�i ∼= 76.81). Data cor-
rupted by lower noise levels requires less smoothing strength
allowing some preservation of the image information at high
frequencies, although ICA performances tended to plateau with
higher smoothing strengths.

For all ROIs, Gaussian smoothing and the non-stationary Gauss-
ian technique achieved maximal BOLD region detection with
filtering parameters providing equivalent “smoothness” orders,
while higher smoothing strength were needed for wavelet thresh-
olding (Fig. 5). As seen for the previous data set, aROI4 remained
substantially sensitive to prior denoising and showed little sensi-

tivity to the denoising strength of the various filters (Fig. 5), but
the detected time course remained significantly uncorrelated to its
true HRF.
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Fig. 5. ICA performance after denoising, for data degraded by a Rician noise of 20 dB. The coefficient of spatial correlation (Y-axis) between the BOLD mask and the best
activation maps (FDR correction) for each aROI (aROI1, top left; aROI2, top right; aROI3, bottom left; aROI4, bottom right) is plotted against the filtering parameters: the
FWHM  of the Gaussian smoothing kernel (red diamond and first X-axis in red), the prior noise SD used for the non-stationary Gaussian modelling (green triangle and second
X-axis  in green), and the values used to perform soft thresholding of wavelet coefficients (blue circle and third X-axis in blue). Criteria of “smoothness” equivalence (SNR
and  mean square error) were used to fit all X-axis and chart titles contain the indication of the HRF increase rate against the baseline (BOLD: blood oxygen level-dependent;
aROI:  region of interest in the artificial data; FWHM:  full width at half maximum; SD: standard deviation; GS: Gaussian smoothing; NSG: non-stationary Gaussian; WThr:
t  inter
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hresholding of wavelet coefficients; HRF: haemodynamic response function). (For
he  web  version of the article.)

.3. Hybrid data

As previously, Table 3 presents in details best results for all
enosing methods with regard to their optimal filtering parame-
ers, and compared to no prior denoising.

As for the artificial data, the specificity will not be presented,
ue to its non-contributory values (Sp > 0.97) in all conditions.

Although some BOLD regions could be partially outlined in ICA
omponents for a significance level of 0.05 (Fig. 6a), ICA could not
solate, after FDR correction, any BOLD region (Fig. 6b), in terms
f correlation coefficient and sensitivity. However, prior denoising
meliorated significantly the results (Fig. 6b). Gaussian smoothing
utlined the BOLD regions for progressive FWHM values start-
ng from 3 mm for hROI2 and hROI4, from 4 mm for hROI1 and
rom 5 mm for hROI3. Non-Gaussian modelling in the wavelet
omain was then applied using the same subregion sizes as pre-
iously described and progressive prior noise SD starting from 20,
 = 20 + 20 * i for i ∈ {0, 1, 2,.  . .,  11}. SD exceeding 80 produced sys-
ematic detection of the BOLD regions (SD of 60 for hROI4 and
D of 80 for hROI1 and hROI2), except for hROI3 that needed
ore low-pass filtering strength with a high SD of 260. Finally,
pretation of the references to colour in this figure legend, the reader is referred to

wavelet-based denoising using thresholding was performed. We
applied both shrinkage methods with progressive decomposition
levels (1–5) and the usual panel of spline degrees (from 0 to 5). Hard
shrinkage, with parameters set to 2 (others ROIs) and 3 (hROI1) for
the level decomposition yielded the best correlations and sensitiv-
ities. The use of very high coefficients thresholding reflected the
necessity of strong low-pass filtering to optimize the ICA results;
however, highest thresholding values were needed to obtain best
detection of hROI3.

As observed in the artificial data, denoising enhanced the
BOLD region detection and low-pass filtering maximized ICA per-
formances. Basic smoothing, represented by the classic Gaussian
smoothing, provided equivalent results compared to both wavelet-
based methods. Albeit “smoothness” orders could not be compared
between the different denoising methods in the absence of SNR
measures, it is noteworthy that for all filtering techniques, optimal
detection of hROI3 (HRF of lowest amplitude) required filtering

parameters rendering higher smoothing strength in comparison
to the other ROIs (Fig. 7). Finally, ICA results concerning hROI4
remained similar to those obtained for aROI4: it was substantially
sensitive to prior denoising, it had little sensitivity to denoising
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Fig. 6. (a) The hybrid data with the selected BOLD ROIs shown in red (left); the sICA activation maps from the hybrid data without preprocessing for a significance level
of  0.05 (right) and (b) after FDR correction (top left). (b) Best sICA activation maps from the hybrid data after denoising (FDR correction): Gaussian smoothing (top right),
filtering with non-stationary Gaussian modelling in the wavelet domain (bottom left), and wavelet denoising by hard thresholding (bottom right). The associated filtering
parameters are detailed in Tables 1 and 2 (BOLD: blood oxygen level-dependent; hROI: region of interest in the hybrid data; sICA: spatial independent component analysis;
FDR:  false discovery rate). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.)
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Table 3
Summary of the best statistical ICA performances in terms of spatial correlation and sensitivity after FDR correction, shown for all hROIs of the hybrid data.
Inclusion of the sensitivity and of the correlation coefficient that are related to the best spatial correlation and sensitivity respectively. Best result for each
hROI  is outlined in red and in italic.
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(FDR: false discovery rate; hROI: region of interest in the hybrid data; GS: Gau
of  wavelet coefficients; FWHM:  full width at half maximum; SD: standard d

trength variations (Fig. 7) and the detected time course was sig-
ificantly uncorrelated to its true HRF.

. Discussion

ICA is an elegant multivariate method that allows extraction
f temporally coherent network from fMRI data without being
onstrained by prior assumptions about timing or haemodynamic
eatures. Because ICA also identifies the noisy components of the
ata, it can be considered as a filtering technique for isolating the
ost neurologically relevant components. However, practice has

hown that prior data denoising improves ICA results. Two rea-
ons may  motivate such prior filtering. (1) Noise removal improves
stimation of the demixing matrix during ICA. (2) Strengthening
he assumed smoothness of BOLD sources by data smoothing may
ncrease the independence of the sources by maximizing their uni-
orm distribution, which leads to a higher joint entropy. In the
ontext of ICA, one may  state that the purpose of prior filtering
s to reduce noise while increasing the independence between the
omponents.

Among the denoising methods used in neuroimaging analysis,
aussian smoothing is commonly applied and acts as a classical

ow-pass filter with strong noise-reduction properties. Enhanced
ndependence may  be achieved by increasing the source smooth-
ess. However, smoothing removes high frequency information,
hich reduces source independence. Thus, we compared Gaussian

moothing with more sophisticated denoising methods that reduce
ess the information held in high-frequency signals such as borders

nd edges. We  hypothesized that wavelet-based filters and our pro-
osed non-stationary Gaussian modelling in the wavelet domain
ould yield better results because they efficiently improved both

he SNR and the source independence.
smoothing; NSGM: non-stationary Gaussian modelling; WThr: thresholding
on).

We generated fMRI artificial data yielding several regions of
interest with different haemodynamic functions, which were then
corrupted by two  different noise levels. The first data set was
parameterized such that the ICA was not able to isolate the indepen-
dent task-related components from the raw data. To approach real
fMRI conditions and to validate previous ICA results with synthetic
data, hybrid data were created in the same way as the artificial
data: the same theoretical haemodynamic functions were added
to defined BOLD regions from real fMRI images acquired during a
resting task. Various statistical criteria were then applied to link
the statistical activation maps, with the BOLD mask.

After we demonstrated analytically the applicability of prior
denoising to ICA, we confirmed that both wavelet-based denois-
ing methods performed better in terms of the SNR compared
to classical Gaussian smoothing, whereas the best results were
recorded using a novel wavelet denoising techniques based on
a non-stationary Gaussian modelling within the Bayesian frame-
work.

Three key observations can be deduced from the ICA results after
filtering of both artificial and hybrid data, using spatial correlation
as the principal quality measure, and sensitivity:

1. It was empirically demonstrated that prior denoising improved
ICA results.

2. All filtering techniques were effective, and their performances
were equivalent from method to method regardless of the noise
grade or of the data type (artificial versus hybrid); indeed, the
differences in the results between ROIs, HRF and data type, were
heterogeneous and not sufficiently significant to define a supe-

rior filtering method.

3. The values of the denoising parameters that maximized the spa-
tial SNR resulted into filters that mainly acted like low-pass
filters with oversmoothing; it is noteworthy that the smoothing
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Fig. 7. ICA performance after denoising, for hybrid data. The coefficient of spatial correlation (Y-axis) between the BOLD mask and the best activation maps (FDR correction)
of  each hROI (hROI1, black diamond; hROI2, red square; hROI3, green triangle; hROI4, violet circle) is plotted against the filtering parameters (X-axis): the FWHM of the
Gaussian smoothing kernel (top left), the prior noise SD used for the non-stationary Gaussian modelling (top right), and the values used to perform hard thresholding of
wavelet coefficients (bottom left). Chart legend contains the indication of the HRF increase rate against the baseline for each hROI (BOLD: blood oxygen level-dependent;
F st in t
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WHM:  full width at half maximum; SD: standard deviation; hROI: region of intere
eferences to colour in this figure legend, the reader is referred to the web version o

strength seemed to be correlated with the noise level or the
amplitude of the time course signal: low SNR or low HRF ampli-
tude needed higher smoothing strength. Besides, detection of
ROIs yielding a sinusoid function of low frequency mimicking a
resting-state activity is much more sensitive to prior denoising
and is already effective for slight smoothing.

The last observation can also be interpreted as follows. Strong
moothing enhances the Gaussianity of the data as predicted by the
entral limit theorem, leading in theory to a reduced performance
f ICA due to less non-Gaussianity in the data. Several hypotheses
ay be advanced to explain why low-pass filtering improves ICA,
hereas the filtering parameters that produced the best denois-

ng, in terms of SNR, did not consistently improve ICA results. The
esults suggest that some image components are more involved in
CA performance.

Regardless of its energy, noise plays a significant role in ICA
ecause strong reductions in noise due to low-pass filtering deter-
ine ICA performance. We  showed that the smoothing strength
ended to be proportional to the noise intensity or to the HRF
mplitude: badly degraded data or low signal amplitude required
versmoothing to provide the best ICA, whereas mild smooth-
ng was sufficient for data corrupted by lower noise or for higher
he hybrid data; HRF: haemodynamic response function). (For interpretation of the
article.)

amplitude. Otherwise, smoothing may  contribute to increasing the
independence of sources to a certain extent. Indeed, because BOLD
sources are assumed to be smooth, an increase in smoothness
produces uniformity in the statistical distribution of the sources,
leading to higher joint entropy.

By contrast, image information embedded in the high frequen-
cies did not seem to play a main role in ICA, because smoothing
eliminates this information. It is interesting to note that recent
work (Chialvo et al., 2008) has shown that resting-state fMRI
exhibits scale-free spatial organization, which means that similar
patterns are recovered at different spatial scales, but the coarse
scales might be easier to reveal in a noisy context (after Gaussian
smoothing).

Accordingly, the initial hypothesis that band-pass filtering dur-
ing preprocessing should be superior to low-pass filtering should
be challenged and the question arises why more sophisticated
wavelet-based methods with powerful denoising characteristics
did not improve more efficiency in ICA, than basic smoothing, at
least according to the spatial correlation or sensitivity criteria. A

first explanation may  be based on the fact that wavelet denoisers
introduce non-linearities in the data lowering in this way the ICA
efficiency. Secondly, the criterion of spatial correlation is applied
after thresholding, which removes some of the typical artefacts
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ncountered with Gaussian smoothing, such as poor shapes of
ctivation. However, the outcome of ICA is mostly assessed by
onsidering “suprathresholded” voxels, which are the ones char-
cterized by our criterion. Thirdly, SNR improvement and ICA are
wo different steps in fMRI signal processing because denoising and
etection are, themselves, distinct processes. Computed disjointly,
oth procedures may  render individually optimal results, but it is
ot necessarily the case when both procedures are combined. Infor-
ation from one process may  influence the other. Here, denoising

receded detection such that statistical changes had the potential
or hampering the detection power. For example, the lower influ-
nce of the powerful wavelet-based filtering on ICA may  result
rom excessive statistical changes that may  not occur under Gauss-
an smoothing. Accordingly, in the context of the feature-selective
cheme (Li et al., 2007), ICA or other detection methods may  be
esigned to exploit the strength of the best denoising techniques:
hullar demonstrated this by designing an ICA method that oper-
ted in the wavelet domain, and which performance was  better
han those obtained with prior Gaussian smoothing in the image
omain (Khullar et al., 2011).

Finally, we can advance an additional benefit of spatial smooth-
ng related to the application of ICA to group studies. Indeed,
nter-subject variability, which is hindering even after normaliz-
ng the subject to the same space, is certainly decreased by spatial
moothing; we refer to Allen et al. (2012) for a detailed analysis of
his issue.

. Conclusion

We confirmed that prior denoising by performing low-pass fil-
ering is beneficial and in some cases even essential for ICA to work
roperly. Compared to wavelet-based filtering methods, simple
nd computationally efficient Gaussian smoothing provides equiv-
lent performance according to spatial correlation and sensitivity
riteria of the recovered maps. Nevertheless, wavelet methods,
uch non-stationary Gaussian modelling, may  represent an inter-
sting compromise between ICA improvement and the best spatial
oise reduction in terms of SNR. This approach should be tested by

ntegration into ICA for the purposes of potentiating its properties.
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ppendix A.

.1. Maximum a posteriori probability image de-noising

Since in MR  images the distribution of Rician noise follows a

aussian distribution, the original fMRI image, noted X, is degraded
y additive white Gaussian noise (AWGN), Z:

 = X + Z; (A1)
e Methods 213 (2013) 105– 122

where Y is the acquired fMRI image and Z∼N(0, Cz) an i.i.d. AWGN
zero-mean with a known co-variance matrix CZ.

With available proper prior information, X is estimated from its
corrupted version Y, in performing a maximum a posteriori (MAP)
estimation:

x̂ = arg max
x ∈ 
N

(pY |X (y|x)px(x)), (A2)

where x̂ is the estimate of X, pY |X (y|x) the likelihood function for
the AWGN and finally, px(x) the prior distribution of the original
image.

As image and noise are assumed to be multivariate Gaussian,
i.e. X∼N(x̄, Cx) and Z∼N(0, CZ ), the solution of estimation (A2)
becomes:

x̂ = CZ (CZ + CX )−1x̄ + Cx(CZ + CX )−1y. (A3)

Since the MAP  estimator is linear, the estimation error x̃ = x̂ − x,
remains Gaussian X̃∼N(0,  CZ ), and its covariance matrix is defined
as:

CX̄ = CX (CZ + CX )−1CZ ; (A4)

besides, the variance of the MAP  estimator is:

�̂2
X̂

= 1
N

Tr(CX̄ ). (A5)

If X remains uncorrelated but becomes non-stationary, CX =
diag(�2

X (1),  �2
X (2), . . . , �2

X (N)) with the assumption that the noise,
is AWGN, CZ = �2

Z IN, the MAP  estimator of X can be written as
followed:

x̂(i) = x̄(i) + �2
X (i)

�2
X (i) + �2

Z

(y(i) + x̄(i)) (A6)

with variance:

�̂(i) = x̄(i) + �2
X

�2
X + �2

Z

(y(i) + x̄(i)). (A7)

If additionally X becomes white Gaussian, CX = �2
X IN , the MAP

estimator of x is one-to-one mapping;

x̂(i) = x̄(i) + �2
X

�2
X + �2

Z

(y(i) + X̄(i)), (A8)

and its variance is:

�̂2
X̂

= �2
X�2

Z

�2
X + �2

Z

, (A9)

To analyze the non-stationary Gaussian data case, the local
variance estimate should be assessed by applying a maximum like-
lihood (ML) method, as local stationarity, is assumed:

�̂2
X (i) = 1

|˝|
∑

k ∈ ˝(i)

(x(k) − x̄(i))2, (A10)

where ˝(i) is a square window centred at x(i) with |˝|  the cardi-
nality of ˝(i) and x̄(i) the local mean of ˝(i):

x̄(i) = 1
|˝|

∑
k ∈ ˝(i)

x(k). (A11)

Modelling principle based on geometrical prior information in
wavelet domain

Real X images are non-stationary but if we  assume that they

are composed by a number of statistically homogenous regions in
the coordinate domain, each region may  be modelled as stationary
Gaussian with some variance (Wilson, 1999). In this case, classical
ML estimators lead to over-estimation of the local variance, which
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an be avoided by considering X as a union of non-overlapping
egions Ri with i.i.d. Gaussian statistics:

iRi = Si; Ri ∩ Rj = ∅,  (A12)

ith i = 1, 2, . . . n,,  and where S is the initial support of X.
Thus, variance is only estimated in the corresponding sub-region

i, and the classical ML  estimate can be replaced by a restricted
upport ML  local variance estimate:

ˆ 2
X (i) = 1

|˝|
∑

k ∈ ˝(i)

x(k)2mk, (A13)

˝| is the cardinality of the subset  ̋ and mk is a subset indicator
unction:

k =
{

1, k ∈ ˝,

0, otherwise.
(A14)

As denoising is more efficient in the wavelet domain, partition
echnique of regions and adaptive ML  method are performed in the
ransform domain. To overcome the Gibbs phenomenon in bor-
ers (edges) of the reconstructed image, non-decimated wavelet
ransform without downsampling is applied (Chrysafis, 2000).
oloshynovskiy et al. has shown that best results were obtained
ith 9/7 CDF biorthogonal filter pair and 4 levels of decomposi-

ion (Voloshynovskiy et al., 2005). Since variance distribution of
he wavelet coefficients in high frequency subbands is close to a
ayleigh distribution, the MAP  estimate can be used instead of the
L estimate for the local variance:

2
MAP = s2(|M| − 1)

2

⎡
⎣−1 +

√√√√1 + 4
s2(|M| − 1)

|M|∑
i=1

(x(i)2)

⎤
⎦ , (A15)

ith |M|  the cardinality of the sampling window and s the scalar
arameter estimated in each subband calculated with the ML  esti-
ation in a sampling window of dimension d:

2 = 1
2N

∑
k ∈ ˝(i)

�2
dxd(i). (A16)

.2. Edge process model

To overcome computational complexity that results from the
onsideration of the local information in the stochastic image, edge
rocess modelling was developed (Voloshynovskiy et al., 2005).
ince no linear transform is able to decorrelate completely the
dges, the residual correlation of the image remains in the high
requency subbands. Performance can be improved with additional
ecorrelation, by subtracting edges from the high frequency sub-
and data that that allows local variance reduction and that leads
o locally Gaussian distribution.

Concretely, the image, X, is decomposes in non-decimated sub-
ands that have each their own support Sl, with l = 1,. . .,  3W, where

 is the number of dyadic decomposition level such that Si ∩ Sj =
, i /= j and ∪lSl = S. Edge process model assumes that each sub-
and is separated in two distinctive sets of wavelet coefficients
orresponding to the flat region R1 and to edge and texture region
2, respectively, which are statistically defined as:

1 = {x : X(i)∼N(0, �2
X (i))}, (A17)

2 = {x : Xj(i)∼N(x̄j(i), �2
Xj

(i))}, (A18)

here R1 ∪ R2 = S.R1 is assumed to be zero-mean Gaussian with the

ocal variance �2

X (i). Within R2, each distinct geometrical structure
hat corresponds to an edge or a texture transition is decomposed
nto a set of local means. Besides, a particular mean x̄j(i), j = 1, . . . , J
f the different structure propagates along the edge corresponding
e Methods 213 (2013) 105– 122 121

to the edge subtraction strategy, the so-called edge process (EP).
Thus, the coefficient on the edge regions may  have a possible value
from the set {x̄j(i)}, such that the coefficients variation remains
small. Thus, the image may  be considered as a set of flat regions
that are assumed to be i.i.d. stationary Gaussian and whose wavelet
subbands have low variance. Hence, EP model belongs to the Gauss-
ian family of distribution with only difference in the estimation of
model parameters. In this case, the estimation is in the form of
Wiener with estimator variance:

�2
MAP = 1

N

N∑
i=1

�2
X (i)�2

Z

�2
X (i) + �2

Z

, (A19)

where �2
X (i) is the local image variance of the EP model.
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