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A B S T R A C T   

Spontaneous fluctuations in the blood oxygenation level dependent signal measured through resting-state 
functional magnetic resonance imaging have been corroborated to aggregate into multiple functional net-
works. Abnormal resting brain activity is observed in mood disorder patients, however with inconsistent results. 
How do such alterations relate to clinical symptoms; e.g., level of depression and rumination tendencies? Here 
we recovered spatially and temporally overlapping functional networks from 31 mood disorder patients and 
healthy controls during rest, by applying novel methods that identify transient changes in spontaneous brain 
activity. Our unique approach disentangles the dynamic engagement of resting-state networks unconstrained by 
the slow hemodynamic response. This time-varying characterization provides moment-to-moment information 
about functional networks in terms of their durations and dynamic coupling, and offers novel evidence for se-
lective contributions to particular clinical symptoms. Patients showed increased duration of default-mode 
network (DMN), increased duration and occurrence of posterior DMN as well as insula- and amygdala- 
centered networks, but decreased occurrence of visual and anterior salience networks. Coupling between 
limbic (insula and amygdala) networks was also reduced. Depression level modulated DMN duration, whereas 
intrusive thoughts correlated with occurrence of insula and posterior DMN. Anatomical network organization 
was similar to controls. In sum, altered brain dynamics in mood disorder patients appear to mediate distinct 
clinical dimensions including increased self-processing, and decreased attention to external world.   

1. Background 

Mood disorders—both unipolar (Major Depressive Disorder, MDD) 
and Bipolar Disorder (BD) —are among the most prevalent and costly 
psychiatric disorders (James et al., 2018). They entail not only affective 
(e.g., sadness or anxiety), but also cognitive symptoms such as 
distractibility or rumination. The course of these disorders is difficult to 
predict or modify, and their underlying pathophysiology unclear. 
Several lines of evidence demonstrate aberrant brain activity in mood 
disorder patients (MDP) compared to healthy participants (HP) either 

during cognitive tasks or at rest, usually implicating multiple regions 
within large-scale networks (Han et al., 2018; Kang et al., 2016; Mulders 
et al., 2015; Sheline et al., 2010, 2009; Wang et al., 2020). The nature 
and significance of these abnormalities and their relationships with 
clinical symptoms remain unresolved. However, in emerging views of 
precision psychiatry, it is of utmost importance to transition from simple 
associations between regional brain activity and broad phenotypes to 
more functional description of dynamically interacting and overlapping 
brain systems linked to particular clinical features (Silbersweig and 
Loscalzo, 2017). Here we investigate the dynamics of large-scale brain 
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activity patterns to better characterize the functional changes and 
pathophysiology of mood disorders, with the ultimate aim to look for 
imaging-based biomarkers that may facilitate clinical assessment and 
intervention. 

Resting-state functional magnetic resonance imaging (rs-fMRI) al-
lows for non-invasive monitoring of brain activity without any specific 
task demand. Fluctuations of blood-oxygenated-level-dependent (BOLD) 
signals acquired during rest have been found to aggregate multiple re-
gions with coherent activity, known as resting-state networks (RSNs) 
(Fox and Raichle, 2007). RSNs include the characteristic ‘task-negative’ 
or default mode network (DMN), as well as others that are reminiscent of 
task-positive networks, such as attention and sensory systems (Smith 
et al., 2009). These networks reflect large-scale functional organization 
and connectivity of the brain (Goldman et al., 2002; He et al., 2008; 
Mantini et al., 2007; Preti et al., 2016). 

A growing body of studies point to altered activity of RSNs in MDP 
relative to HP. In MDD, several studies highlighted decreased cortico- 
limbic connectivity (Anand et al., 2005; Tang et al., 2013; Ye et al., 
2016), whereas others reported increased connectivity of DMN with 
limbic and salience networks (Greicius et al., 2007; Sheline et al., 2010; 
Sheline et al., 2009). Systematic reviews (Kaiser et al., 2015a; Kaiser 
et al., 2015b; Mulders et al., 2015; Zhou et al., 2020) and metanalysis 
(Ma et al., 2019) converge to suggest that the anterior DMN (aDMN) 
shows hyperconnectivity, both intrinsically and with salience-related 
areas (i.e., insula and amygdala), while the posterior DMN (pDMN) 
shows hypoconnectivity with cognitive control areas. Moreover, ante-
rior and posterior DMN tend to be more dissociated relative to HP 
(Mulders et al., 2015). However, another meta-analysis of rs-fMRI in 
MDD found that connectivity changes often affect brain regions that do 
not match with classical resting-state networks, and therefore suggested 
that these findings must reflect altered interactions between networks 
rather than only anomalies within networks (Sundermann et al., 2014). 
Other meta-analyses using whole-brain data with Activation Likelihood 
Estimation (ALE) method (applied to rest as well as emotional process-
ing and cognitive tasks) found increased correlated activity in subcor-
tical limbic areas such as amygdala, striatum, and thalamus (Palmer 
et al., 2014), as well as in the ventromedial prefrontal cortex (vmPFC), 
pregenual anterior cingulate cortex (pgACC), and parahippocampal re-
gions (Kühn and Gallinat, 2013). Similarly, a metanalytic approach, 
based on peak coordinates from whole-brain resting-state functional 
data from 313 medication-naive first-episode MDD patients, reported 
major differences in the amygdala and parahippocampal gyrus 
compared to healthy controls (Ma et al., 2019). 

Interestingly, activity in pgACC, parahippocampal gyrus, and DMN 
has been related to increased self-referential processing in unipolar pa-
tients (Grimm et al., 2009; Hamilton et al., 2011; Sheline et al., 2009), 
particularly with spontaneous and self-related negative thoughts, i.e., 
ruminations (Berman et al., 2011; Hamilton et al., 2011), as confirmed 
by a recent metanalysis as well (Zhou et al., 2020). Increased recruit-
ment of DMN is therefore commonly considered as the biological basis 
for rumination and, consequently, causing interference on cognitive 
control networks (Andrews-Hanna et al., 2014; Marchetti et al., 2012). 

However, the view that DMN is a task-negative network (passive) 
and globally anti-correlated with task-positive network is too simplistic 
(Koshino et al., 2014; Leech et al., 2011). Moreover, ruminations may 
involve differential activity across several brain areas (Piguet et al., 
2014). Hence, the relationship between DMN connectivity, depression, 
and self-related thoughts such as rumination remains poorly understood. 
A few studies correlated changes in brain connectivity at rest with 
clinical variables and pointed to direct links between DMN or dorso-
medial PFC (dmPFC) connectivity with mood scores on Hamilton 
Depression Rating Scale (Chen et al., 2021; Sheline et al., 2010) or the 
Ruminative Response Scale (Hamilton et al., 2011). In any case, 
impaired thought control and content remain a major clinical and 
dimensional variable of MDD, intimately associated with how the brain 
spontaneously functions at rest. 

Furthermore, partly similar but also discordant observations have 
been reported for BD patients, consistent with a common pathophysio-
logical model of mood disorders (Price and Drevets, 2012). Connectivity 
patterns of prefrontal areas (medial, ventral or dorsolateral) with meso- 
limbic areas such as the amygdala, thalamus, insula, or striatum were 
found to be either increased or decreased across different studies (for a 
review, see (Vargas et al., 2013), for a comparison between remitted and 
acute states (Wang et al., 2020), and for studies during remission (Syan 
et al., 2018)). Decreased connectivity between the posterior cingulate 
cortex (PCC) and striatum (Teng et al., 2014) or limbic regions (Liu 
et al., 2019) was also described in BD. However, despite the increasing 
body of evidence regarding resting state activity in BD, the complexity of 
the disease across variables episodes and clinical profiles, as well as the 
heterogeneity in the analysis methods, has prevented a definitive un-
derstanding of impairment in neural networks (Syan et al., 2018; Vargas 
et al., 2013). 

Therefore, as for MDD, a better characterization of connectivity 
changes in BD is needed to better understand functional interactions 
both between and within brain networks (Khadka et al., 2013; Meda 
et al., 2014). Moreover, the specificity of findings in MDD and BD has to 
be clarified. Both differences and similarities between unipolar and bi-
polar patients were described (Anand et al., 2009; Chen et al., 2020; 
Fateh et al., 2020; Han et al., 2020; Liu et al., 2013, 2015; Luo et al., 
2021; Nakamura et al., 2020; Yu et al., 2020; Zeng et al., 2020). For 
instance, recent work found decreased FC between limbic regions and 
the DMN in both BD and MDD patients (n = 55) as compared to HP (n =
24) (Liu et al., 2019). Interestingly, both BD (n = 41) and MDD (n = 61) 
patients presented decreased network switching rate in the DMN, while 
MDD patients had lower switching rate in salience network and striatum 
compared with BD and HP in a recent study on dynamic functional 
connectivity (Han et al., 2020). Finally, a recent study with seed-based 
functional connectivity analysis identified lower connectivity at 
prefronto-thalamo-cerebellar and sensorimotor-thalamic level in BD (n 
= 38) and MDD (n = 42) patients, as well as between the thalamus and 
the salience network in MDD patients only, but there was no correlation 
with clinical variables in any group (Zeng et al., 2020). In our study, we 
therefore chose to address these issues by focusing on clinical di-
mensions of mood disorder beyond dichotomous diagnostic categories, 
focusing on negative thoughts, anxiety, and intrusive thoughts. 

New approaches to rs-fMRI analysis have shown that spontaneous 
brain dynamics can successfully be tracked to study moment-to-moment 
reorganization within and between networks, opening new ways to 
elucidate the pathophysiology of psychiatric disorders (Braun et al., 
2018; Karahanoğlu and Van De Ville, 2017; Pillai and Jirsa, 2017; Preti 
et al., 2016). Several studies in HP (Allen et al., 2014; Chang and Glover, 
2010; Hutchison et al., 2013; Liu and Duyn, 2013; Schaefer et al., 2014; 
Smith et al., 2012) and disease (Damaraju et al., 2014; Leonardi et al., 
2013) examined the dynamic behavior of main network hubs with 
sliding-window correlations (Damaraju et al., 2014; Kaiser et al., 2016), 
revealing that different sub-components of RSNs may take part in 
different processes over time (Yeo et al., 2013; Yeo et al., 2011). Thus, 
fluctuations of DMN sub-components (Andrews-Hanna et al., 2010; 
Leech et al., 2011; Margulies et al., 2009) and their dynamic interactions 
provide important information about the intrinsic coordination and 
integrity of RSNs (Andrews-Hanna et al., 2014; Schaefer et al., 2014), 
which might be compromised in various psychiatric disorders. Another 
recent example of sliding-window approach is a multicenter study that 
found significantly lower amplitude of low-frequency fluctuation (ALFF) 
and fractional ALFF in the precuneus and posterior cingulate cortex 
(PCC) of 848 MDD patients compared to 794 HP (Yan et al., 2019). 

In the current study, we sought to identify the building blocks of 
ongoing brain network activity using a novel method that allows for 
both spatial and temporal overlap. Specifically, this method captures 
transient activations through spatio-temporal fMRI deconvolution, and 
then defines innovation-driven co-activation patterns (iCAPs) contain-
ing all brain voxels with the same transient behavior (Karahanoğlu et al., 
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2013; Karahanoğlu and Ville, 2015). This approach conceptually ac-
cords with the hypothesis of discrete transitions between brain meta-
states (Vidaurre et al., 2017), although states in our framework are not 
mutually exclusive; i.e., they can be temporally overlapping. Compared 
with traditional, “static” connectivity analyses, which neglect time- 
varying information, dynamic fMRI methodologies capture fluctua-
tions in neural activity to characterize ongoing changes in resting-state 
networks that overlap both spatially and temporally. Compared with 
ALFF or sliding window approaches, iCAP can thus detect instantaneous 
transients of activity of areas clustered together based on their activation 
pattern. This counteracts the effect of hemodynamic blurring, and can 
thus dissect temporally overlapping activity patterns, by determining 
consistent spatial patterns at the onset of de-activation or activation 
(Karahanoğlu and Ville, 2015). 

Here, we extracted iCAPs from resting state fMRI in a group of mixed 
mood disorder patients in order to determine chages in both the tem-
poral dynamics and spatial organization of spontaneous brain activity, 
relative to age-matched HP. Our transdiagnostic, dimensional approach 
is in line with current research models in psychiatry advising to target 
symptoms common to different pathologies (Cuthbert, 2020; Insel et al., 
2010), rather than historically defined diagnoses. Accordingly, it is 
increasingly more frequent to target circuits across different diagnostic 
categories and relate them to clinical symptoms, rather than rely on 
fixed, historically-defined nosologic conditions. This approach may even 
increase our ability to uncover crucial alterations in mood disorders 
beyond specific diagnostic categories and thus help refine the current, 
historically defined divisions between these categories (Biswal, 2021). 
Examples of this are numerous (Gong et al., 2020; Luo et al., 2021). For 
instance a recent metanalysis of whole- brain rs-fMRI studies on ALFF in 
MDD and BD patients found aberrant regional intrinsic cerebral activity 
in common brain areas (i.e. mPFC, insula, and cerebellum) in both 
disorders (Gong et al., 2020). Another metanalysis found similar alter-
ations in dynamic ALFF, calculated with a sliding-window approach, 
across the limbic system and primary visual area, in 901 BD, MDD, and 
schizophrenia patients compared to 384 healthy controls (Zhang et al., 
2021). Our analyses focused on the occurrences, durations, and in-
teractions of functional networks over time. We then examined the 
relationship between such changes in brain dynamics and particular 
clinical features. In line with dimensional models of MDD (Langenecker 
et al., 2014), we concentrated on negative mood, anxiety, and intrusive 
thoughts symptoms. We expected to observe longer duration of DMN or 
its subcomponents in patients, independently of their mood state, in 
accordance with perseverative thinking and reduced mental flexibility 
commonly reported in MDP. We also expected changes in cortico- 
subcortical limbic networks, in line with affective disturbances in pa-
tients. Critically, we predicted selective correlations of the duration 
and/or occurrence of particular iCAPs with these distinct clinical 
dimensions. 

2. Methods and materials 

2.1. Participants inclusion and characterization 

Patients were recruited in the department of adult psychiatry at the 
Geneva University Hospital, as well as through advertising on classified 
advertisements websites. Healthy subjects were also selected from a 
local database or through web advertising. All subjects gave informed 
written consent before inclusion in the study that was approved by the 
ethical committee of the Geneva University Hospital. Inclusion criteria 
for patients were: a diagnostic of MDD or BD, age between 18 and 56, 
under stable medication for four weeks, and no contraindication for 
MRI. Exclusion criteria for healthy subjects were: past or present history 
of neurological or psychiatric problem, use of medication, or contrain-
dication for MRI. The Mini International Neuropsychiatric Interview 
(MINI, Sheehan et al., 1998) and the Structured Clinical Interview for 
the DSM-IV, Mood Disorders section, (SCID, First et al., 2002) were 

administered to patients and healthy subjects for evaluation of current 
axis-I and axis-II diagnostic (during a separate visit for the patients). In 
total, 39 patients were initially recruited, however, 2 fell asleep in the 
MRI, 1 was claustrophobic, 2 were consuming cannabis on a daily basis, 
and 2 had a wrong diagnosis (ADHD-schizoaffective), and resting state 
data from one patient were lost for technical reason, leaving 31 data 
sets. 

Our final sample therefore included 31 mood disorder patients (9 
MDD and 22 BD) and 32 healthy participants (HP) matched for age, 
gender, hand laterality, and level of education (see Table 1). All un-
derwent MRI scanning and clinical assessment. Clinical symptoms were 
measured with the Montgomery-Asberg Depression Rating Scale 
(MADRS; (Montgomery and Asberg, 1979; French version: Pellet et al., 
1980), and Hamilton anxiety scale (Hamilton, 1959; French version: 
Pichot et al., 1981). For the Ruminative Response Scale (Nolen-Hoek-
sema and Morrow, 1991; Piguet et al., 2014), we chose only the 
brooding subscale, which represents the maladaptive component of 
ruminative response style (Treynor et al., 2003). We also asked partic-
ipants to fill the White Bear Suppression Inventory (WBSI; (Schmidt 
et al., 2009), that measures the level of intrusive thoughts, and the 
Thought Control Ability Questionnaire (TCAQ; (Gay et al., 2008), in 
order to assess difficulties to control intrusive self-related thoughts as 
often seen in mood disorders (Ghaznavi and Deckersbach, 2012; Joor-
mann et al., 2011). Patients were treated with different psychotropic 
drugs, sometimes more than one (anti-psychotic:N = 10, anti-depressant 
N = 15, mood stabilizer N = 11, benzodiazepine N = 5). 

2.2. Data acquisition 

Imaging data were acquired at the Brain and Behavior Laboratory 
(BBL) of UNIGE, using a Tim TRIO 3 T whole-body MR unit (Siemens, 
Germany) equipped with a 32 channels head coil. Functional time series 
were collected from 36 transverse slices covering the whole brain with a 

Table 1 
Demographic and clinical characteristics. BD-NOS: Bipolar disorder not other-
wise specified.  

*p < .05 Patients Healthy participants 

Characteristics (min – max) M (SD) M (SD)    

N (males) 27 (11) 27 (11) 
Age 39.7 (8.95) 40 (8.6) 
Level of education (yrs) 13.1 (3.1) 13.96 (3.2) 
Laterality (not right-handed) 20 (7) 21 (6) 
MADRS (0–33) 13.5 (8.9) 2 (1.8) * 
Young (0–11) 2.3 (2.9) 0.5 (0.9) * 
Hamilton Anxiety (0–36) 12.7 (7.5) 3.2 (2.5) * 
RRS (22–82) 55.4 (11.5) 34.9 (10.4) * 
Brooding (5–20) 12.4 (3.2) 8.2 (2.5) * 
Mean age of onset 24.9 (12.2)  
Mean duration of disease 14.8 (9.6)  
Number of episodes:    

1–4 episodes 8   
5–10 episodes 10   
>10 episodes 9   

Diagnostic Patients (N) 

MDD 7 
BD-I 6 
BD-II 11 
BD-NOS 3 
Comorbidities  
Anxiety Dis 13 
Borderline 7 
ADHD 2 
Episode  
depressive 10 
euthymic 10 
hypomanic 2 
<< mixed >> 5  
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spatial resolution of 3.2x3.2x3.2 mm, using a 2D gradient-echo echo- 
planar (EPI) sequence (acquisition matrix = 64x64, FOV = 205 mm, TR/ 
TE/FA = 2100 ms/30 ms/90◦, 250 volumes). The total acquisition took 
around 8.5 mins. Furthermore, a T1-weighted volume for anatomical 
reference was collected with high-resolution three-dimensional T1- 
weighted MP-RAGE sequence with 0.9x0.9x0.9 mm spatial resolution 
(acquisition matrix = 256x256x192, FOV: 230 mm, TR/TE/FA/TI =
1900 ms/2.32 ms/9◦/900 ms). 

2.3. Data processing 

The functional volumes were realigned with respect to the mean 
volume and smoothed (FWHM = 3 mm). The T1-weighted structural 
volumes were co-registered to the mean functional volume. The 
anatomical automatic labeling (AAL) atlas (Tzourio-Mazoyer et al., 
2002) was mapped onto each subject’s coregistered anatomical image 
and further downsampled to match the functional volumes. The voxel 
time series were detrended for low frequency drifts (cut-off = 0.008 Hz). 
We computed maximum, mean and total measures as well as the frame- 

wise displacement (FD≥ .5mm) and excluded five controls and four 
patients based on the following criteria: 1) fMRI data had visually 
detectable artifacts, or 2) maximum amount of motion was greater than 
3 mm or 3◦, or 3) number of frames with FD greater than 0.5 mm 
exceeded 25% of the total fMRI volumes. There were no group differ-
ences due to motion in the final sample, which consisted of 27 mood 
disorder patients and 27 controls (Table S2). 

To assess dFC, we applied a novel state-of-the-art rs-fMRI data 
analysis tool, Total Activation (TA), which can detect spontaneous ac-
tivity through transients as a result of voxel-wise deconvolution (Kar-
ahanoglu et al., 2011; Karahanoğlu et al., 2013). TA provides three types 
of information: (1) activity-related signals that are denoised fMRI sig-
nals; (2) sustained, or block-type, activity-inducing signals that are 
deconvolved signals; (3) innovation signals that are the derivative of the 
activity-inducing signals and encode transient brain activity episodes as 
spikes. Fig. 1 (a) illustrates the TA regularization scheme for a selected 
voxel time-series in posterior cingulate cortex (PCC). Specifically, the 
activity-related signal (first row, in red) opts for minimum error with 
respect to acquired BOLD signal (first row, in grey), while taking into 

Fig. 1. Total Activation and iCAP frameworks. (a) TA, 
here illustrated for a selected voxel in PCC for one 
subject, reveals block-like activity inducing signals (in 
blue) by denoising (activity-related signal in red) and 
deconvolving the BOLD signal (gray). The innovation 
signals (in green) are the derivatives of activity- 
inducing signals, and indicate the onset and offset 
timing of the events. The activation maps on the right 
correspond to the activation maps of each type of 
signal at a selected time frame (in purple shadow). (b) 
iCAPs are recovered by temporal clustering of inno-
vation signals, and reveals spatially overlapping acti-
vation patterns with common onset timing. 
Backprojection of the spatial maps onto the activity- 
inducing signal results in highly overlapping tempo-
ral dynamics of iCAPs.   
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account the hemodynamic response. The activity-inducing signal (sec-
ond row, in blue) shows the block-like activation time-course when the 
hemodynamic component is removed. Lastly, the innovation signal 
(third row, in green) represents the transients encoding activation epi-
sodes. The brain maps (right column) for each type of signal at the 
delineated time instance (in purple shade) show that TA regularized 
voxels are grouped in clean activation clusters, whereby transients carry 
information about brief moments of spontaneous regional activity dur-
ing rest. The analysis toolbox that we used for the implementation of the 
pipeline is available at https://miplab.epfl.ch/index.php/software/total 
-activation. 

2.4. Temporal characterization of iCAPs’ time courses 

Similar to the backprojection step in independent component anal-
ysis, iCAPs’ time series were recovered by backprojecting each iCAP into 
subjects’ activity-inducing signals; i.e., block-type activity representa-
tions recovered by TA. We computed three measures representing the 
temporal characterization of iCAPs: 1) occurrence, 2) average duration, 
and 3) total duration. We tested for differences in these measures be-
tween the groups using t-test followed by FDR correction (p ≤ 0.05 two 
tailed). Since total duration is a by-product of average duration and 
occurrence, we present the results for total duration in the Supporting 
Information. 

2.5. Selection of iCAPs 

In order to select the relevant iCAPs, the concatenated innovation 
signals of all included subjects were clustered via k-means (using cosine 
distance metric). To ensure stability and optimum solution, the algo-
rithm was run 50 times with random initialization, and the best solution 
with minimum cost was chosen as the final iCAPs representations. We 
opted for 20 components, representing the group-level iCAPs, guided by 
our previous studies (Karahanoğlu and Van De Ville, 2016; Karahanoğlu 
et al., 2013). 

2.6. Relationship between iCAPs’ time courses and clinical measures 

We tested the correlations of iCAPs’ temporal measures with clinical 
scores (MADRS, HAMA, Brooding, TCAQ and WBSI) using non- 
parametric permutation testing. We generated 10 k permutations by 
shuffling the subjects’ clinical scores and used the maximum statistic 
both across iCAPs and clinical scores to correct for multiple comparisons 
(Nichols and Holmes, 2002). 

2.7. Temporal interactions of iCAPs 

In order to explore the dynamic interactions during resting state, we 
computed the amount of temporal overlap and coupling of specific two 
iCAPs configurations; i.e., the iCAPs whose durations showed significant 
group differences. We first found significantly overlapping iCAPs in each 
group separately and then tested for group differences with permutation 
testing. To this aim, each iCAPs’ time series were shuffled 10 k times, 
and total time and percentage of sign dependent overlap was computed 
between each of these two iCAPs configurations. Maximum statistic was 
used to correct for multiple comparisons. The amount of overlap was 
computed by counting the time instances where any of the two specific 
iCAPs temporally overlapped during entire scan. Then, for each two 
iCAPs configuration we computed the percentage of the coupling; i.e., 
the total time of {(+,+),(-,-)} interactions divided by the total time of 
overlap, and anti-coupling; i.e., the total time of {(+,-),(-,+)} in-
teractions divided by the total time of overlap. This metric shows the 
distribution of sign dependent two iCAPs configurations. 

3. Results 

3.1. Participants 

Patients and controls differed on several clinical measures. The 
mean, standard deviation, and results from independent samples t-tests 
for these measures are reported in Table 1. 

3.2. Innovation-driven co-activation patterns (iCAPs) 

As described in the Methods (Paragraph 2.3), the voxel-wise tran-
sient signals defined by TA were then submitted to temporal clustering 
analysis to obtain innovation-driven co-activation patterns (iCAPs; 
(Karahanoğlu and Ville, 2015). Fig. 1 (a) third row illustrates the tran-
sients included in the temporal clustering for one voxel time series for 
one subject (dotted lines). While we opted for 20 iCAPs in k-means al-
gorithm, 19 stable iCAPs were finally retained; i.e., one iCAP, driven by 
a single subject, was excluded (see Fig. S1 for group-level iCAPs, and 
Table S1 for distribution of regions within each iCAP). The iCAPs were 
sorted (from 1 to 19) according to their average duration during the 
scanning session. 

We found that iCAPs were reminiscent of several common task- 
related and cognitive networks typically observed in fMRI studies, 
including the auditory network (6), high and low-level visual areas (2, 8, 
9, 13, and 17), motor system (16), attention network (15), central ex-
ecutive network (7), and language network (3). In addition, areas 
involved in emotion and memory processing, including the amygdala 
and hippocampus, but also ventromedial prefrontal cortex, fusiform, 
and middle temporal gyrus (MTG), were aggregated in iCAP 12. Another 
insula-centered network (11) also encompassed subcortical and ventral 
frontal regions (thalamus, hippocampus, putamen, ACC, and vmPFC). 
The iCAPs 1 and 18 encompassed regions associated with the salience 
network (with anterior focus in iCAP 1), mainly ACC, middle and infe-
rior frontal gyri, anterior insula, supramarginal gyrus, and temporal 
parietal junction (TPJ). 

Finally, five iCAPs (4, 5, 10, 14, and 19) partially coincided with the 
canonical DMN. Both iCAPs 4 and 10 represented the full DMN with 
large sectors of high activation in PCC, precuneus, angular gyrus, infe-
rior parietal lobule (IPL), and mPFC. The iCAP 4 further extended into 
the supramarginal gyri, TPJ, and middle temporal gyrus, unlike iCAP 10; 
whereas iCAP 10 captured more activity in frontal eye fields (FEF) and 
parahippocampal cortex. Dissociations between anterior and posterior 
parts of the DMN were present in several of these iCAPs. The iCAP 5 
captured the entire mPFC including ACC. Conversely, the iCAP 14 was 
more centered on posterior areas such as PCC, precuneus, angular gyrus, 
supramarginal gyrus, middle/superior temporal gyrus, inferior occipital 
gyrus, as well as the thalamus; whereas the iCAP 19 was dominated by 
precuneus and adjacent areas in superior parietal lobes, superior oc-
cipital lobes, and PCC (see Figs. S2–S6 for the whole spatial extent of 
PCC-dominant iCAPs). These findings point to dissociable patterns of 
activity within the canonical DMN. 

A direct comparison of the spatial organization of each iCAP between 
patients and controls was performed with non-parametric permutation 
inference testing (PALM, (Winkler et al., 2014), but did not result in any 
group differences. Thus, the intrinsic anatomical organization of func-
tional networks revealed by our TA analysis does not seem to be altered 
in patients. 

3.3. Temporal characterization of iCAPs 

We next turned to the temporal dynamics of network activity in our 
two populations. The iCAPs’ time-series were recovered by back- 
projecting each iCAP map onto individual subjects’ activity-inducing 
signals (i.e., block-type activity representations identified by TA). 
Fig. 1 (b) depicts an example of iCAPs’ time-series from a single subject 
revealing dynamic fluctuations of multiple iCAPs over time. The time- 
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series of the activity-inducing signals revealed vastly overlapping ac-
tivity for different iCAPs. Accordingly, the total duration of all iCAPs 
(summed across every occurrence) was equally distributed among all 
subjects with 31.8 ± 2.6 min per subject; i.e., almost four times the 8.5 
min scan duration. However, several temporal measures of iCAPs 
showed significant differences between the groups. Fig. 2 depicts those 
networks whose durations differed between groups in average duration 
and/or occurrence rate (pcorr-FDR ≤ 0.05 two tailed t-test FDR corrected; 
see Fig. S7 for comparison of all iCAPs and their total durations). 

The average durations of iCAPs corresponding to DMN (10; MDP:9.2 
± 1.7 s, HP:7.7 ± 1.8 s) and pDMN (14; MDP:8.5 ± 1.9 s, HP:7.1 ± 2.2 s), 
but also those of the insula-centered (11; MDP:8.8 ± 1.7 s, HP:7.6 ± 1.4 
s) and amygdala-centered networks (12; MDP:8.5 ± 1.7 s, HP:7.4 ± 1.7 
s) were longer in patients than controls. No iCAP had significantly longer 
average duration in controls than in patients. 

In term of occurrence rate, three iCAPs were more frequently 
emerging in the time-series for patients than for controls: the insula- 
centered network (11; MDP:2 ± 0.1 per min, HP:1.4 ± 0.1 per min), 
pDMN (14; MDP:1.7 ± 0.1 per min, HP:0.7 ± 0.1 per min), and motor 
network (16; MDP:1.5 ± 0.1 per min, HP:1 ± 0.1 per min). Conversely, 
controls showed a higher occurrence rate of activity in primary visual 
areas (9; MDP:1.3 ± 0.1 per min, HP:1.7 ± 0.1 per min, and 13; MDP: 
1.1 ± 0.1 per min, HP:1.6 ± 0.1 per min), and in the anterior salience 
network (18; MDP:0.7 ± 0.1 per min, HP:1.3 ± 0.1 per min). 

3.4. Correlation of iCAPs’ dynamics with clinical scores 

We tested whether our measures for the occurrence rate, average 
duration, and total duration of all 19 iCAPs were correlated with rele-
vant clinical scores of mood disorder symptoms, both within and across 
groups to investigate group differences and trait level characteristics, 
respectively. We used non-parametric permutation testing with 10 k 
permutations, followed by multiple comparisons correction with 
maximum statistics across both iCAPs and clinical scores (Nichols and 
Holmes, 2002). Fig. 3 highlights those correlations between clinical 
scores and iCAPs’ average durations and occurrences with critical 
importance concerning hypotheses on the role of DMN. 

Again, underscoring the implication of DMN activity in mood dis-
orders, we found that the MADRS score showed a positive trend corre-
lation with the average duration of DMN (4) in patients, but a negative 
correlation in controls, leading to a significant group difference (pcorr <

10-4; Fig. 3(a)). 
The number of occurrences of the insula-centered network (11) 

correlated positively with tendency to ruminate (Brooding pcorr = 0.018; 

Fig. 3(b)). The number of occurrences of pDMN (14) also correlated 
positively with trait rumination, as well as with intrusive thoughts 
(WBSI) and anxiety (HAMA), but it correlated negatively with thought 
control (TCAQ) (respectively, Brooding pcorr = 0.047; WBSI pcorr =

0.006; HAMA pcorr = 0.021; TCAQ pcorr = 0.036; see Fig. 3(c)). 
Further exploratory results can be found in the Supplementary ma-

terial. In particular, Fig. S8 illustrates significant correlations between 
clinical scores and the total duration of other iCAPs, as well as clinical 
score correlations with iCAPs’ durations that did not differ between 
groups. 

3.5. iCAPs’ configurations of overlapping activity reveal disrupted resting- 
state dynamics 

The temporal interactions between any two iCAPs whose durations 
showed group differences (Fig. 2) were investigated by measuring the 
total time of overlap, as well as the percentage of sign-dependent 
overlap (see Methods). The amount of total temporal overlap between 
insula—pDMN iCAPs (11&14) was significantly higher in patients than 
in controls (MDP: 10.9%, HP: 2.4% of the entire scan duration, p 
<10− 4). While many iCAPs showed significant group differences in 
terms of duration (Fig. 2), only the iCAPs 11 and 14 overlap was more 
frequent in patients. 

Further, when overlapping activity was considered in terms of po-
larity (percentage of sign-dependent overlap; i.e., {(+,+),(-,-)} for 
coupling and {(+,-),(-,+)} for anti-coupling between iCAPs), we 
observed globally similar patterns in both groups (Fig. 4). Specifically, 
coupled iCAPs consisting of DMN—pDMN (10&14), DMN—visual, 
pDMN—visual (10&13, 14&13), visual—visual (9&13), 
DMN—amygdala (10&12), insula—amygdala (11&12), and insu-
la—anterior salience iCAPs (11&18) were significantly present in both 
controls (Fig. 4(a), left, in red) and patients (Fig. 4(a), middle, in blue). 
However, controls showed significantly more coupling between 
DMN—pDMN (10&14, pcorr = 0.016), insula—amygdala (11&12, pcorr 
= 0.034), as well as DMN—visual iCAPs (9&10, pcorr = 0.003), whereas 
patients showed more coupling between visual—motor iCAPs only 
(9&16, pcorr = 0.017) (Fig. 4(a), right, in orange). On the other hand, 
anti-coupled iCAPs were also common in both groups, involving many 
pairs of iCAPs (HP: Fig. 4(b), left, in red; MDP: Fig. 4(b), middle, in 
blue), particularly those implicating the insula (11), amygdala (12), 
pDMN (14), and motor areas (16). The only anti-coupled activity that 
differed between groups concerned the amygdala—visual iCAPs (9&12, 
pcorr = 0.028, 12&13, pcorr = 0.036), more evident in controls than in 
patients (Fig. 4(b), right, in orange). 

Fig. 2. Group differences in iCAPs’ average duration and occurrence. The DMN (10), posterior DMN (14), insula (11) and amygdala (12) were significantly longer in 
patients. The iCAPs 11, 12, 14 and motor (16) had higher occurrence rate in patients, while iCAPs of visual areas (9&13) and anterior salience (18) had higher 
occurrence rate in controls. 
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4. Discussion 

Exploiting a novel data-driven approach tailored to disentangle 
transient activity of coordinated brain networks from spontaneous fMRI 
measurements, we unveil the resting-state dynamics in mood disorder 
patients (MDP) and matched healthy participants (HP), and relate 
changes observed in patients to particular clinical dimensions. While 
traditional fMRI methodologies are insensitive to such transient infor-
mation, we were able to exploit ongoing fluctuations in neural activity to 
characterize the dynamics of resting-state networks that overlap both 
spatially and temporally. We first demonstrate a difference in the 
number of occurrences and duration of specific brain state configura-
tions (i.e., innovation-driven co-activation patterns, iCAPs) between 
MDP and HP. Notably, the DMN was not only active for longer periods in 
patients, but its duration also correlated positively with level of 
depression in patients and negatively in controls (iCAP 10 and 4 
respectively). Moreover, a posterior component of the DMN (pDMN, 
iCAP 14) also activated longer and more frequently in patients, but 
correlated specifically with tendency to ruminate, anxiety, intrusive 

thoughts, and poor thought control. Likewise, limbic networks centered 
on the insula (iCAP 11) and amygdala (iCAP 12) showed increased oc-
currences and durations, with the former associated with negative ru-
minations (brooding), whereas controls showed more frequent 
occurrences of visual (iCAPs 9 and 13) and anterior salience networks 
(iCAP 18, see Fig. 2). Importantly, we found no spatial differences in the 
anatomical configuration of any of these networks between the two 
groups. This result converges with others studies in MDP (Lois and 
Wessa, 2016; Wei et al., 2016; Zeng et al., 2020) and underlines the need 
for analyses sensitive to the temporal dynamics of activation patterns 
rather than simple spatial comparisons. 

In addition, we could demonstrate changes in the coordination of 
activity across networks, with reduced coupling in the patients between 
the DMN—pDMN (10&14) and between the insula—amygdala iCAPs 
(11&12), as well as reduced anti-coupling between the amygdala—vi-
sual networks (12&9, 12&13). These results further highlight the utility 
of dynamical parameters characterizing functional brain networks to 
reveal pathological changes associated with psychiatric diseases, and 
open new perspectives to probe for changes linked to specific clinical 

Fig. 3. Significant correlations between iCAPs durations and clinical scores. (a) There is significant group difference (in black) for correlation between MADRS score 
and average duration of DMN (4) which is negative and positive in controls (in blue) and in patients (in red), respectively. (b) The brooding score correlates with the 
occurrence of insula (11) in the combined group (in magenta). (c) The occurrence of pDMN (14) correlates with TCAQ, Brooding, HAMA and WBSI scores in the 
combined group (in magenta). 
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features. 

4.1. Increased presence of DMN and intrusive thoughts 

Although data on resting connectivity in MDP are heterogeneous and 
still inconclusive, increased DMN activity is among the most reproduced 
finding, at least during unipolar (Kaiser et al., 2015a; Kaiser et al., 
2015b; Mulders et al., 2015) or bipolar depression (He et al., 2016; Liu 
et al., 2015). Indeed, euthymic bipolar patients or those with a psychosis 
history may show an opposite pattern of DMN connectivity (Brady et al., 
2017; Meda et al., 2014). In our study, increased duration of DMN (4) 
was associated with higher depression scores (MADRS). Although we 
considered all mood states together in a dimensional approach, our 
patients were mainly depressed or euthymic with residual depressive 
symptoms. Our results therefore appear consistent with previous 
studies, e.g., when comparing depressed to manic bipolar patients 
(Martino et al., 2016), or reporting correlations between increased DMN 
dominance at rest and depression scores on the RRS (Hamilton et al., 
2011), or increased stability and connectivity of DMN in patients 
(Demirtaş et al., 2016). The evidence that the duration of DMN activity 
is longer and correlates with mood measures strongly argues in favor of a 
specific role of this network in the pathophysiology of depressive 
symptoms rather than a role in one diagnostic category. Nonetheless, it 
ought to be noted that reports of decreased stability of DMN in depressed 
patients also exists (Long et al., 2020). 

However, in line with other studies exploring sub-networks of DMN 
(Andrews-Hanna et al., 2010; Manoliu et al., 2013; Meda et al., 2014) 
and a possible disconnection between its anterior and posterior sectors 
in MDP (Grimm et al., 2011; Lois and Wessa, 2016; Sambataro et al., 
2014), our results also highlight a particular role for the pDMN/PCC 
region. This region exhibited not only increased duration and occur-
rence, but also selective correlation with tendency to ruminate as well as 
intrusive thoughts (WBSI), poor thoughts control (TCAQ), and anxiety. 
Increased PCC connectivity has previously been reported in MDD (Li 
et al., 2013; Manoliu et al., 2013; Sambataro et al., 2014; Sundermann 
et al., 2014), as well as in euthymic and non-euthymic patients with BD 
(Stoddard et al., 2016), and was even found to normalize after antide-
pressant medication (Li et al., 2013). The pDMN is implicated in con-
sciousness and memory processing through its connections with the 
hippocampal formation (Andrews-Hanna et al., 2014; Cavanna and 

Trimble, 2006), as well as spontaneous thoughts and mind-wandering 
(Christoff et al., 2016). 

Indeed, in MDD, previous studies reported that the severity of 
rumination may be predicted by the relative dominance of DMN, and 
more specifically pDMN versus task-positive networks at rest (Hamilton 
et al., 2013), as well as by increased connectivity between amygdala and 
PCC. Active rumination tasks also trigger activity in PCC along other 
medial and limbic structures in depressed patients (Burkhouse et al., 
2016; Cooney et al., 2010). The PCC/pDMN activity might be implicated 
in “integrating self-relational information within a spatial–temporal 
context” (Hamilton et al., 2015), in keeping with the notion that PCC 
mediates self-attribution and “core self” representations (Davey et al., 
2016). Self-referential tasks induce increased activity in posterior (and 
anterior) medial structures in both healthy and MDD individuals 
(Grimm et al., 2009; Lemogne et al., 2011). Accordingly, our results fit 
with the notion that intense self-related thoughts may partly emerge 
from PCC/pDMN activity, with more frequent and/or sustained 
recruitment in MDP. 

4.2. Insula and amygdala-centered networks 

Increased duration of a limbic amygdala-centered network (iCAPS 
12 in particular) is consistent with the role of these regions in encoding 
affective salience and their enhanced activity in mood disorders, as 
observed by task-based fMRI studies in MDD (Palmer et al., 2014) or BD 
(Delvecchio et al., 2012; Houenou et al., 2011), and predicted by current 
pathophysiological models (Chase and Phillips, 2016; Price and Drevets, 
2012). A recent graph-theory analysis also showed increased connec-
tivity in an amygdala-based network, although this was more associated 
with hypomania than depression (Spielberg et al., 2016). Similarly, a 
recent paper applying regular CAPS rs-fMRI analysis in BD patients 
found significant differences in amygdala dynamic connectivity between 
different mood states (Rey et al., 2021). In our study, increased duration 
of the amygdala-centered network (12) extended to hippocampus/par-
ahippocampal gyrus and medial/ventral prefrontal areas, as well as to 
the sgACC, all regions whose connectivity with amygdala is well 
established and frequently found abnormal in depression or euthymic 
BD patients (Rey et al., 2016). 

Interestingly, increased connectivity of amygdala with PCC, another 
prominent region in our study, has been demonstrated in various mood 

Fig. 4. Significant iCAPs couplings in controls and patients. (a) The significantly coupled iCAPs in controls (left, in blue), patients (middle, in red) and significant 
group differences (right, in orange) and the percentage of overlap (bar plots show the mean and the standard error). The coupling between amygdala and insula 
(12&11), DMN and pDMN (10&14), DMN and visual (10&9) are significantly higher in controls whereas visual and sensorimotor (9&16) are more coupled in 
patients. (b) The anti-coupled iCAPs in controls (left, blue), patients (middle, red) and significant group differences (right, orange). Amygdala and visual areas (12&9, 
12&13) show higher anti-coupling in controls. 
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states, including adolescent depression (Cullen et al., 2014; Peters et al., 
2016) and bipolar patients (Rey et al., 2016). Increased connectivity 
between amygdala and precuneus was also observed (Singh et al., 
2015). Here we did not find a direct association of these regions in one 
single iCAP including both amygdala and PCC/precuneus, however. 
While these findings accord with an involvement of these networks in 
disturbed integration between emotional and self-related processing in 
mood disorders, they also point to distinct dynamics and different roles 
in psychopathological processes. The occurrence rate of pDMN corre-
lated with various measures of intrusive thoughts, whereas the occur-
rence of the insula-centered iCAP was associated with rumination only. 

This observation adds to previous findings in the literature linking 
the DMN to rumination (Zhou et al., 2020). For example, functional 
connectivity between sgACC and insula was increased during active 
ruminative state compared to positive mood in healthy subjects (Milazzo 
et al., 2016), while more variable connectivity between mPFC and insula 
correlated with rumination in unmedicated MDD patients (Kaiser et al., 
2016). Anterior insula activation might subtend a particular content of 
ruminative thoughts in relation to interoception and attention to inter-
nal bodily states (Keysers and Gazzola, 2007), potentially amplified in 
depression and anxiety (Paulus and Stein, 2010). Anterior insula is also 
implicated in encoding aversive signals across modalities and negative 
emotional arousal (Corradi-Dell’Acqua et al., 2016; Knutson et al., 
2014). This may account for our finding of insula-based network activity 
associated with the brooding dimension of ruminations. 

Very interestingly, while both networks were more present in pa-
tients, the temporal coupling of insula—amygdala iCAPs (11&12) was 
significantly lower relative to controls. Since connectivity between these 
regions might be associated with emotion regulation strategies (Denny 
et al., 2014), such reduced coupling might reflect maladaptive strategies 
associated with rumination. Alternatively, impaired synchronization 
between these two networks could be associated with emotion dysre-
gulation in general. This would accord with another study in which 
borderline personality patients, known for emotional lability and anxi-
ety, also showed lower connectivity between insula and amygdala as 
compared to controls (Koenigsberg et al., 2014). More generally, our 
results thus indicate that psychiatric disturbances may not only imply 
abnormal activity within specific brain networks, but also abnormal 
coordination between different networks. Further research is needed to 
better elucidate the functional nature and significance of such cross- 
talks between networks. 

4.3. Increased interoception and decreased external focus in mood 
disorders patients 

Finally, unlike MDP, our HP showed longer duration of prefrontal 
(18) and visual networks (9, 13). This pattern dovetails with current 
models (Phillips et al., 2008; Price and Drevets, 2012; Strakowski et al., 
2012) proposing that a decrease in cognitive control subtended by 
prefrontal areas is associated with increased limbic activity in mood 
disorders patients. As discussed above, such increases in limbic-related 
activity might reflect enhanced responsiveness to affective salience 
partly mediated by amygdala activity (Ye et al., 2016), or heightened 
focus on self-reflective and interoceptive information mediated by 
insula activity (Adolfi et al., 2016). Additionally, patients may spend less 
time engaging attention toward visual processes (i.e., for direct sensory 
experience or mental imagery), while focusing more on internal affec-
tive and memory information (Piguet et al., 2016). Accordingly, visual 
areas were less coupled with DMN in our patients (10&9), while they 
were more anti-coupled with the amygdala network (12&9, 12&13). 
Taken together, these data suggest a desynchronization between 
external-based processes and more internally-based ones. These results 
reinforce the idea of increased internally-focused attention in mood 
disorder patients, with less attention to external cues and lower ability to 
switch away from negative self-related thoughts (Hamilton et al., 2013; 
Marchetti et al., 2012). 

Other studies suggested that exaggerated self-related thoughts may 
result from an interference of negative material over cognitive control, 
with impaired interactions between corresponding brain regions (Kaiser 
et al., 2015a; Kaiser et al., 2015b). However, these studies did not 
directly assess the dynamics of specific networks, contrarily to our study. 
Importantly, our findings question the stability of these networks and 
putative impairments in switching between them. For example, insula 
activity has been associated with switching functions to recruit task- 
negative vs task-positive networks (Sridharan et al., 2008), and the 
more frequent occurrence of this network in our data may actually 
reflect more frequent switches between states in patients. The fact that 
the duration of these iCAPs was not necessarily related to their coupling 
argues for less stable network stability in patients. 

Our unique approach can thus disentangle previous findings in mood 
disorders that relied upon conventional “static” functional connectivity, 
by assessing the dynamic engagement of functional networks charac-
terized through time-resolved analysis. Notably, the patterns repre-
senting coherent transient activity during rest revealed 
multiple subcomponents of the DMN that are spatially and temporally 
overlapping, which concurs with recent dynamic accounts for sponta-
neous thought processes (Christoff et al., 2016). Moreover, the temporal 
properties (i.e., durations and couplings) of these recurring patterns 
provide novel evidence for selective contributions to particular clinical 
symptoms. 

5. Conclusions and limitations 

Leveraging recent advances in analysis of resting-state fMRI dy-
namics, we show that mood disorder patients present with an abnormal 
recruitment of DMN that correlates with their level of depression. An 
increased presence, in terms of duration and occurrence rate, of the 
posterior DMN component (centered on PCC) and limbic networks 
(centered on amygdala and insula) predicted intrusive thoughts, 
regardless of mood. In addition, the dynamic organization of coupling 
and anti-coupling of these networks was also altered in patients. As these 
changes in duration/occurrence of networks did not match their pat-
terns of coupling/anti-coupling, our results might be interpreted as ev-
idence of increased network instability among patients. Remarkably, 
changes in brain dynamics were found despite normal spatial network 
architecture. 

Our study has some limitations, including first of all its small sample 
size, that warrants validation in larger samples. Secondly, clinical het-
erogeneity among patients could contribute to both the strength and the 
limitation of our work. On one hand, the variability of clinical features 
and treatments in our population might constitute confounding factors. 
On the other hand, we believe that this variability fruitfully reflects 
clinical reality as well as the variety of functional processes underlying 
mood disorders. Moreover, dimensional approaches such as ours allow 
for going beyond somewhat arbitrary, historically-defined boundaries 
between diagnostic categories (Cuthbert, 2020; Insel et al., 2010). 

Another limitation is that our TA method does not take into account 
any variability of the hemodynamic model across subjects; like most 
fMRI analysis tools (Buxton et al., 1998). Future work might usefully 
include a derivation of region-specific hemodynamic response. Since the 
TA algorithm runs in both temporal and spatial domains iteratively, the 
total computation time heavily depends on the data dimension (i.e., it 
took 7–9 h of processing time per subject for 10 k-15 k voxel time series, 
using a Mac Pro server with 3.33 GHz 6-Core Intel Xeon Processor and 
32 GB 1.33 GHz RAM). Refining processing steps will therefore benefit 
from future advances in computing power. Another limitation, shared by 
all clustering methods, is the choice of the number of clusters to define 
activated networks. Here, we opted for 20 clusters based on our previous 
reproducibility study (Karahanoğlu and Van De Ville, 2016), then ran k- 
means algorithm repetitively with random initializations for algorithmic 
reproducibility, and finally excluded any unstable cluster that was not 
well-represented in the whole group. While this ensures reliability and 
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reproducibility, it may also suffer from insufficient sensitivity to more 
subtle signals. Finally, although our method allows for novel observa-
tions on network dynamics during resting state, it is purely data-driven 
and does not test specific models of mood disorder. In any case, our new 
results may fruitfully serve to refine and complement these models. 

Altogether, despite the known caveats concerning reverse-inferences 
(Poldrack, 2006), our findings provide novel evidence supporting a 
model whereby mood disorders may be associated with higher inter-
nally focused-attention at the expense of more externally focused 
attention and difficulties with cognitive control, potentially leading to 
common clinical symptoms such as rumination, somatoform bodily 
complaints, and impaired cognitive flexibility, in addition to low mood 
and emotional dysregulation. 
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S., Farzadfar, F., Feigin, V.L., Fentahun, N., Fereshtehnejad, S.-M., Fernandes, E., 
Fernandes, J.C., Ferrari, A.J., Feyissa, G.T., Filip, I., Fischer, F., Fitzmaurice, C., 
Foigt, N.A., Foreman, K.J., Fox, J., Frank, T.D., Fukumoto, T., Fullman, N., Fürst, T., 
Furtado, J.M., Futran, N.D., Gall, S., Ganji, M., Gankpe, F.G., Garcia-Basteiro, A.L., 
Gardner, W.M., Gebre, A.K., Gebremedhin, A.T., Gebremichael, T.G., Gelano, T.F., 
Geleijnse, J.M., Genova-Maleras, R., Geramo, Y.C.D., Gething, P.W., Gezae, K.E., 
Ghadiri, K., Ghasemi Falavarjani, K., Ghasemi-Kasman, M., Ghimire, M., Ghosh, R., 
Ghoshal, A.G., Giampaoli, S., Gill, P.S., Gill, T.K., Ginawi, I.A., Giussani, G., 
Gnedovskaya, E.V., Goldberg, E.M., Goli, S., Gómez-Dantés, H., Gona, P.N., 
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