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A B S T R A C T

Resting-state functional magnetic resonance imaging (fMRI) has highlighted the rich structure of brain activity
in absence of a task or stimulus. A great effort has been dedicated in the last two decades to investigate
functional connectivity (FC), i.e. the functional interplay between different regions of the brain, which was for a
long time assumed to have stationary nature. Only recently was the dynamic behaviour of FC revealed, showing
that on top of correlational patterns of spontaneous fMRI signal fluctuations, connectivity between different
brain regions exhibits meaningful variations within a typical resting-state fMRI experiment. As a consequence, a
considerable amount of work has been directed to assessing and characterising dynamic FC (dFC), and several
different approaches were explored to identify relevant FC fluctuations. At the same time, several questions were
raised about the nature of dFC, which would be of interest only if brought back to a neural origin. In support of
this, correlations with electroencephalography (EEG) recordings, demographic and behavioural data were
established, and various clinical applications were explored, where the potential of dFC could be preliminarily
demonstrated. In this review, we aim to provide a comprehensive description of the dFC approaches proposed
so far, and point at the directions that we see as most promising for the future developments of the field.
Advantages and pitfalls of dFC analyses are addressed, helping the readers to orient themselves through the
complex web of available methodologies and tools.

1. Introduction

In the last two decades, resting-state (RS) functional magnetic
resonance imaging (fMRI) has shed new lights on the spatiotemporal
organisation of spontaneous brain activity. Since the seminal discovery
that brain regions can be synchronised in activity despite the absence of
any task or stimulus (Biswal et al., 1995), a picture in which the rich
and complex structure of RS fluctuations is described in terms of
distinct RS networks (RSNs), arising from coherent fluctuations in sets
of distributed brain regions, has emerged (Beckmann et al., 2005; Fox
et al., 2005; Damoiseaux et al., 2006). Classically, statistical inter-
dependencies between spatial locations are computed over a whole RS
scan of 6 min or more; in this setting, the Pearson correlation
coefficient is the most commonly applied measure of functional
connectivity (FC).

Recently, FC has been shown to fluctuate over time (Chang and
Glover, 2010), implying that measures assuming stationarity over a full
RS scan may be too simplistic to capture the full extent of RS activity.
Since these initial findings, a consequent body of research has rapidly
blossomed to investigate the so-called dynamic functional connectivity

(dFC), and attempts to resolve RS dFC in a meaningful way have been
spreading over a spectrum of methodological variants.

For the practitioner interested in applying dFC approaches as well
as for the more advanced methods researcher, navigating through the
dense web of existing work is a daunting task. Due to the inherent
sophistication of methods designed to track temporal fluctuations, it is
sometimes difficult to clearly evaluate the underlying hypotheses and
validity of a dFC technique in a given setting. Further, it is even harder
to draw relationships between different existing tools.

There have been several reviews on dFC to date; however, most of
them have been oriented towards the description of specific families of
methods (Calhoun et al., 2014; Calhoun and Adali, 2016), or have only
superficially introduced dFC as part of a more general problematic
(Tagliazucchi and Laufs, 2015). In fact, the last exhaustive coverage of
the RS dFC literature now dates back to three years ago (Hutchison
et al., 2013a); due to the rapid expansion of the dFC field, new
analytical developments have since then been numerous. To both
address this point and go beyond the descriptive framework adopted
in previous reviews, our work revolves around three central goals: first,
to provide an updated, exhaustive cartography of the dFC methodolo-
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gical advances achieved to date. Second, to propose a set of key steps
involved in dFC analytical pipelines, and anchor the existing meth-
odologies within this framework, so that the wide landscape of dFC
tools becomes more clearly delineated. Third, to build on this view in
order to isolate innovative directions for the field to move forward,
based on our appreciation of the dFC state-of-the-art.

At this stage, it is important to further specify what we refer to as
dFC here, as this particular terminology may be interpreted in various
ways. For instance, dynamic fluctuations in brain connectivity are not
an exclusive RS hallmark: attempts to characterise these changes
during the execution of specific cognitive tasks are also emerging
(Simony et al., 2016; Braun et al., 2015; Gonzalez-Castillo et al., 2012;
Kucyi et al., 2013, 2016). Also, one may argue that RS dFC itself exists
at different time scales: although most reports are concerned with the
changes that happen over the course of seconds, there is also a
temporal evolution of brain connectivity at slower time scales of hours
(Grigg and Grady, 2010; Bassett et al., 2011, 2015; Sami et al., 2014) to
months (Poldrack et al., 2015; Choe et al., 2015; Laumann et al., 2015),
driven by various factors ranging from learning to gene expression. In
what follows, we will be focusing on reviewing the dynamic aspects of
spontaneous brain activity at the time scale of seconds.

To do so, we first show how many suggested methodological
improvements and analytical pipelines can be understood as extensions
of a basic sliding window pairwise correlation framework. We then
distinguish two conceptually innovative directions that, we believe,
offer promising potential for future dFC studies: focusing on a subset of
temporally sparse activation events in place of windowed connectivity
estimates, and understanding how time should be modeled in the
description of connectivity changes. We finally go over the current
evidence that positions dFC as a meaningful measure of brain activity,
and briefly review the clinical knowledge that it yielded to date.

2. Dynamic functional connectivity: methodological
framework

Although it is not the focus of this review, it is first worth noting
that the input data to dFC analyses is not raw: it has generally
undergone several preprocessing steps (see Van Dijk et al., 2010 for
a review), for which a wealth of pipeline variants are available.
Resorting to those steps is crucial for the relevance of subsequent
analyses; for instance, subject motion can bias analytical results if not
properly accounted for (see Power et al., 2015 for a recent review), an
unresolved and vivid issue in the RS FC field (Siegel et al., 2016;
Laumann et al., 2016). However, the reader wishing to deploy dFC
analyses should be aware that some of the choices made at this stage
can, in themselves, already strongly influence FC estimates (Murphy
et al., 2009; Zalesky et al., 2010; Shirer et al., 2015).

The simplest analytical strategy to investigate dFC consists in
segmenting the timecourses from spatial locations (brain voxels or
regions) into a set of temporal windows, inside which their pairwise
connectivity is probed (Section 2.1). By gathering FC descriptive
measures over subsequent windows, fluctuations in connectivity can
be captured, which is why the term dynamic FC was coined. Many
methodological choices and extensions to this straightforward frame-
work have been suggested and will be described in the following
paragraphs, including in particular: (1) the choice of the most suitable
window characteristics (length and shape) and alternative approaches
to overcome window limitations (Sections 2.2, 2.3); (2) different
measures to assess FC inside the window (Section 2.4); (3) how to
extract interpretable information from the dFC patterns, either by
assessing graph measures (Section 2.5) or by determining dFC states
(Section 2.6). These points are what we see as methodological
improvements within the framework of sliding window analysis
(Fig. 1A/C2).

Attempts to more fundamentally extend this framework also
emerged in the past years. To this regard, we identified in recent

literature two directions that, we believe, bear great potential for the
understanding of dFC: (1) moving from a sliding window analysis
towards the observation of events (Section 3.1, Fig. 1B/C1/D1); (2)
moving towards a proper modeling of time; that is, investigating how
this factor can be best included in dFC analytical attempts (Section 3.2,
Fig. 1D1/D2).

A detailed overview of all literature papers addressing dFC, includ-
ing the specific approach adopted, is reported in Table S1.

2.1. Sliding window analysis

The basic sliding window framework has been enthusiastically
welcomed and repeatedly applied by the neuroimaging community to
understand how functional brain dynamics relates to our cognitive
abilities (Kucyi and Davis, 2014; Elton and Gao, 2015; Madhyastha and
Grabowski, 2014), is affected by brain disorders (Sakoglu et al., 2010;
Jones et al., 2012; Leonardi et al., 2013), or compares to other
functional (Tagliazucchi et al., 2012b; Chang et al., 2013a) or structural
(Liégeois et al., 2016) brain measures. It was also applied to study
dynamic brain properties in the rodent (Keilholz et al., 2013) and the
macaque (Hutchison et al., 2013b).

The input data to sliding window analysis is a set of timecourses
representing brain regional activity. In the simplest case, a temporal
window, parameterized by its length W, is chosen, and within the
temporal interval that it spans (from time t=1 to time t=W), con-
nectivity is computed between each pair of timecourses as Pearson
correlation coefficient, a second-order statistical measure (Fig. 1A, top
panel). Then, the window is shifted by a step T, and the same
calculations are repeated over the time interval T W T[1 + , + ]. This
process is iterated until the window spans the end part of the
timecourses, to eventually obtain a connectivity timecourse (Fig. 1A,
middle panel). Considering N different regions, this procedure yields
N N× ( − 1)/2 values per window, which are generally summarized into
a matrix describing the connectivity pattern of the brain during the
examined temporal interval. When all windows are considered, a set of
connectivity matrices—a dynamic functional connectome—recapitulat-
ing the temporal evolution of whole-brain functional connectivity is
obtained (Fig. 1A, lower left panel).

Starting from this basic approach, a great effort has been devoted in
different directions, discussed in the following, to obtain more refined
and informative dFC assessments.

2.2. Overcoming window limitations

Besides its simplicity, the sliding window technique carries some
obvious limitations. First of all, the choice of the window length W has
long been matter of debate. On the one hand, too short window lengths
increase the risks of introducing spurious fluctuations in the observed
dFC (Leonardi and Van De Ville, 2015; Hutchison et al., 2013a; Zalesky
and Breakspear, 2015) and of having too few samples for a reliable
computation of correlation, while, on the other hand, too long windows
would impede the detection of the temporal variations of interest. A
trade-off must be reached to keep satisfactory ranges of both specificity
(W long enough to detect reliable dFC fluctuations) and sensitivity (W
short enough not to miss genuine dFC variations). While a lower limit
to safely avoid artifacts is set to the largest wavelength present in the
preprocessed fMRI timecourses (Leonardi and Van De Ville, 2015),
there is no clear indication on the window size which would best suit
each analysis and the choice remains arbitrary. Even when following
this rule of thumb, in fact, the fundamental nature of the technique,
implying the choice of a fixed window length, limits the analysis to the
fluctuations in the frequency range below the window period, inde-
pendently of the true frequency content of the data.

A different family of approaches detaching from the sliding
window framework, which effectively escapes this constraint, is
time-frequency analysis (Chang and Glover, 2010; Yaesoubi et al.,
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2015a) and will be discussed in more details below (see Section
2.3). By allowing the temporal exploration of connectivity at
multiple frequencies, it can be conceptually seen as adapting the
observation window to the frequency content of the original time-
courses (Hutchison et al., 2013a), but at the expense of adding an
additional dimension to the parameter space.

Nonetheless, presumably thanks to its combined simplicity and
ability to retrieve salient features of dFC, the sliding window approach
has so far prevailed for dFC analysis. As for parameter selection,
previous studies suggested that windows of 30–60 s are able to
successfully capture RS dFC fluctuations, and showed that in most
cases, different window lengths, when chosen above the safety limit, do
not yield substantially different results (Liégeois et al., 2016; Li et al.,
2014a; Keilholz et al., 2013; Lee et al., 2013; Deng et al., 2016; see Fig.
S1 for detailed statistics about the window lengths experimented in
literature).

Assuming the most suitable window length is chosen, other
limitations originate from the use of the common rectangular window.
In fact, with such an elementary window, all the included observations
(time points inside the window) are given equal weight. This increases
the sensitivity to outliers in the detection of dFC, as the inclusion/
exclusion of instantaneous noisy observations would appear as a
sudden change in the dFC timecourse (Lindquist et al., 2014). To limit
this risk, tapered windows discounting more distant or boundary
observations are preferable and were adopted in many studies (Allen
et al., 2014; Barttfeld et al., 2015; Chen et al., 2016a; Handwerker
et al., 2012; Yang et al., 2014; Marusak et al., 2016; Miller et al., 2014;
Damaraju et al., 2014; Zalesky et al., 2014; Rashid et al., 2014; Shakil

et al., 2016; Sourty et al., 2016a, 2016b; Yaesoubi et al., 2015b; Betzel
et al., 2016; see Table S1 for a complete overview).

An interesting method to replace the arbitrary parameter choice
with a data-driven window selection is offered by dynamic con-
nectivity regression (DCR; Cribben et al., 2012, 2013) or, in its
revisited version, dynamic connectivity detection (DCD; Xu and
Lindquist, 2015). Both methods enable the detection of instants
when changes in connectivity occur, and define temporal windows
for dFC analysis within these change points. Another approach was
recently suggested by Jia et al. (2014), in which an initially short
window length is chosen, and gradually increased until an assump-
tion of local stationarity in the data becomes violated. In this way,
windows of tailored, varying sizes can span the whole timecourse of
brain activity.

In this direction, we can also place the recent proposition of
multivariate volatility models for the study of dFC (Lindquist et al.,
2014), which refine the concept of sliding window (exponentially
weighted moving average, EWMA) or more substantially overcome
it (dynamic conditional correlation, DCC). These are parametric
models of the conditional covariance/correlation between time-
courses. In particular, DCC connectivity estimates were shown to fit
the true values on artificially generated data at least as well as the
traditional sliding window technique, across several subtypes of
connectivity patterns (independent traces, oscillatory or transient
connectivity); importantly, this was the case when DCC (for which
no a priori parameter selection is required) was compared to an
oracle sliding window case with optimal window length minimising
the fitting error.

Fig. 1. Summary figure of existing dFC analytical strategies. (A) The most commonly used approach is the traditional sliding window methodology, where the connectivity between
brain regions is computed as Pearson correlation between pairs of blood-oxygen-level dependent (BOLD) timecourses, over a temporal interval spanned by a rectangular window (upper
panel). This computation is repeated iteratively, shifting the window by a specific step every time, to generate a connectivity timecourse (middle panel). Performing this procedure for all
connections yields one connectivity matrix per window, i.e. a dynamic characterization of whole-brain connectivity (lower left panel). Building on this core framework, improvements
towards several directions have been developed, including using other window types (Section 2.2), refining the connectivity criterion (Section 2.4), or performing a whole-brain level
graph analysis (Section 2.5). (B) A recent conceptual alternative to the sliding window framework is a frame-wise description of timecourses, where only moments when the BOLD signal
exceeds a threshold are retained for the analysis (Section 3.1). These frames can be used for the generation of voxelwise brain states (C1), the co-activation patterns (CAPs).
Alternatively, the connectivity matrices obtained from (A) can be used to retrieve dFC states (C2; Section 2.6). Through temporal modeling (Section 3.2), parameters describing CAPs
(D1) or connectivity states (D2) and their relationship can be inferred, so that amongst all possible state trajectory options (denoted by the set of white dots linked by light grey arrows),
the observed path (black dots and arrows) is the most likely. Compared to sliding window analysis, frame-wise analysis and temporal modeling are two suggested, conceptually
innovative directions for future dynamic functional connectivity work.
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2.3. Towards joint time-frequency analysis

It is a well-acknowledged fact that oscillatory brain rhythms of
electrophysiological origin underly large-scale constituting networks at
various frequency bands (Buzsaki and Draguhn, 2004; Laufs et al.,
2003; Mantini et al., 2007). In the fMRI case, however, the activity-
related blood-oxygen-level dependent (BOLD) signal limits the analysis
to a low temporal resolution due to the hemodynamic response
function (HRF). As far as RS is concerned, FC was shown to be driven
by fluctuations in a low frequency range of [0.01–0.1] Hz, while higher
frequencies captured physiological noise like respiratory and cardiac
pulsations (Cordes et al., 2001). More recent work also put forward a
spatially inhomogeneous frequency distribution within this narrow
interval (Zuo et al., 2010), a feature that revealed to be clinically useful
(Wee et al., 2012; Han et al., 2011).

Recently, Thompson and Fransson (2015a) subdivided regional
timecourses into a set of 78 frequency bins spanning the resting-state
range, and derived a connectivity matrix for each. Subsequent graph
analysis revealed that within- and across-network connectivity were
very different across frequencies, putting forward the presence of
distinct, overlapping interactions that are possibly averaged in classical
correlation.

This problem extends to the dFC case, where a standard sliding
window methodology does not offer the power to resolve those complex
interplays. The first report of a time/frequency decomposition strategy
in the dFC field history to address this limitation was precocious
(Chang and Glover, 2010): wavelet transform coherence (WTC) was
used to track the amplitude and the phase of the default mode network
(DMN) and the task-positive network (TPN) along time across the
resting-state frequency range, unraveling previously unreported epi-
sodes of within-network anti-correlation and across-network correla-
tion.

Since this seminal report, only few time/frequency studies were
conducted. For instance, following caffeine intake, the phase difference
between right and left motor cortices became more fluctuant, and
explained a larger fraction of connectivity variability (Rack-Gomer and
Liu, 2012). Interestingly, in the same study, the cross-magnitude
component conversely lost explanatory power after caffeine intake,
demonstrating that magnitude and phase are two distinct facets of
time/frequency analyses that may offer complementary insight into
brain dynamics.

More recently, those region-specific studies were up-scaled to a
whole-brain setting: considering phase synchronization within the
RS frequency range, major depressive disorder (MDD) patients
were found to exhibit more globally synchronized, temporally
stable connectivity patterns (Demirtas et al., 2016). Phase-depen-
dent eigenconnectivities, i.e. complex-valued dFC states (see
Section 2.6) yielded from the principal component analysis (PCA)
of Hilbert-transformed dFC timecourses, were obtained in Preti
et al. (2015), including the additional information of the phase of
dFC states. Through hard clustering of concatenated whole-brain
WTC timecourses, Yaesoubi et al. (2015a) were also able to define a
set of connectivity states that not only contained a connectivity
profile as in Allen et al. (2014), but also cross-region phase and
frequency representations.

In addition to those uses of time/frequency approaches in
directly quantifying dFC, an interesting alternative application
was recently proposed by Patel and Bullmore (2016): in their work,
wavelet despiking is applied to the BOLD timecourses to jointly
remove spurious signal fluctuations resulting from non-neuronal
confounds, and estimate a local degree of freedom, which will be
lower for the more aggressively corrected portions of the signal.
Sliding window analysis is then applicable with an adjustable
window length, so that connectivity is computed from data chunks
with similar windowed degree of freedom, resulting in less biased
estimates.

2.4. Assessing connectivity inside the window

As mentioned above, bivariate correlation (e.g., Pearson correlation
coefficient) represents the most direct measure to assess FC within the
sliding window approach (see Table S1 for details). As the computation
of the covariance matrix might be difficult due to the limited window
size2, sparsity is sometimes imposed (Xu and Lindquist, 2015; Wee
et al., 2016b). A more common approach which improves the con-
ditioning of the problem, however, lies in applying the regularization
strategy to the precision matrix, the inverse of the covariance matrix
(Allen et al., 2014; Barttfeld et al., 2015; Cribben et al., 2012; Marusak
et al., 2016; Rashid et al., 2014; Wee et al., 2016a; Cribben et al., 2013;
Damaraju et al., 2014). Conditional, rather than marginal indepen-
dence, is then enforced (Xu and Lindquist, 2015), by limiting the
amount of non-zero coefficients of the precision matrix, which is
expected to be particularly useful when the number of observations
(time points) at each node are limited.

Beyond the measures of bivariate correlation/covariance, higher
order multivariate analyses have been experimented as well. One
example is represented by sliding time-window independent compo-
nent analysis (ICA), where the windowed BOLD fMRI timecourses are
decomposed through ICA and the evolution of the obtained spatial
components in time is observed (a set of independent components
(ICs) would be produced for each window). With this technique,
Kiviniemi et al. (2011) analyzed the stability of the DMN, finding that,
in every subject, no single DMN voxel was recruited stably throughout
all time points. This suggests that the full acquisition time is char-
acterized by momentary interactions of subgroups of DMN nodes,
while the full network as depicted from the classical stationary ICA
never occurs. Further, dynamic interactions were depicted even with
additional nodes external to the DMN, which are not usually captured
in the stationary view, probably due to their short occurrence. A
shortcoming of the technique is represented by the need of matching
the components of different decompositions, which can be automati-
cally performed with different methods (e.g., through the Hungarian
algorithm; Kuhn, 1955), but remains subject to imprecise results. A
conceptually similar alternative to identify the components of the
windowed fMRI data is independent vector analysis (IVA), an exten-
sion of ICA that, in the windowed components computation, maximizes
spatial independence between distinct sources, while at the same time
minimizing independence within the same ones (Calhoun et al., 2014).
This technique showed to be useful in the investigation of dFC changes
related to schizophrenia (Ma et al., 2014), as further detailed in Section
5.

Further, regional homogeneity (ReHo) has also been recently
explored to quantify local FC (within few mm in space) in the human
brain (Hudetz et al., 2015; Deng et al., 2016), and showed clear
dynamic features. An interesting link could be established between
local FC dynamics, assessed with sliding window ReHo, and global
brain organization. Deng et al. (2016) explored, in fact, the dependency
of ReHo variability across different brain regions. First, Pearson
correlation was computed between ReHo fluctuations of each pair of
areas, yielding a global connectivity pattern (based on local FC
dynamics) with a clear structure, absent in surrogate data. Second,
the importance of a region in the global system (measured by nodal
strength) was found to be correlated to its local FC dynamics, showing
that network hubs (e.g., posterior cingulate cortex (PCC) and precu-
neus in the DMN) tend to have higher ReHo variability. Third, higher
ReHo co-variation existed between ROIs within the same ICA-derived
networks, compared to ROIs from different ones. All these findings
point at the existence of an association between local FC dynamics and
global brain function.

2 This is because the rank of the covariance matrix can, at most, be equal to the
window length W.

M.G. Preti et al. NeuroImage 160 (2017) 41–54

44



Finally, a novel metric of within-window connectivity that was
recently introduced is the multiplication of temporal derivatives
(MTD; Shine et al., 2015b, 2015a, 2016); i.e., the sum of the products
of the two first-order derivatives of the BOLD timecourses, which was
shown to be more sensitive than sliding window correlation in
estimating dFC and more robust than the conventional method for
the assessment of stationary FC. Acting as a high-pass filter, the first
temporal derivative operator applied to the fMRI timecourses benefits
from increased sensitivity to small changes over time, allowing for the
detection of even subtle alterations of the connectivity structure.
Further, despite the theoretically higher risk of temporal derivatives
to amplify noise in the data, simulations were used to prove the
robustness of MTD against high and low frequency noise and head
motion-related artifacts, when a proper window size is used (Shine
et al., 2015b).

2.5. Dynamic graph analysis

A popular avenue to extract information from dFC is the use of
graph theory, where large-scale measures characterizing the architec-
ture and the information flow of the brain functional network are
derived (see Bullmore and Sporns, 2009 for a review). Many different
quantities can be extracted, each informing on a particular aspect of the
network (see Rubinov and Sporns, 2010).

To make use of these metrics dynamically, network analysis is
applied separately to each generated connectivity matrix, yielding
timecourses of graph measures. Note that a dependence between graph
metrics of subsequent windows can also be modeled, for example
imposing a specific smoothness over time (Mucha et al., 2010; see
Section 3.2). It turns out that strong fluctuations over time occur across
diverse graph metrics (Tagliazucchi et al., 2012b), highlighting a
continuous functional reorganization of the brain regarding different
network features.

The most recent efforts to understand this phenomenon have been
relying on two metrics in particular: efficiency, which describes the ease
with which a signal can travel from one brain region to another, and
modularity, which quantifies the extent to which the network is
organized into a set of compact communities with few inter-classes
connections (Clauset et al., 2004). Zalesky et al. (2014) reported
moments of high efficiency that predominantly concerned remote brain
regions; at the same time, the most dynamic connections over time
were the ones linking different brain networks. Betzel et al. (2016)
observed large variations of modularity, which was strong in periods
when a large number of strong connections could be detected. Thus,
the view in light of this evidence is the one of a brain with interspersed
moments of high modularity/low efficiency, when different networks
are functionally disconnected, and periods of low modularity/high
efficiency, when those distinct networks interact. Further, the former
type of state also appears to more strongly mimic the brain structural
architecture (Liégeois et al., 2016): although network-to-network
interactions are primordial, they are also energetically costly and thus,
only sporadically occurring and not the norm.

Interestingly, the degree of network allegiance flexibility captured
by graph dynamic analysis also appears to vary across individuals in a
behaviourally relevant manner: indeed, the extent to which a set of
brain regions from the salience network can communicate with other
external nodes correlates with cognitive flexibility (Chen et al., 2016a).
In short, graph-based dynamic metrics thus offer a promising window
on network integration and segregation.

2.6. Extracting dFC states

After the estimation of whole-brain dFC (e.g., by sliding window
correlation or time-frequency analysis), summary measures quantify-
ing fluctuations in the connectivity timecourses can be easily assessed,
such as their standard deviation (Kucyi et al., 2013; Kucyi and Davis,

2014; Falahpour et al., 2016; Laufs et al., 2014; Morgan et al., 2014;
Lee et al., 2013; Price et al., 2014), coefficient of variation (Gonzalez-
Castillo et al., 2014) or amplitude of low frequency fluctuations
(ALFF; Shen et al., 2014; Qin et al., 2015).

In addition, the decomposition of dFC timecourses through matrix
factorization techniques, for example via k-means clustering or PCA,
allows to summarize the obtained dFC patterns (one at each time
point) into a smaller set of connectivity states (Fig. 1C2). Different
criteria can be applied to obtain dFC states, whose interpretation and
characteristics will change considerably depending on the approach
chosen; for instance, they can represent patterns of connectivity that
repetitively occur during the resting-state acquisition, or building
blocks which differently contribute to the FC network at every time
point.

The inputs typically consist in the concatenation of vectorized
connectivity patterns across time points and subjects (after possible
subject normalization), yielding a dFC data matrix. States will, there-
fore, characterize not only the individual resting-state acquisition, but
the group of subjects under examination.

K-means clustering, introduced by Allen et al. (2014) and subse-
quently adopted by others (Damaraju et al., 2014; Barttfeld et al., 2015;
Gonzalez-Castillo et al., 2015; Hudetz et al., 2015; Hutchison et al.,
2014; Ma et al., 2014; Marusak et al., 2016; Shakil et al., 2014, 2016;
Shen et al., 2016; Su et al., 2016; Hutchison and Morton, 2015; Rashid
et al., 2014), allows to identify recurring connectivity patterns (cluster
centroids), which are mutually exclusive in time and present positive
and negative values indicating highly correlated and anti-correlated
regions, respectively (Fig. 2A). The application of this approach to
schizophrenia (Damaraju et al., 2014) proved the clinical usefulness of
the clustering-derived dFC states (see also Section 5), showing that
pathological alterations only affect some dynamic states; i.e., they were
only present at specific moments and/or in specific subjects.

Alternatively, conceptually similar ways to generate dFC states that
do not overlap in time were also proposed, for example through
hierarchical clustering (Ou et al., 2013, 2015; Yang et al., 2014), or
modularity approaches to look for communities, that is, patterns of
dFC (Yu et al., 2015). Some uses of hidden Markov models (HMMs) to
describe RS data (which is further discussed in Section 3.2) can also
enter this category, if the inferred hidden states follow each other in a
temporal sequence and are each parameterized by a covariance matrix
(Eavani et al., 2013).

In a framework similar to Allen et al. (2014), Yaesoubi and
colleagues (Yaesoubi et al., 2015b) proposed to replace clustering by
temporal ICA (TICA), to obtain states which are maximally mutually
temporally independent. Unlike clustering, this method allows a
temporal overlap between connectivity building blocks, which also
have clear temporal dynamic interpretability. At every time point,
therefore, the connectivity pattern is now given by a combination of
states, each one with a different contribution.

The same happens when adopting a PCA/singular value decom-
position (SVD) approach (Leonardi et al., 2013), where the temporally
overlapping states are by construction orthogonal and maximize the
variance in the dFC data matrix (Fig. 2B), or dictionary learning
(DL; Leonardi et al., 2014; Li et al., 2014a), where states can be seen as
building blocks of the connectivity patterns with different temporal
contributions, and a specific temporal sparsity can be imposed. In the
interpretation of these patterns (obtained through TICA, PCA or DL),
the sign is arbitrary and needs to be combined with the weight of
temporal contributions, which might also be positive or negative and
will define the sign of the final building blocks of connectivity. Careful
interpretation of the patterns is therefore required, as high positive/
negative values in the states do not necessarily translate into strong
connectivity in the final observation.

Further, even small modifications of the pipeline can make a great
difference in the interpretation. In the work by Leonardi et al. (2013),
for instance, the connectivity timecourses are temporally demeaned
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before applying PCA, differing from previous studies. Consequently,
the obtained eigenconnectivities (Fig. 2B) exclusively highlight changes
(instead of strong values) of connectivity; i.e., regions showing a
connectivity increase/decrease with respect to the mean value (sta-
tionary FC), independently from the actual connectivity value.

In addition, states can also be obtained through the clustering of
another kind of information than directly the dFC matrix, for example
dynamically derived graph metrics, which are discussed further in
Section 2.5 (Li et al., 2014a; Chiang et al., 2016), or higher-level
information, such as similarity vectors between different IVA compo-
nents (Ma et al., 2014).

Once dFC states are obtained, individual measures expressing their
occurrence (Leonardi et al., 2013) or persistence (Damaraju et al.,
2014) can be assessed. In the methodological cases where different
state building blocks are allowed to combine at a given time point, one
can also consider the global state of activity of the system: then, the
whole pattern of activity levels across building blocks is referred to as a
meta-state (Yaesoubi et al., 2015b; Miller et al., 2016). Of note, in the
cases where the problem at hand involves only a limited subset of brain
regions, this meta-state characterization can also be readily applied to
the connectivity estimates themselves, without the need of clustering
strategies (Tagliazucchi et al., 2014).

3. Beyond the dFC state-of-the-art: future and alternative
perspectives

All the dFC methods described in the previous section can be
considered part of the same framework, which is built around the basic

sliding window correlation approach. Here, we identify two promising
directions that have only more recently been explored and that, we
believe, constitute fruitful perspectives for future research.

3.1. From windowed measures to single frames

The sliding window based methods described so far extract
measures out of the BOLD fMRI signals, under the implicit assumption
that spontaneous brain activity is characterized by a slow, but ever
changing temporal dynamics. However, an alternative view was
proposed by Tagliazucchi and colleagues (Tagliazucchi et al., 2010,
2011, 2012a), suggesting that the relevant information about RS FC
could actually be condensed into events or short periods of time, and
that, therefore, a point process analysis (PPA) only including the
relevant time points (e.g., where fMRI timecourses exceed a chosen
threshold) would contain the same information as a regular full
timecourse analysis (Fig. 1B). This was shown in a seed-based analysis
(Tagliazucchi et al., 2012a), which yielded the main well-known RSNs,
and was extended in a whole-brain approach recently proposed by the
same authors (Tagliazucchi et al., 2016).

This idea that meaningful information can actually be retrieved
from the observation of individual frames led to a powerful alternative
in the connectivity analysis trend: from a temporal window perspec-
tive—yielding a connectivity map of second-order statistics—to the
analysis of single frames, such as in PPA, yielding temporally subse-
quent co-activation maps (first-order statistics). A potential explana-
tion for the spontaneous activity to be condensed in short periods could
originate from the presence of neuronal avalanching activity causing

Fig. 2. Examples of dFC states. (A) The k-means clustering procedure to obtain dFC states (Allen et al., 2014) is graphically depicted (upper panel). The resulting cluster centroids (the
first 6 are displayed) are networks showing groups of regions highly correlated (red)/anti-correlated (blue) at specific time points (lower panel). For each cluster, the total temporal
occurrence is specified on top of the matrices. Adapted with permission from Allen et al. (2014). (B) The first five dFC states found with PCA in Leonardi et al. (2013), i.e.
eigenconnectivities, are reported, in form of matrices and corresponding brain graphs. The patterns highlight here increased (red)/decreased (blue) connectivity with respect to
stationary FC. Reprinted with permission from Leonardi et al. (2013).
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only brief neuronal events (Tagliazucchi et al., 2012a). An example of
the cognitive relevance of such frame-level activity lies in the study of
RS periods following the learning of a task, where extracted task-driven
activity patterns are searched for by a matching process as a proof of
memory consolidation effects (Staresina et al., 2013; Guidotti et al.,
2015). Another one is the robust detection of arousal level fluctuations,
as confirmed by electrophysiological recordings, through matching
with a single frame activity template (Chang et al., 2016).

The advantages of PPA are multiple. First, it considerably reduces
the data load, which appears more and more essential given several
large-scale acquisition efforts that are undergoing (Smith et al., 2013;
Nooner et al., 2012; Holmes et al., 2015). It also easily allows for a
voxelwise, atlas-free analysis, which remains difficult in FC/dFC
investigations. Then, the associated exclusion of time points with
smaller amplitude, which are more likely to be corrupted by noise,
improves outcomes compared to more classical analytical strategies (Li
et al., 2014b). However, the arbitrary choice of a threshold and the
neglect of deactivation events (negative peaks) remain important
shortcomings of this approach. We note that a possible way to include
those negative peaks in stationary analyses could be the use of recently
proposed alternative measures to Pearson correlation, namely accor-
dance and discordance (Meskaldji et al., 2015), which unravel other-
wise hidden connectivity information of clinical relevance (Meskaldji
et al., 2016).

A different method to detect short spontaneous events in BOLD
voxelwise time series, known as paradigm free mapping (PFM), was
introduced by Caballero Gaudes et al. (2013) and was shown to be less
subject to artifactual detections as the signal was fitted with the HRF.
In an application of this technique, seed-based connectivity measured
in the presence of spontaneous events was more marked than in their
absence, showing that transient instances are actually shaping the
known large-scale RSN connectivity patterns (Allan et al., 2015).

Inspired by PPA and hypothesizing that these brief neuronal events
would yield only short periods of co-activation and co-deactivation that
are missed in stationary FC analysis, Liu and Duyn (2013) refined the
technique by applying the point selection only to a specific seed
timecourse, and then retaining the original (not thresholded) fMRI
volumes at the selected time points for temporal clustering. This
generates co-activation patterns (CAPs); i.e., patterns of regions which
recurrently co-activate or co-deactivate with the seed for limited time
intervals (Fig. 1C1). In this way, the known RSNs are decomposed into
multiple patterns, which express the dynamic behaviour of connectiv-

ity. For example, using a seed in the PCC, a known core region of the
DMN, it was possible to obtain DMN-related CAPs including only parts
of this network, suggesting that different network sub-portions are
recruited at specific moments (Liu and Duyn, 2013). Further, some
CAPs showed a spatial pattern deviating from conventional RSNs, with
additional information captured thanks to the dynamic analysis.

CAPs extend the original PPA in two ways. First, applying PPA only
to the seed timecourse rather than to all voxel timecourses also allows
to detect co-deactivations with respect to the seed, adding otherwise
missed, potentially useful information. For instance, in some of the
PCC CAPs, extensive co-deactivations (negative areas) were found in
regions of the TPN. Applying a similar seed-based selection of time
points, Di and Biswal (2015) also found, upon separate computation of
connectivity to the seed when it is active and deactive, that obtained
patterns would significantly differ in some cases, highlighting the
distinct information lying in activation and deactivation events.
Second, the additional temporal clustering step yields spatial states
(i.e., CAPs), whose temporal properties (e.g., occurrences) can be
summarized (Chen et al., 2015), as for dFC states in sliding window
approaches (see Section 2.6). RSNs from conventional stationary FC
can therefore be seen as the temporal average of CAPs, and are limited
by the capability of highlighting only areas with stable connectivity
throughout the acquisition time.

Additional refinements of the CAP technique included the extension
of the approach to the whole brain (Liu et al., 2013). In this case, a seed
is not specified and all fMRI volumes (not only a portion of them) enter
the clustering, avoiding therefore the need of arbitrarily choosing a
threshold. Regarding their cognitive relevance, CAP spatial patterns
were shown to differ across consciousness states (Amico et al., 2014),
and CAP-based brain dynamics metrics, such as occurrence percentage
and state switching frequency, enabled the detection of differences in
network dynamics between RS and a working memory task (Chen et al.,
2015).

Further, another contribution to the CAP technique was pro-
vided by Karahanoğlu and Van De Ville (2015), where data-driven
whole-brain patterns of co-activation are also obtained, but based
on transients in the fMRI signal, rather than peaks. In fact, frames
of the so-called innovation signals enter the clustering step. These
are obtained as the first-order derivative of regularized HRF-
deconvolved fMRI timecourses, and therefore encode information
about changes in the original BOLD timecourses (Karahanoğlu
et al., 2013). Even if the resulting patterns, called here innovation-

Fig. 3. Innovative directions for future dFC work: frame-wise analysis and temporal modeling. (A) The 13 clusters obtained with the iCAP approach (Karahanoğlu and Van De Ville,
2015) are numbered in order of temporal occurrence and grouped by hierarchical clustering based on their temporal overlap into meaningful components related to sensory, default
mode and attention functions. MOT: Motor. AUD: Auditory. SUB: Subcortical. pVIS: Primary visual. sVIS: Secondary visual. VISP: Visuospatial. PRE: Precuneus. pDMN: Posterior
default mode. DMN: Default mode. ACC: Anterior cingulate. EXEC: Executive control. ATT: Attention. ASAL: Anterior saliency. Reprinted with permission from Van De Ville and
Karahanoğlu (2016). (B) The iterative process to identify a recurring spatiotemporal activity pattern (template) with the approach suggested by Majeed et al. (2011) is graphically
displayed. The found template shows an alternation between the DMN and attention network, and repeatedly occurs over the RS scan, as depicted by the correlation timecourse. Adapted
with permission from Majeed et al. (2011).
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driven CAPs (iCAPs; Fig. 3A), might look similar to the original
CAPs, they identify by construction regions whose BOLD signal
increases/decreases simultaneously, corresponding to high posi-
tive/negative values, respectively. Hence, when inspecting iCAPs,
we do not detect regions which are activated (or deactivated)
together, as for conventional CAPs, but regions whose activity level
simultaneously increases (or decreases); i.e., regions characterized
by a similar temporal dynamics.

Under such an analysis, the well-known RSNs also break up into
multiple subsystems with their own temporal dynamics. In addition,
despite the commonly reported anti-correlation between the DMN and
fronto-parietal network, they appear here with the same sign in most of
the time frames, while subsystems such as the posterior DMN subnet-
work drive the apparent anti-correlation. Also, a back-projection of
iCAPs to deconvolved fMRI volumes allows to reconstruct iCAP time-
courses, and, therefore, assess the temporal overlap of the different
patterns, overcoming this limitation of the initial hard clustering
assignment.

Interestingly, the observed temporal overlap of iCAPs is consistent
with their behavioural profiles. Further, the analysis of CAP/iCAP
temporal occurrences showed persistence of patterns for about 5–10 s,
which, on the one hand, might explain why the sliding window
approach requires a window length of at least about 20 s (to observe
a few on/off changes of these patterns), but, on the other hand, also
shows the limitations of the window approach in terms of a resolvable
temporal resolution below these iCAP durations.

Finally, it is interesting to note that direct clustering of fMRI
timecourses was applied to detect similarities in activation between
voxels in much earlier work (Baumgartner et al., 1997, 1998; Moser
et al., 1997; Golay et al., 1998; Moser et al., 1999; Goutte et al., 1999),
aiming to analyze variability in task-based fMRI experiments. In that
context, however, cluster centroids corresponded to representative
timecourses (instead of fMRI frames) and patterns of similar activation
were given by the membership maps of the found representative
timecourses.

3.2. Towards optimal modeling of time

Recent studies (Majeed et al., 2011; Guidotti et al., 2015) high-
lighted how the analysis of spatiotemporal patterns (i.e., temporal
sequences of frames), which repeatedly occur over time, can capture
the evolution of RSNs better than conventional analysis of single
spatial patterns. In details, Majeed et al. (2011) developed an innova-
tive approach in which the recorded fMRI data is probed to extract a
temporal sequence of volumes, referred to as the template, which
recurs over the RS acquisition. In the found template, the DMN and
attention network were opposed in activity levels, and gradually
reverted sign over around twenty seconds (Fig. 3B). More recently,
Guidotti et al. (2015) were interested in discriminating the activation
patterns of two different tasks, retrieved throughout the course of a RS
recording by template matching (as briefly introduced in Section 3.1).
In their case, standard spatial analysis at the level of single frames was
unsuccessful, while considering sequences of frames greatly improved
performance.

In our view, those two separate reports call for the same organising
principle in RS data: when the system lies in a specific state, it will not
evolve randomly, but rather in a very constrained manner, towards a
particular subsequent configuration. Including explicit temporal mod-
eling in the analysis means therefore taking into account this principle
and looking for specific sequences of RS patterns. This allows for a
more realistic and precise modeling of FC dynamics, which includes
additional information regarding the past network configurations
constraining the present ones. However, understanding and properly
capturing this phenomenon is anything but easy: how can we best
encompass the influence that time has on brain activity and connectiv-
ity levels in newly developed dFC techniques? Although the importance

of temporal modeling may sound like an unsurprising and logical
claim, there have only been sparse attempts to explicitly do so in the
present literature.

In the conventional sliding window analysis, the transition from
one state to the following is smoothed by construction, due to the
temporal overlap between successive windows. Further, an approach
undertaken by some, that we could see as a first attempt at temporal
modeling, is to explicitly model the smoothness between subsequent
time points and to constrain the solution space accordingly. For
example, in recent studies (Wee et al., 2016a; Monti et al., 2014), the
FC at each window is constrained by the data of neighbouring windows:
a regularized precision matrix is used as FC metric inside the window,
with an additional constraint of temporal smoothness which en-
courages the coefficients at time t to have similar values to the ones
at time t−1. This approach showed successful results in both con-
nectivity estimation (Monti et al., 2014) and classification between
healthy and mild cognitive impairment (MCI) individuals (Wee et al.,
2016a). Along the same line, it is possible to impose smoothness in the
evolution of the network-level graph metrics computed over the
windows. Although this direction has not been followed yet in the
purely RS fMRI literature, the framework for this purpose is available
(Mucha et al., 2010), and has started to be applied for the computation
of modularity in temporally linked networks to investigate dFC during
task performance (Bassett et al., 2011, 2015). The frame-wise view
(Section 3.1) is also well adapted to this type of approaches. For
instance, a way to directly model the BOLD signal changes over
subsequent time points is the use of a Kalman filtering scheme (Kang
et al., 2011; Liao et al., 2014a), in which the dependence of two
timecourses is governed by a weighting coefficient being positive/
negative if the activity values are concordant/discordant and larger if
their absolute values are close. This framework can therefore be seen as
a frame-wise equivalent of the sliding window approach, the coefficient
being the equivalent of a connectivity value. The coefficient at a specific
time point is chosen to be dependent on the one before, always aiming
at a trade-off between data fitting and smoothness with respect to the
previous time point estimate.

Despite the encouraging results that the above techniques could
yield, we believe that other hypotheses to model temporality have
greater potential; indeed, smoothening up activity/connectivity esti-
mates remains an add-on to already existing methodologies. Moreover,
smoothness in FC changes may be indeed what to expect most often,
but in some cases this could also not represent a truthful description of
FC evolution, for example when an alternation between two different
networks takes place. Large and rapid reorganisations of the brain
functional architecture, in fact, are salient events that we would also
wish to resolve.

A second strategy of temporal modeling that we can point at was
suggested by Smith et al. (2012): here, activity at each time point is
viewed as a linear combination of RSNs, and mutually independent
RSN activity time courses are extracted through the cascading of a
spatial ICA (SICA) and subsequent TICA step. Time is thus incorpo-
rated in the approach by hypothesising that brain networks evolve in
activity without interacting together, a choice leading to spatially
overlapping, functionally distinct networks termed temporal functional
modes (TFMs). Although the retrieved TFMs appeared functionally
relevant, explicitly preventing any cross-talk between brain systems
seems in conflict with our current understanding of RS brain functions,
of which cooperation across RSNs is a hallmark feature (Christoff et al.,
2016).

To overcome the need to set such limiting constraints, and thus
keep a more general framework capable of incorporating various types
of dynamics, we would particularly favour a third, emerging option of
temporal modeling for future developments: here, changes in activity/
connectivity are parameterised in models that explicitly describe the
brain as evolving through a temporal sequence of states (see Fig. 1D1/
D2). There is no need to formulate a limiting a priori hypothesis about
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the temporal evolution of the system: the presence of a given temporal
regime or of another (for example, faster or slower dynamics) will be
translated into different parameter values, and networks with distinct
dynamics can coexist.

The main limitations of this family of approaches are the need of
large volumes of data for proper model inference (which, again,
resonates with the undergoing large-scale acquisition initiatives;
Smith et al., 2013; Nooner et al., 2012; Holmes et al., 2015), and the
type of model used, as a feature that is not incorporated into the
modeling framework will not be captured. This strategy can be
deployed at various levels of a dFC pipeline: for example, Ou et al.
(2015) applied an HMM to the output data of a sliding window
analytical scheme in which dFC states had been extracted, to model
state dynamics in two populations of control and post-traumatic stress
disorder (PTSD) subjects. PTSD patients were found to often stay
trapped in one state in particular, whereas control subjects would
display more numerous transitions. In another more recent work,
parameterisation was performed at the level of various dynamic graph
metrics (for example, the brain was assumed to transit across different
states of small-worldness), which enabled accurate discrimination
between control and temporal lobe epilepsy (TLE) subjects (Chiang
et al., 2016).

HMMs can also be used as a dFC method per se: in one such
attempt, the brain was hypothesised to be in one specific, global brain
state at each time point, as parameterised by a covariance matrix with
added sparsity constraints (Eavani et al., 2013). In another piece of
work, the relationship between different RSNs (as retrieved by SICA)
was modeled, so that connectivity between two given RSNs could
influence the probability of other pairs to transit from a synchrony state
to another (Sourty et al., 2016b). This report is a good example of the
promising potential of temporal modeling, as it enables the incorpora-
tion of previously uncharacterised complex features that are none-
theless of utmost importance for the understanding of RS brain
functions (in this specific example, causal influences between RSNs).

Finally, a different flavour of temporal modeling can also be found
in Gu et al. (2015): using network control theory, the authors
investigated how the brain transitions between states, and identified
regions with higher controllability; i.e., regions that can drive the
system to different functional configurations. In particular, it was
found that weakly connected areas facilitate the transition to high
energy states, while areas at the boundary between networks can
determine segregation or integration of different cognitive systems.

4. Origins and relevance of dynamic functional connectivity

As reviewed until now, there exist multiple ways by which
functional brain dynamics can be extracted and quantified. A natural
question is whether dFC analysis, in particular sliding window-related
approaches, captures information of relevance regarding brain func-
tions, or simply resolves methodology-related artifacts (Handwerker
et al., 2012; Hindriks et al., 2016).

4.1. Statistical testing of FC fluctuations

One important concern about dFC assessment regards the appro-
priate statistical testing of connectivity temporal variations, which is
often omitted or not properly carried out. In fact, the simple recording
of connectivity temporal fluctuations is not enough to be able to state
the presence of true dFC, instead of simply artifacts or noise. In Section
2.2, we already discussed the pitfalls possibly arising from the choice of
an inappropriate window length, which might lead to spurious
fluctuations (Leonardi and Van De Ville, 2015). However, even when
adopting the right parameters, an appropriate statistical test where a
test statistic of the dynamic behavior of connectivity is assessed and
compared against a null distribution is necessary to probe truly
dynamic connectivity (Zalesky and Breakspear, 2015; Hindriks et al.,

2016), i.e. connectivity variations which are significantly different from
the stationary case. With such statistical testing, one might also use
sliding windows which are slightly shorter than what recommended by
the rule of thumb ( f1/ min, fmin being the cut-off frequency of the high-
pass filter applied to the fMRI timecourses; Leonardi and Van De Ville,
2015), being sure both to still consider only significant fluctuations,
and not to miss any genuine dynamic behavior present in the data
(Zalesky and Breakspear, 2015). A crucial problem at this stage is the
approximation of the null distribution, i.e. samples following the null
hypothesis of stationary FC. For this purpose, sets of surrogate data are
constructed, such that they preserve the statistical properties of the
original data, but with constant connectivity. These can be obtained by
phase randomization of the fMRI timecourses (Handwerker et al.,
2012; Leonardi et al., 2013) or by randomization of the scanning
sessions (Keilholz et al., 2013). Vector autoregressive null models
(Chang and Glover, 2010; Zalesky et al., 2014) and amplitude-adjusted
phase randomization (Betzel et al., 2016) were also proposed, with the
advantage of preserving the stationary FC σ originally present in the
data (i.e., null hypothesis assuming a stationary FC equal to σ).
Importantly, there have been several studies to date where genuine
dFC fluctuations have been appropriately assessed with the help of
such approaches. In most of these reports, significant excursions could
be resolved in single RS sessions of conventional duration (∼10 min;
Zalesky et al., 2014; Betzel et al., 2016; but see Hindriks et al., 2016,
where single-session significant fluctuations could not be resolved).
Frame-level models with increased temporal granularity such as DCC
(Lindquist et al., 2014) or Kalman filtering approaches (Kang et al.,
2011), which also enable rigorous statistical assessment, led to the
detection of significant excursions as well. Thus, at least part of the
fluctuations observed upon the use of dFC analytical tools seems to
reflect truly existing FC signal variability.

4.2. Neural correlates of dFC

Supporting the relevance of FC fluctuations, there is also solid
evidence demonstrating that dFC is the direct product of underlying
brain electrical activity. Through the correlation of electroencephalo-
graphy (EEG) power timecourses with fMRI dFC traces, there was α
(8–12 Hz) and β (15–30 Hz) power negative correlation, as well as γ
(30–60 Hz) power positive correlation, with functional connectivity
between multiple brain regions (Tagliazucchi et al., 2012b). Further, in
the same study, α power also positively correlated with the dynamically
computed average path length. In another methodologically similar
piece of work, it negatively correlated with FC between and within
DMN and dorsal attention network (DAN) regions, while θ (4–7 Hz)
power positively correlated with the same measures (Chang et al.,
2013a). In the anesthetized rat, connectivity between local field
potential signals from right and left primary somatosensory cortices
in the θ, β and γ sub-bands all positively correlated with dFC
fluctuations (Thompson et al., 2013b).

4.3. Relevance of dFC to demographics, consciousness and cognition

Not only does dFC clearly relate to underlying neuronal sources, it
is also tied to demographic characterization. For example, Hutchison
and Morton (2015) noticed that in most cases, variability in FC over
time positively correlated with age, and a clustering-based framework
to extract dFC states revealed that although spatial patterns remained
unchanged with development, in some state cases, mean dwell time
and occurrence rate were strongly modulated. Using similar, slightly
enhanced state descriptions, gender classification could also be
achieved: when incorporating frequency as part of the clustered feature
space, the balance between state occupancy was different across
genders (Yaesoubi et al., 2015a). In a different description where
TICA replaced hard clustering, males were also shown to occupy a more
diverse set of state combinations (Yaesoubi et al., 2015b).
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Further, dynamic functional brain properties have often been
related to the degree of consciousness. Initial reports demonstrated
that even in an anesthetized state, dFC changes would partly remain
(Keilholz et al., 2013; Hutchison et al., 2013b), implying that at least
part of this complex activity is not the product of conscious processing.
Subsequent studies nonetheless clarified the existence of differences
with consciousness levels: in the rat, temporal variance in ReHo
decreases with higher doses of anesthetics (Hudetz et al., 2015); in
the macaque, extracted brain states are visited longer, but with less
temporal structure, upon sedation (Barttfeld et al., 2015); in the
human, PCC-centered CAP analysis showed, in some CAPs, a decrease
in prefrontal or in subcortical connectivity (Amico et al., 2014). All in
all, those reports demonstrate a reduction in dynamic complexity upon
consciousness decrease. Interestingly, the converse is seen upon the
intake of psylocibin, a psychedelic drug leading to unconstrained
cognition: variability in FC between left and right hippocampi was
increased, and a larger state space was visited over time (Tagliazucchi
et al., 2014).

Finally, dFC has been shown to relate to cognition in several ways:
for example, variability in FC between the PCC and medial temporal
lobe subsystem is larger in individuals undergoing more frequent
daydreaming (Kucyi and Davis, 2014), and FC variability between the
periaqueductal gray (PAG) and medial prefrontal cortex (mPFC) is
larger in people who can more easily attend away from painful stimuli
(Kucyi et al., 2013); the duration spent in connectivity states of a
posteromedial cortex seed modulates mental flexibility (Yang et al.,
2014); stronger contributions of a DAN subnetwork at rest lead to
better attentional task performance (Madhyastha et al., 2015); a larger
propensity of a subset of salience network nodes to interact with other
brain modules goes with larger cognitive flexibility (Chen et al., 2016a);
the more brain regions alternate their network participation with time,
the lower the amount of positive self-generated thoughts (Schaefer
et al., 2014); and from a more global viewpoint, around half of the
variance in task performance across several cognitive domains can be
explained by how rapidly, at rest, functional connections shift from a
connected to an unconnected state (Jia et al., 2014).

Equally interesting is the fact that the relationship between dFC and
cognition does not stop at the inter-individual level: within single
subjects as well, dFC has been related to fluctuations in cognitive
outcomes. Amongst the main such findings, for a given subject,
performing faster at a psychomotor vigilance task is paired with larger
signal difference between the DMN and the TPN in the previous
seconds (Thompson et al., 2013a); PAG-mPFC connectivity is en-
hanced in the epochs when a subject feels a painful stimulus to a lesser
extent (by attending away from it; Kucyi et al., 2013); FC within the
DMN and between the DMN and the cingulo-opercular network is
lower, and DMN-auditory network FC is higher, before the trials where
blindfolded subjects fail to perceive an auditory stimulus (Sadaghiani
et al., 2015); in sleep-deprived individuals, an extracted dFC state
characteristic of high arousal (as quantified through eyelid opening)
occurs more in periods of low reaction time to a fast-paced auditory
vigilance task, while the converse is true for a low arousal dFC state in
moments of high reaction time (Wang et al., 2016); and finally, more
variable inter-tapping interval in a finger-tapping task, a proxy of
increased attentional load, relates to enhanced connectivity between
the right anterior insula and the mPFC, as well as within DMN
subregions (Kucyi et al., 2016). Although observing such relationships
requires the experimental paradigm to include a task (and hence, not a
sole RS recording), the results nonetheless reveal changes in FC that
spontaneously occur within individuals.

5. Clinical potential of dFC

The past years have seen many attempts to address what type of
dFC abnormalities may occur in different brain disorders. Spontaneous
thought, and therefore RS connectivity, is in fact altered in a wide range

of clinical conditions, which were divided into two categories: the ones
characterized by excessive variability of thought content over time, and
the ones marked by its excessive stability (Christoff et al., 2016). Only
dFC is able to capture the inner dynamic nature of FC alterations and,
therefore, to describe these two conditions standing as causes of altered
cognitive functions.

In particular, pathologies in which excessive variability or stability
of thought could occur at different times for the same individual appear
as ideal candidates to benefit from the advantages of dFC analysis. It is
then perhaps not surprising that schizophrenia has been the most
widely studied condition to date when it comes to dFC properties,
offering us sufficient material to attempt a more thorough character-
ization of the disease, based on the dynamic features of FC. We will
therefore show how results from distinct dFC methodological ap-
proaches found in literature can be combined to help interpreting
different aspects of this disease, going beyond the stationary character-
ization. We will then briefly go over the other disorders that have
started benefiting from the dFC research efforts.

The computation of sliding window FC estimates, followed by dFC
state extraction through k-means clustering, has been the most widely
applied strategy in schizophrenia dFC studies (Du et al., 2016; Rashid
et al., 2014; Damaraju et al., 2014; Su et al., 2016). This technique
allows, in fact, to detect differences between schizophrenia (SZ) and
control (CTR) groups based on the dynamic occurrence and connectiv-
ity strength of dFC states, capturing the aforementioned variability in
thought flow and related network interplays, which cannot be depicted
by stationary analysis. The states visited by CTR and SZ populations
were shown to divide into two subtypes: some with clearly delineated
FC patterns of strong, specific connectivity across brain areas, and
others with overall less defined, lower connectivity values.
Interestingly, SZ individuals spend a larger time in the less defined
subtype of states, whereas the converse is seen for CTR subjects (Du
et al., 2016; Damaraju et al., 2014). Spatially, SZ patients displayed
both weaker across-network connectivity, including in particular sub-
cortico-cortical connections (thalamus dysconnectivity; Damaraju
et al., 2014) and links between the DMN and other RSNs (Su et al.,
2016; Rashid et al., 2014), as well as within-network disruptions of the
DMN (Du et al., 2016). In our view, these elements all contribute to the
“profound disruption of thought” (Christoff et al., 2016) characterizing
schizophrenia.

The study of graph metrics allowed to refine the meaning of the
observed spatial differences across groups: in a DMN-focused analysis,
strength, efficiency and clustering coefficient of the dFC states were
reduced in SZ subjects (Du et al., 2016). Extending the investigation to
the whole brain, the same metrics were found to be less fluctuant along
time in SZ individuals; using them for modularity-based partitioning
and analysing the graph properties of the extracted dFC states, they
were again reduced (Yu et al., 2015). Thus, we can posit that the
alterations in connectivity described above have the effect of altering
local (clustering coefficient) and global (efficiency) information flow
through the brain.

Further, the analysis of dFC through TICA-based meta-state
characterisation, in which connectivity building blocks are allowed to
combine at each time point, enabled to address dynamic abnormalities
at a more global level, where the evolution of the global pattern of
connectivity contributed by different states was probed.

SZ subjects were found to exhibit diminished dynamic fluidity,
visiting less meta-states, shifting less often across them, and traveling
through a narrower meta-space characterised by more absorbing hubs
(Miller et al., 2016). Note that this last finding is in accordance with the
report of Yu et al. (2015), who also described a common state to which
SZ subjects would return more often. The decreased diversity in visited
meta-states may actually be a reflection of the larger time spent by SZ
subjects in poorly defined dFC states as described above: indeed,
alternating more across well defined dFC states with strong connectiv-
ity profiles would result in larger meta-space changes, as opposed to
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frequently staying trapped in poorly defined dFC states, where the
dynamic interplay between RSNs is less marked. Those poorly defined
states may also explain the findings of a very recent classification study:
to generate dFC classification features, Rashid et al. (2016) performed
state extraction across a CTR, a SZ and a bipolar (BP) population (5
states each), and fitted each connectivity matrix to those 15 building
blocks. Whereas CTR and BP subjects would have their FC fluctuations
solely explained by the states extracted from their own group, SZ
patients also showed prominent contribution from CTR and BP states,
which may arise from those moments when SZ subjects lie in dFC
states with low contrast.

Aside from schizophrenia, another prominent neurodevelopmental
brain disorder that has started being tackled from the dFC forefront is
autism: recent reports indeed demonstrate that the use of a multiple-
network, dynamic framework for classification strongly outperforms
the more standard stationary approaches (Price et al., 2014). Recently,
another classification attempt combined clustering at the level of the
BOLD timecourses with sparse connectivity matrices computation, and
subsequent use of local clustering coefficients as input features; again,
the reached accuracy easily outperformed not only stationary ap-
proaches, but also less sophisticated dynamic ones (Wee et al., 2016b).

A similar trend towards the use of sophisticated features has also
bloomed recently for the classification of MCI subjects: in one sugges-
tion, smoothness in the evolution of connectivity patterns over time is
imposed (Wee et al., 2016a, 2013). In another, connection pairs are
reorganized into higher-order features (Chen et al., 2016b). Both
approaches ultimately rely on a local clustering coefficient-based
support vector machine (SVM) classification, and outperform station-
ary and less developed dynamic classification frameworks. Simpler
strategies, however, can sometimes also work: Jones et al. (2012), for
instance, observed that the dwell time in a configuration with strong
anterior DMN influence was much larger in Alzheimer's disease
patients.

Although less explored, there have also been other disorders for
which dFC yielded relevant discriminatory information, such as TLE
(Liao et al., 2014b, 2014a; Morgan et al., 2014; Laufs et al., 2014),
PTSD (Li et al., 2014a), chronic back pain (Tagliazucchi et al., 2010,
2011), dementia with Lewy bodies (Sourty et al., 2016b), multiple
sclerosis (Leonardi et al., 2013), or MDD (Kaiser et al., 2016; Demirtas
et al., 2016).

Finally, aside from its potential as a biomarker of various brain
disorders, direct therapeutical applications of dFC can also be foreseen.
For example, in real time fMRI neurofeedback (Stoeckel et al., 2014),
subjects must learn to regulate the activity of a target region (or
sometimes, the connectivity within a given network; Koush et al.,
2013), so that beneficial cognitive changes are achieved. In this context,
tracking brain functional dynamics through dFC methods stands out as
an attractive tool. Further, the regulation of dynamic features of
activity or connectivity could also turn out to be a fruitful strategy for
the treatment of conditions in which brain dynamics is specifically
hampered.
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