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ABSTRACT

Functional magnetic resonance imaging (fMRI) is provid-
ing large amounts of data about brain function. Measuring
correlations between spontaneous activity time courses from
resting-state fMRI has revealed large-scale network organiza-
tion. In the graph-based approach for functional connectivity
analysis, a graph is built where nodes are brain regions and
edge weights are pairwise correlations between the associated
time courses. Here, we propose to apply recent approaches
from graph signal processing to analyze fMRI data. First, the
graph is constructed from structural connectivity, then, the
corresponding graph spectrum is obtained such that the graph
Slepian design can be deployed. In particular, graph Slepians
are band-limited (i.e., using only graph Laplacian eigenvec-
tors with lowest eigenvalues) with optimal energy concentra-
tion in predefined subgraphs. The subgraphs selected here
are default-mode network (DMN) and fronto-parietal net-
work (FPN), known as task-negative and -positive networks,
respectively. While their activity appears anti-correlated dur-
ing resting-state, a much more complicated interplay has
been suggested recently using dynamic and time-resolved
approaches. Preliminary results using data from the Human
Connectome Project show that the proposed framework can
direct the analysis to specific parts of the network and bring to
light interactions between local and global aspects of network
organization that were hidden before.

Index Terms— fMRI, functional imaging, Slepian, graph
analysis, brain networks.

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a non-
invasive technique that measures a hemodynamic proxy of
neural activity, and that has allowed to extensively map brain
functions [1]. Consecutive volumes of the brain are ac-
quired either in the presence or absence of stimuli or tasks,
to elicit a specific brain system (task-based fMRI) or record
spontaneous fluctuations of activity (resting-state fMRI),
respectively. Functional connectivity (FC) investigates the
statistical inter-dependencies between the fMRI signals at
different brain locations. In particular, resting-state FC has

revealed that spatially distant regions organize in large-scale
networks, which are consistent across subjects and can reveal
meaningful information about the individual [2]. Graph-
based approaches are commonly adopted to explore how FC
is organized. First, the brain is parcellated into a number
of regions (nodes) and then pairwise correlations between
the fMRI timecourses of these regions are computed (edge
weights). This leads to so-called functional connectomes, that
can be analysed in terms of graph properties and compared
across subjects [3]. For instance, spectral graph methods
have been used to analyze graph clustering and community
structure of such brain connectomes [4].

The default-mode network (DMN) is a prominent net-
work of resting-state with its core region being the postero-
medial cortex. DMN activity is thought to be stronger dur-
ing resting-state than during engagement into tasks, which
makes it task-negative as opposed to, for instance, the fronto-
parietal network (FPN), that is task positive. The anticorre-
lation pattern that emerges between these networks during a
resting-state run (e.g., when building a correlation map for
a seed in the posterior cingulate cortex) can be interpretated
as activity is alternating, but recent evidence points towards
a much more complex and dynamic interplay [5, 6]. In par-
ticular, the anticorrelation pattern is supported by subsystems
of the networks rather than by activity of the complete net-
works. Therefore, there is a need for more sophisticated,
time-resolved, techniques to observe and characterize these
network interactions [7].

In this work, we are going to apply recent advances from
graph signal processing [8, 9] that has introduced graph Slepi-
ans, which generalize the joint space-frequency localization
theory of Slepian and colleagues [10, 11] to graphs [12]. In
particular, we will define the graph based on structural brain
connectivity derived from diffusion-weighted MRI, and then
analyze fMRI as graph signals. The Slepian design will al-
low to focus the analysis to specific parts of the graph, un-
der a graph bandwidth constraint. More specifically, to study
the interactions between DMN and FPN, we will deploy the
“augmented” criterion [13], that allows us to select DMN and
FPN as two opposing networks. The bandwidth setting con-
trols the global-vs-local trade-off. At very high bandwidth,
the approach becomes equivalent to completely separating the
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selected subgraph. Therefore, low to intermediate settings of
the bandwidth appear more interesting as they allow to ex-
plore the transition from local to global organization. We
will demonstrate that the graph Slepian basis reveals inter-
esting information for both resting-state and task fMRI data,
and might be another promising approach to analyze brain
dynamics in a framework that considers both structure and
function.

2. METHODS

2.1. MRI Data and Preprocessing Pipeline

Structural, diffusion-weighted, and functional MRI of healthy
subject #100307 from the Human Connectome Project
(HCP) were considered. We used the Craddock atlas where
the original 950 regions were reduced to N = 715 by exclud-
ing regions with insufficient fMRI signal as well as cerebellar
ones. A structural connectome characterized by a weighted
adjacency matrix A was obtained using the MRItrix toolbox;
i.e., multi-shell multi-tissue response function estimation,
spherical deconvolution, tractogram generation with 107 out-
put streamlines.

For the fMRI data, we used both a working-memory task
session and a resting-state one. The fMRI volumes were pre-
processed using a standard pipeline that included: realign-
ment, regression of baseline, linear and quadratic trends, av-
erage white matter and cerebrospinal fluid signals, motion
scrubbing with cubic spline interpolation [14]. Then, data
was regionally averaged in the 715 ROIs derived from Crad-
dock atlas. The working-memory task consisted of alternating
blocks of fixation and image presentation (faces, places, tools
or body parts), in 0-back or 2-back fashion [15].

(A) (B)

Fig. 1. Nodes belonging to positive (in red, default mode net-
work, DMN) and negative (in blue, fronto-parietal network,
FPN) subgraph selection used for Slepian design. (A) Axial
and (B) sagittal views.

2.2. Graph Slepians of the Brain

The graph Slepian with the augmented criterion was adopted
here and applied to the N ×N weighted adjacency matrix A
that represents the brain’s structural connectome. We define
the graph spectral domain from the eigendecomposition of the
graph Laplacian L = D−A, where D is the diagonal degree
matrix; in particular, we have eigenvectors ui with associated
eigenvalues λi that satisfy

Lui = λiui, i = 1, . . . , N. (1)

By convention, eigenvectors are ordered according to ascend-
ing eigenvalues. The graph Fourier transform (GFT) of a
graph signal represented by a vector x of length N is then
obtained as x̂ = UTx, where U is an N ×N matrix with all
eigenvectors ui in its columns.

Spectral band limitation was achieved by selecting the
first W = 180 eigenvectors with smallest eigenvalues, and
considering theN×W truncated GFT matrix UW . Then, we
constructed the diagonal selection matrix S that put a weight
+1 on the nodes of the DMN (71/715 nodes), a weight −1
on the nodes of the FPN (39/715 nodes), and 0 otherwise; see
Fig. 1. The eigendecomposition of the W ×W concentration
matrix C = UT

WSUW then leads to the spectral coefficients
of graph Slepians that are bandlimited with maximal energy
concentration in the DMN and minimal concentration in the
FPN; i.e., we have

Cŝj = µj ŝj , j = 1, . . . ,W, (2)

where the eigenvalues µj of C represent the difference of
energy concentrations in two subgraphs, respectively. The
graph-domain Slepians can be retrieved as linear combina-
tions of the Laplacian eigenvectors:

sj = UW ŝj , j = 1, . . . ,W. (3)

All graph Slepians can be stacked together in the N × W
Slepian matrix Slep. A few example graph Slepians are
shown in Fig. 2. The preprocessed task-based and resting-
state fMRI timecourses are then organized in the matrices
Xtask and Xrest, respectively, that have N rows and as many
columns as the number of timepoints. The projection of the
data in the Slepian space is then obtained as

X̃task = SlepTXtask (4)
X̃rest = SlepTXrest (5)

Similarly, the data was also projected on the truncated GFT
as

X̂task = UT
WXtask (6)

X̂rest = UT
WXrest (7)

Notice that both projections are in principle lossy for band-
width W < N .
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Fig. 2. Graphs Slepians for W = 180 with their concentration energy µ. (A) and (B) are strongly localized on the selection
subgraphs (DMN and FPN, respectively), while for (C) and (D) an intermediate concentration allows to take into account other
networks in the brain. In the middle, the concentration energy plot is reported and dashed vertical lines indicate the Shannon
numbers for the two selections.

3. RESULTS AND DISCUSSION

The choice of the bandwidth parameter is an important han-
dle to control the trade-off between local and global network
organization in the Slepian design. For bandwidth W = 180,
the Shannon number of classical Slepian function indicates
180 × 71/715 = 17.9 for the positive DMN selection, and
180 × 39/715 = 9.9 for the FPN selection. For a regular
graph, these would be the number of graph Slepians that are
well concentrated in each subgraph.

A few example Slepians are showed in Fig. 2, for the
selected bandwidth W = 180. It is possible to notice that
the Slepians that have high energy concentrations (i.e., in
DMN or FPN) are localized on parts of these subgraphs,
with no interaction with the rest of the graph (Fig. 2 A-B).
Interestingly, the Slepian graph focused on the frontal DMN
(Fig. 2 A) splits left and right hemispheres, shown with oppo-
site signs, while the one focused on the frontal FPN includes
mostly nodes of the right hemisphere (Fig. 2 B). A more
interesting view on connectivity is offered by the moderately
concentrated Slepians (in the so-called “phase transition”
range), showing interactions between within-subgraph and
whole-brain nodes; e.g., Fig. 2 C-D. In Fig. 2 C, for instance,
only the dorsal portion of the posteromedial DMN is depicted
(in blue), together with additional occipital and temporal re-

gions, while Fig. 2-D shows the frontal part of FPN together
with prefrontal cortex opposed to temporal regions. This
goes in line with the more recent studies reporting a complex
dynamic interplay between functional networks, which are
composed by different subgraphs possibly acquiring different
functional roles and continuously evolving in time [6, 5, 16].

When projecting task-based fMRI data onto the Slepian
basis, we can notice how these coefficients nicely reveal
switches between task-positive and task-negative patterns
w.r.t. to the experimental paradigm (see Fig. 3). On the con-
trary, the Laplacian framework based on the same structural
backbone does not clearly capture these temporal features of
functional data although the same linear subspace is spanned.

When projecting the resting-state fMRI data, the obtained
time-dependent coefficients cannot be compared against a
paradigm, but we have computed the correlation matrices; see
Fig. 4. Clearly, the first graph Slepians, which are strongly
localized in the DMN, show positive correlation while being
mostly anti-correlated with Slepians that have low energy
concentration in the DMN, including those that are localized
in the FPN. Again, the Laplacian eigenbasis does not provide
this insight.
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Fig. 3. Working memory task-based fMRI data projected onto
Slepian basis (top panel) and onto the Laplacian basis (bottom
panel). On the top, the task paradigm is illustrated along time,
with the following color code for the type of visual stimulus:
red = fixation, dark blue = tools, light blue = faces, turquoise
= body, green = places.

4. CONCLUSION

We showed that recent advances in graph signal process-
ing, and graph Slepian designs, in particular, can be ap-
plied to brain network analysis. Structural connectivity from
diffusion-weighted MRI provides the information for the
graph structure, while functional signals are analyzed on top
of this backbone. While the Laplacian eigenvectors of the
graph capture main modes of structural organization, the
Slepian concept then allows to inject prior knowledge about
functional network organization and, in particular, study how
brain structure supports interactions between task-positive
and task-negative networks, for instance. As a proof-of-
principle, we showed for a single subject from the HCP
dataset that this leads to new representations of fMRI data
that are potentially useful both for task and resting-state.
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Fig. 4. Correlation matrix between timecourses of Slepian
(top) and Laplacian (bottom) coefficients obtained from
resting-state fMRI data.
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