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ABSTRACT

Dynamic functional connectivity (dFC) derived from resting-
state functional magnetic resonance imaging (fMRI) allows
identifying large-scale functional brain networks based on
spontaneous activity and their temporal reconfigurations.
Due to limited memory and computational resources, these
pairwise measures are typically computed for a set of brain
regions from a pre-defined brain atlas, which choice is non-
trivial and might influence results. Here, we first leverage the
availability of dynamic information and new computational
methods to retrieve dFC at the finest voxel level in terms of
dominant patterns of fluctuations, and, second, we demon-
strate that this new representation is informative to derive
meaningful brain parcellations that capture both long-range
interactions and fine-scale local organization. We analyzed
resting-state fMRI of 54 healthy participants from the Human
Connectome Project. For each position of a temporal win-
dow, we determined eigenvector centrality of the windowed
fMRI data at the voxel level. These were then concatenated
across time and subjects and clustered into the most repre-
sentative dominant patterns (RDPs). Each voxel was then
labeled according to a binary code indicating positive or
negative contribution to each of the RDPs. We obtained a
36-label parcellation displaying long-range interactions with
remarkable hemispherical symmetry. By separating contigu-
ous regions, a finer-scale parcellation of 448 areas was also
retrieved, showing consistency with known connectivity of
cortical/subcortical structures including thalamus. Our con-
tribution bridges the gap between voxel-based approaches
and graph theoretical analysis.

Index Terms— functional MRI, dynamic functional con-
nectivity, brain networks, fine-scale brain parcellation.
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1. INTRODUCTION

Functional connectivity (FC) based on resting-state (RS)
functional magnetic resonance imaging (fMRI) allows to in-
vestigate networks underlying fluctuations of spontaneous
brain activity [1]. Typically, measures of FC such as Pear-
son correlation are computed between different regions of
the brain over a whole resting-state scan of several minutes,
yielding a scan-averaged, stationary estimate of connectivity.
Since the number of pairwise FC measures grows quadrati-
cally with the number of spatial locations, it is common to
rely upon brain atlases; in fact, FC matrices considering all
gray-matter (GM) voxels could end up containing 1010 en-
tries. In addition, recent evidence has pointed at the intrigu-
ing temporal fluctuations of FC and led to the development
of dynamic functional connectivity (dFC) methods, where
a sliding-window approach is typically adopted to explore
networks reconfigurations over time [2]. Dynamic analysis
further exacerbates dimensionality issues, as 102-103 tempo-
ral windows need to be considered for each scan.

Whole-brain parcellations have been proposed based on
different criteria, such as anatomical [3], functional [4–6], or
multimodal [7, 8]. However, the use of different parcellation
schemes could lead to substantially different network struc-
ture and statistics [6,9], and there is no consensus on the ideal
parcellation resolution, which is a compromise between spa-
tial variability of the functional signals and anatomical inter-
pretability [6, 10]. Despite this, due to computational limita-
tions only few studies have explored FC at the voxel resolu-
tion with direct assessment of the FC matrix [11–17]. Oth-
ers [18,19] circumvented the problem by investigating eigen-
vector centrality of functional networks, with a fast computa-
tion method introduced by [20] that avoids the explicit calcu-
lation of the FC matrix.

In this work, we build upon the concept of eigenvector
centrality [15, 20] to integrate it into a dynamic analysis,
and yield a data-driven voxel-wise estimation of dFC. The
retrieved dominant patterns of dynamic FC offer a good ap-
proximation of the voxel-level connectivity matrix and their
changes over time. Then, we investigate to what extent FC
fluctuations would be able to drive themselves a meaningful
parcellation, and whether they would be informative both
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Fig. 1. Data processing pipeline. (A) The sliding-window connectivity is approximated at each window by eigenvector central-
ity. (B) Centralities are concatenated across time and subjects and (C) k-means clustering is applied to retrieve dFC represen-
tative dominant patterns (RDPs). (D) Voxels are labeled according to their positive/negative contribution to each RDP, yielding
a dFC-driven parcellation.

on long-range and fine-scale organization. To do so, dFC
dominant patterns are concatenated across participants and
clustered to obtain the most representative dominant patterns
(RDPs). Each voxel is then labeled according to its nega-
tive/positive contribution to each RDP, yielding a data-driven
parcellation guided by fluctuations of FC.

2. METHODS

2.1. Subjects

Ns = 54 healthy subjects from the Human Connectome
Project (HCP) database [14] (www.humanconnectome.org)
were selected and their resting-state functional (Gradient-
echo EPI, TR=720 ms, TE=33.1 ms, flip angle = 52◦, FOV
= [208x180], voxel size= 2 mm isotropic) and structural (3D
MPRAGE T1-weighted, TR=2400 ms, TE=2.14 ms, TI=1000
ms, flip angle = 8◦, FOV = [224x224], voxel size= 0.7 mm
isotropic) acquisitions were considered.

2.2. Preprocessing

Minimally preprocessed HCP images were used as start-
ing point [21]. Additionally, spatial smoothing (Gaus-
sian kernel with FWHM=5mm) was performed with SPM8
(FIL,UCL,UK). The first 10 volumes were discarded so that
the fMRI signal achieves steady-state magnetization, result-
ing in T = 1190 time points considered. Voxel timecourses
were detrended and nuisance variables were regressed out

(6 head motion parameters, average cerebrospinal fluid and
white matter signal computed in standard masks mapped to
the subject’s fMRI space and masked with individual seg-
mentation maps). Then, the preprocessed voxel time courses
were band-pass filtered ([0.0167− 0.15Hz]) and the volumes
where masked using a standard GM parcellation in MNI
coordinates (IIT GM Destrieux mask, http://www.iit.edu/),
previously resliced to fMRI resolution and masked with the
population mean functional volume (Nv = 109′783 voxels
considered). Finally, the global signal at every time point
was removed to discard a global component present in the
dFC-driven clusters retrieved in the following.

2.3. Voxel-level dFC and Representative Dominant Pat-
terns

Fig. 1 illustrates the full method pipeline. First, we retrieved
subject-specific dominant patterns of dFC with the technique
detailed hereafter, that we previously tested on a preliminary
analysis conducted on a restricted sample [22]. For each sub-
ject s, s = 1, . . . , NS , X(s) denotes the NV × T fMRI data
matrix , containing in its rows the preprocessed timecourses
of GM voxels. A sliding window approach with window
length NT = 83 TR (equivalent to 59.76 sec) and step ∆ = 2
TR (1.44 sec) yielded NW windows to be analyzed (Fig. 1,
A). After normalization of the timecourses using z-scoring
and division by the square root of the window length, the fast
eigenvector centrality method –initially proposed by [20] for
stationary FC– was applied for each windowed data matrix
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Fig. 2. 36-labels dFC-driven parcellation shown in different
axial slices (FSLview was used for visualization).
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(NT × 1), which is then premultiplied by X(s). Therefore,
the matrix C
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i is never explicitly computed nor stored, as

we express all operations on C
(s)
i as equivalent operations

using the implicit representation provided by u
(s)
i . Further,

dFC values are usually temporally centered for each connec-
tion through a row wise demeaning of the connections’ time-
courses, to focus exclusively on the contribution of dynam-
ics [23]. We achieved this centering by subtracting from each
windowed connectivity matrix C

(s)
i the subject-wise station-

ary connectivity matrix C(s). As also C(s) is too large to be
computed/stored, we first approximated it by its M largest
eigenvectors (we choose M = 50):
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k=1
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which can be incorporated in the eigenvector centrality com-
putation and where operations are implemented from right to

left and only involve matrix-vector products. The ARPACK
software library that is available in Matlab was used to com-
pute eigenvectors.

The eigenvector centralities u
(s)
i were then aggregated

across windows and subjects into the NV × NWNS matrix
U (Fig. 1, B), and k-means clustering with 10-fold crossval-
idation based on cosine similarity was applied to retrieve the
most representative dominant patterns (RDPs) (Fig. 1, C).

2.4. dFC-driven parcellation

A label was assigned to every cortical voxel corresponding
to its positive/negative contribution to each of the RDPs; i.e.
voxels with the same dFC behaviour were aggregated together
(Fig. 1, D). These labels identify dFC patterns reflecting long-
range interactions, since they are made out of clusters dis-
tributed across the brain. Each of the dFC patterns was then
further split into its contiguous regions. Regions with less
than 20 voxels (0.16 cm3) were removed. To verify consis-
tency with previous knowledge, a specific analysis of the tha-
lamus was performed. An existent thalamus mask [3] was
used to mask the atlas and the atlas regions of interests be-
longing to this structure were analyzed in terms of subdivi-
sions and connectivity.

3. RESULTS AND DISCUSSION

The clustering cross-validation identified K = 6 as opti-
mal number of clusters. The resulting six RDPs (Fig. 1,
C), display long-range patterns of connectivity including the
main known RS networks (e.g., default mode (DMN), fronto-
parietal, salience, attention) and were expressed uniformly
across subjects. Interestingly, these networks appear some-
times fully, sometimes only partially recruited in the different
RDPs; e.g., the DMN is included in its entirety in RDP5,
opposed to primary sensory / sensorimotor regions, while it is
segregated in its ventral and dorsal parts in RDP4 and 6. This
goes well with the view seeing the DMN as a heterogeneous
and dynamical network, which can also partially co-occurr
with attention network in specific moments [24, 25]. Further,
the selective recruitment of different DMN subportions could
relate to the involvement of this network in different types of
internal processes during mind-wandering [24].

Voxel labeling based on their contribution to the six RDPs
led to a parcellation including 36 unique labels. These iden-
tify patterns of long-range interactions, such as the RDPs
from which they originate, and characterized by striking
inter-hemispherical symmetry. Splitting these 36 patterns
into contiguous regions led to a finer-scale parcellation in-
cluding 448 areas, which can be interpreted as the finest scale
at which dFC remained meaningful. Avoiding the need of
a-priori choosing regions of interest, these parcellations have
the advantage of being whole brain, completely data-driven
and taking into account the dynamic nature of FC. So far,
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only few previous reports consider dFC to determine a par-
cellation [26, 27], but no previous work has performed the
dFC analysis in the whole brain at the voxel level. It should
be emphasized that the parcellation is obtained from temporal
clustering of the dFC dominant patterns, and thus no spatial
constraint (e.g., voxel neighborhood) was taken in account.

The thalamus was subdivided by our parcellation into 10
subregions. A noteworthy inter-hemispherical symmetry, de-
spite the fully data-driven procedure, can be observed for this
structure as well (Fig. 3) and is encouraging about the parcel-
lation significance. The obtained parcels do not always pre-
cisely resemble the known thalamic anatomy, suggesting that
the dynamic behavior of the thalamus can lead to finer sub-
divisions or aggregate known anatomically distinct regions.
Only one previous study attempted a parcellation of the tha-
lamus based on dFC [27], by clustering (spatially and tem-
porally) patterns of connectivity between thalamic voxels and
five main cortical regions. In that case, however, the segmen-
tation was dependent on the a-priori chosen regions, therefore
a comparison is not straightforward. The extracted thalamus
dFC network (Fig. 3, A) shows a strong interplay between
thalamus and cerebellum (7 of the 10 atlas labels involving
the thalamus also include the cerebellum), as expected from
previous knowledge describing afferent connections from the
cerebellar deep nuclei passing through the thalamus and pro-
ceeding to the cortical areas. In addition, the distributed net-
work of cortical regions involved in thalamic connectivity,
including basal ganglia (caudate, putamen), frontal (superior
medial, middle frontal, prefrontal areas) and parietal regions,
hippocampus and amygdala (Fig. 3, B), well fit with the vi-
sion of the thalamus as a functional hub integrating multi-
modal information across diverse cortical functional networks
[28]. Subcortical structures like basal ganglia [29] were also
already known in literature to be strongly interconneted with
the thalamus, as well as the hyppocampus and amygdala [30]
which were found here.

As methodological considerations, several controversies
have been generated in the past by the application of global
signal regression (GSR) to resting-state fMRI data. Here, we
repeated the analysis without GSR [31], which showed simi-
lar results apart from a strong global component emerging as
RDP, previously also found [23] and reflecting global fluctua-
tions of dFC. The effect of GSR was then only discarding this
component to facilitate the extraction of dynamical networks
present on top of it. Finally, possible future improvements
could see the use of higher-rank approximations for the con-
nectivity at every timepoint, as well as the use of soft instead
of hard clustering to provide a parcellation with overlapping
regions.

4. CONCLUSION

We introduced a novel method considering for the first time
voxelwise dominant patterns of dFC. The results show how

prefrontal-frontal-parietal
(DMN, FPN, language)

FPN, anterior salience, 
MCC, basal ganglia hippocampus, amygdala

mid/sup-frontal, ACC, 
basal ganglia

A

B

Fig. 3. Thalamus subdivisions and their connectivity. (A)
The regions of the atlas which cover the thalamus are shown
for the whole brain. (B) Close up on the four largest thala-
mic subregions, specifying the cortical/subcortical regions to
which they connect. Abbreviations: DMN: default mode net-
work, FPN: fronto-parietal network, MCC: middle cingulate
cortex, ACC: anterior cingulate cortex.

large-scale functional networks interact dynamically during a
resting-state scan. The dominant patterns of dFC can then be
used to build a meaningful data-driven whole-brain parcel-
lation. The initial 36 labels reflect long-range patterns with
striking hemispherical symmetry, and are reminiscent for
known resting-state networks. Further imposing contiguity
led to 448 regions at a strikingly fine scale, which highlights
the richness of spontaneous brain activity.
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