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ABSTRACT

BACKGROUND AND PURPOSE: Early outcome prediction of postanoxic patients in a coma after cardiac arrest proves challenging.
Current prognostication relies on multimodal testing, using clinical examination, electrophysiologic testing, biomarkers, and struc-
tural MR imaging. While this multimodal prognostication is accurate for predicting poor outcome (ie, death), it is not sensitive
enough to identify good outcome (ie, consciousness recovery), thus leaving many patients with indeterminate prognosis. We spe-
cifically assessed whether resting-state fMRI provides prognostic information, notably in postanoxic patients in a coma with inde-
terminate prognosis early after cardiac arrest, specifically for good outcome.

MATERIALS AND METHODS: We used resting-state fMRI in a prospective study to compare whole-brain functional connectivity
between patients with good and poor outcomes, implementing support vector machine learning. Then, we automatically predicted
coma outcome using resting-state fMRI and also compared the prediction based on resting-state fMRI with the outcome predic-
tion based on DWI.

RESULTS: Of 17 eligible patients who completed the study procedure (among 351 patients screened), 9 regained consciousness and
8 remained comatose. We found higher functional connectivity in patients recovering consciousness, with greater changes occur-
ring within and between the occipitoparietal and temporofrontal regions. Coma outcome prognostication based on resting-state
fMRI machine learning was very accurate, notably for identifying patients with good outcome (accuracy, 94.4%; area under the re-
ceiver operating curve, 0.94). Outcome predictors using resting-state fMRI performed significantly better (P , .05) than DWI (accu-
racy, 60.0%; area under the receiver operating curve, 0.63).

CONCLUSIONS: Indeterminate prognosis might lead to major clinical uncertainty and significant variations in life-sustaining treat-
ments. Resting-state fMRI might bridge the gap left in early prognostication of postanoxic patients in a coma by identifying those
with both good and poor outcomes.

ABBREVIATIONS: CA ¼ cardiac arrest; EEG ¼ electroencephalography; FC ¼ functional connectivity; ICU ¼ intensive care unit; LOOCV ¼ leave-one-out
cross-validation; NPV ¼ negative predictive value; PPV ¼ positive predictive value; rs-fMRI ¼ resting-state fMRI

Cardiac arrest (CA) is an important cause of death in the
United States and Europe, with an annual incidence of 110/

100,000.1,2 Only 7.6% of patients treated for out-of-hospital cardiac
arrest survive to hospital discharge. In Europe, 128,000–275,000
individuals per year are treated for out-of-hospital cardiac arrest,
and 10% survive.2,3 Due to improvements made in prehospital and
intrahospital CA management, a growing number of patients sur-
vive the first days following CA, yet can remain unconscious. The

main factor determining death in patients with out-of-hospital car-
diac arrest admitted to the intensive care unit (ICU), accounting for
two-thirds of deaths, is postanoxic brain injury, which leads to a
withdrawal of care. Prognostication of patients in a coma can be
performed soon after CA (approximately 3 days) and relies on
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multimodal testing, using clinical examination, electrophysiologic
testing, structural and diffusion neuroimaging, and biomarkers.4-6

While this multimodal prognostication is accurate for predicting
poor outcome (ie, death), it is not sensitive enough to identify
patients with good outcome (ie, consciousness recovery). Thus,
even after current multimodal testing, a subset of patients is left
with indeterminate prognosis (ie, all patients not identified as hav-
ing poor outcome).7

Several neuroimaging studies have shown that changes on
DWI within 5days after CA predicted poor outcome.8-15 Yet the
timing of DWI analysis is crucial because diffusion values vary
soon after anoxia.10 Moreover, while DWI is a strong predictor of
poor outcome, it is not sensitive enough to identify patients with
good outcomes.

The spontaneous activity of the brain is not random, but rather
organized in functional networks.16 Resting-state fMRI (rs-fMRI)
is a powerful tool for mapping the brain functional connectivity
(FC) of patients and healthy volunteers.17 Several studies have
reported that rs-fMRI could differentiate between states of con-
sciousness in patients with chronic brain damage, with decreased
FC correlating with the degree of consciousness impairment.18 It
has been recently shown that fMRI could detect early signs of con-
sciousness in response to passive stimulation in comatose patients
following traumatic brain injury19 and that FC strength correlated
with favorable long-term outcome in postanoxic patients in a
coma.20 However, rs-fMRI has yet to be systematically assessed for
the early prognostication of the postanoxic patient in a coma.

Our study aimed to predict coma outcome (ie, consciousness
recovery versus remaining comatose; namely good-versus-poor
outcome) using rs-fMRI and machine learning methods. We
focused on cases of particular clinical interest, notably early post-
anoxic patients in a coma and patients left with indeterminate
prognosis after standard multimodal testing.

MATERIALS AND METHODS
Subjects and Protocol
The study took place at the Geneva University Hospitals, approved
by the local ethics committee for research on human subjects and
performed in accordance with the Declaration of Helsinki. We
screened all patients comatose following CA admitted to the Geneva
University Hospitals’ ICU during 4years ending September 2016.

On admittance, patients comatose following CA were assessed
by the ICU team. Those fulfilling the inclusion criteria (see below)
and with legal representatives to provide written informed consent
were scheduled for early MR imaging (intended to be performed
4days after CA). All patients still comatose 3days after CA were
considered for inclusion. Patients in a coma were defined as those
who did not respond to commands, with Glasgow Coma Scale
scores of #8 not related to sedation. Patients identified with poor
outcome after standard multimodal testing according to the
American Academy of Neurology guidelines (generalized myo-
clonic jerks and bilateral N20 wave abolition or flat electroencepha-
lography [EEG]) were excluded.4,21,22 Patients with MR imaging
contraindications like pacemakers or extracorporeal membrane ox-
ygenation were excluded. Moreover, major sedation is required for
cardiogenic shock treated with extracorporeal membrane oxygen-
ation. This sedation then prevents reliable neuroprognostication in

patients. Patients who were conscious and receptive to commands
before day 3 or with a history of brain injury were also excluded.
Thus, we included only patients whose outcome was left uncertain
after current standard multimodal testing. The standard multimo-
dal testing included clinical examination, and particularly pupillary
and corneal reflexes, electrophysiologic testing including EEG and
somatosensory-evoked potentials, and neuroimaging (mainly MR
imaging).21,22 Poor outcome was defined as Glasgow Pittsburgh
Cerebral Performance Category scale of 4–5 (persistent vegetative
state or death). Patients with a good outcome were patients with
Glasgow Pittsburgh Cerebral Performance Category of 1–3 (absent,
mild, moderate, or severe neurologic disabilities).6,21 All patients
were treated with normothermia (36°) for the first 24hours.

MRIs were performed at the radiology department of the
Geneva University Hospitals, with patients positioned in the scan-
ner while still intubated. The whole MR imaging scanning session
was supervised by a neurointensivist from the ICU team (D.P.)
involved in the study; all fMRI sessions were recorded without
sedation. If the patient was uncomfortable or moving during imag-
ing, propofol was added after fMRI sequences were recorded.
Surviving patients were followed up at 3, 6, and 12months with
the mRS, Glasgow Outcome Scale, Cerebral Performance Category
scale, and Disability Rating Scale. Information was gathered by
physicians blinded to the fMRI results. This process was under-
taken either by the physician in charge of inpatients or by phone
interview for patients who were discharged.

MR Imaging Acquisition and Analysis
All patients included underwent MR imaging with a protocol
including a 3D-T1 image, DWI, and a blood oxygen level–de-
pendent resting-state sequence (On-line Appendix).

DWI derived from DTI with 30 directions plus the B0 of each
patient were analyzed to predict coma outcome, as per the descrip-
tion ofWijman et al,9 by computing the percentage of brain volume
with an ADC value of ,650 � 10�6 mm2/s. Patients with .10%
brain volume with abnormal ADC values were assigned to the poor
outcome group, while the others were assigned to the good out-
come group, as proposed byWijman et al. fMRI and 3D-T1 images
were preprocessed for each subject independently, following stand-
ard protocol23,24 (On-line Appendix), including normalization into
Montreal Neurological Institute space, to assess whole-brain rest-
ing-state activity of each comatose patient and to compare the brain
network topology of patients with good and poor outcomes. Thus,
we statistically compared brain-network activity derived from fMRI
between groups with good and poor outcomes, following standard
procedure25 (On-line Appendix).

Coma Outcome Prediction
We ultimately aimed to base predictions of coma outcome on rest-
ing-brain activity measured with fMRI. Thus, we trained a machine
learning classifier to identify patients with good and poor outcomes
based on brain network topology derived from fMRI (On-line
Appendix). Classification performance was assessed using leave-
one-out cross-validation (LOOCV) methods, because our sample
size was relatively small, allowing computing prediction-accuracy
measures (overall accuracy, sensitivity, specificity, positive predic-
tion value [PPV], and negative predictive value [NPV]). Finally, we
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statistically compared the prediction accuracy based on resting-
brain activity with that using DWI (On-line Appendix).

RESULTS
Demographic Data
We screened 351 patients comatose following CA, 17 of whom
underwent the whole protocol and were included in the final
analysis (Fig 1). At admission, 7/17 patients had areactive mydri-
asis, 1 had reactive mydriasis, and 9 had a reactive miosis. At day
3, three patients had reactive mydriasis and 14 had reactive miosis.
All patients had controlled normothermia (36°) for the first 24
hours. Of these 17, nine regained consciousness (mean, 4 6

7.8 days after the MR imaging session; good outcome group); the
remaining 8 did not and finally died (poor outcome group). Both
groups were similar in terms of demographic data, apart from the
time until the return of spontaneous circulation, which was 50%
longer in the poor outcome group (Table 1). Both groups were
scanned in the same time window after hospital admission, when

no survival prognosis could be made on the basis of their clinical
status or standard multimodal testing (Table 2). No sedation was
used during fMRI. If the patient was uncomfortable or moving dur-
ing imaging, propofol was added after fMRI sequences were recorded.
The mean delay between propofol cessation and MR imaging was 41
hours (minimum, 24 hours; maximum, 120hours) and 82hours for
midazolam (minimum, 19hours; maximum, 264hours).

At 1 year, 5 patients with good outcome had Disability Rating
Scale scores of#1, eight had Glasgow Outcome Scale scores of$4
and a Cerebral Performance Category score of # 2, and 7 had
mRS #1 (ie, they were almost completely independent). Two
patients remained partially or totally dependent, essentially due to
cognitive disorders. Of the patients who died, 1 patient had a sec-
ond CA, 5 remained in a persistent comatose state leading to care
withdrawal, and 2 had adverse outcomes following extubation.

Network Topology
We initially compared network topology between the good and
poor outcome groups at each individual functional connection
(ie, edge weight). We first visually inspected the mean whole-
brain network of each group, observing much better–preserved
network architecture in patients with good outcomes than in
those with poor outcomes. We then statistically compared net-
work topology between groups (Fig 2). We observed a signifi-
cant increase in connectivity between many brain regions in the
good outcome group (Fig 3). The strongest and most extensive
increased connectivity in the good outcome group (versus poor
outcome) occurred within and between the occipital, parietal,
temporal, and frontal regions. We observed significant changes
within the occipital nodes and between the fronto-occipital,
temporo-occipital, and occipitolimbic nodes. We also observed
increased connectivity within the parietal nodes and among the
parietofrontal, parietocentral, and parietotemporal nodes. The
temporal lobe showed increased connectivity within the temporo-
medial nodes and among the temporofrontal, temporocentral,

FIG 1. Inclusion flow chart. D indicates day; ECMO, extracorporeal
membrane oxygenation.

Table 1: Demographic and clinical characteristics of patients

All (n= 17) Good Outcome (n= 9) Poor Outcome (n= 8) P Value
Male 14 (82.4%) 7 (77.8%) 7 (87.5%) .6
Age (yr) 57.5 6 15.6 52.2 6 13.2 63.4 6 16.9 .07
CA witnessed 17 (100%) 9 (100%) 8 (100%) NA
CA outside hospital 13 (76.5%) 8 (88.9%) 5 (62.5%) .2
Time to ROSC (min) 23.4 6 15.9 17 6 10.2 30.62 6 18.6 .03
First monitored rhythm
VF/VT 10 (58.6%) 7 (77.8%) 3 (37.5%)
PEA 2 (11.7%) 1 (11.1%) 1 (12.5%)
Asystole 5 (29.3%) 1 (11.1%) 4 (50%)

Hospital stay (days) 19 6 20 28 6 23.9 9 d 6 6.2 .97
ICU stay (days) 9 6 5.4 10 6 5.1 8 6 6.1 .71
ETT length (days) 7 6 4.3 8 6 4.9 7 6 3.8 .65
Time before fMRI (days) 4 6 2.9 5 6 3.4 4 6 2.2 .72
Myoclonia 2 (11.8%) 1 (11.1%) 1 (12.5%) .92
Lactate (mmol/L) 7.2 6 4.1 7.1 6 3.7 7.36 6 4.8 .43
First GCS
3 14 (82.4%) 7 (77.8%) 6 (87.5%)
6 1 (5.9%) 1 (11.1%)
7 2 (11.7%) 1 (11.1%) 1 (12.5%)

Note:—ROSC indicates return of spontaneous circulation; VF/VT, ventricular fibrillation/tachycardia; PEA, pulseless electrical activity; ETT, endotracheal intubation;
GCS, Glasgow Coma Scale; NA, not applicable.
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temporoparietal, and temporo-occipital nodes. Finally, we observed
significant increased connectivity among the frontoparietal, fronto-
central, frontotemporal, and fronto-occipital nodes.

We also observed a less significant increase in focal con-
nectivity in the poor outcome group (versus good outcome).
The poor outcome group exhibited higher focal activity
within the temporosuperior and temporopolar regions, as
well as between these temporosuperior and temporopolar
regions and occipital areas.

Taken together, these results suggest that patients who even-
tually recover consciousness (ie, the good outcome group)

initially exhibit higher activity within the occipital areas and
between these areas and widely distributed cortical regions,
except for the temporosuperior and temporopolar regions.
Conversely, patients who ultimately die (ie, poor outcome) ini-
tially show higher activity focally, among the occipital, tempor-
osuperior, and temporopolar regions, as well as within these
areas.

Coma Outcome Prediction
Diffusion Imaging. The percentage of brain volume with ADC
values of ,650 � 10–6 mm2/s was used to predict coma out-

come, with a threshold set at 10% as
proposed by Wijman et al.9 The
model achieved 64.7% accuracy in
discriminating good and poor coma
outcomes (poor outcome prediction
sensitivity, 25.0%; specificity, 100.0%;
PPV, 100%; NPV 60.0%; area under
the receiver operating characteristic
curve, 0.625).

Resting-State fMRI. We then used rs-
fMRI to train a machine learning

Table 2: EEG pattern

Good Outcome (n= 9) Poor Outcome (n= 8)
Malignant EEG pattern 0/9 0/8
Periodic features 5/9 none, 4/9 RDA 5/8 none; 2/8 LPDs, 1/8 RDA
Unreactive EEG 2/9 unreactive, 7/9 reactive 6/8 unreactive, 2/8 reactive
Seizure 0/9 0/8
Disorganized background 1/9 4/8

Note:—Malignant EEG pattern indicates suppressed background with or without continuous periodic discharges,
burst-suppression, abundant periodic discharges, or rhythmic epileptiform transients, electrographic seizure, dis-
continuous or low-voltage background, reversed anterior-posterior gradient; Unreactive EEG, absence of back-
ground reactivity or only stimulus-induced discharges; LPDs, lateralized periodic discharges; RDA. rhythmic D
activity.

FIG 2. Analysis pipeline. Structural (A.1) and functional (A.2) MRIs of each patient are first preprocessed to extract time courses of
each brain voxel. B, An averaged time course is then computed for each of 90 brain regions of the Automated Anatomical Labeling
atlas, and recursive Pearson correlations are computed between each brain region pair, to obtain a whole-brain connectivity network
for each patient. C.1, Networks of patients with good and poor outcomes are compared using a 2-sample t test corrected for multiple
comparisons. C.2, A support vector machine classifier is also trained on the connectivity networks of each patient to discriminate
patients with good and poor outcomes. N indicates brain regions; CM, connectivity matrix; ROC, receiver operating characteristic;
AAL, Automated Anatomical Labeling.
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algorithm in automatic prediction of coma outcome. We used all
the features derived from connectivity matrices of all patients
(4005 features � 17 subject matrices) to predict coma outcome
using a machine learning classifier (see above) and LOOCV, with
and without dimension reduction (using principal component
analysis). Without dimension reduction, our linear support vector
machine classifier achieved 66.7% overall prediction accuracy.
With dimension reduction applied during LOOCV, we achieved
94.4% overall prediction accuracy using a linear support vector
machine classifier (C¼ 0.1). This model achieved 100% sensitivity
in predicting poor outcome, 87.5% specificity, 100% PPV, and 90%
NPV, for an area under the curve of 0.938. Adding a DWI feature
(ie, the percentage of brain volume with abnormal ADC values) to
the classification model did not change the prediction accuracy.

Finally, we compared automatic outcome prediction based
on rs-fMRI and machine learning with prediction based on
DWI following the method proposed by Wijman et al.9 We
found that the machine learning classifier trained on rs-fMRI

features yielded significantly better
prediction accuracy than the DWI
method (P¼ .025, two-sided; Fig 4).

DISCUSSION
We wanted to take advantage of the
advances in machine learning to
assess how functional neuroimaging
can improve early prognostication of
postanoxic patients in a coma left
with an indeterminate prognosis af-
ter standard multimodal testing. To
this end, we trained and assessed the
performance of a machine learning
classifier in discriminating between
patients with good and poor out-
comes based on FC patterns derived
from rs-fMRI. We found that auto-
matic prediction based on func-
tional neuroimaging coupled with
machine learning methods yielded
better prognostication compared
with current diffusion neuroimaging
methods, especially in terms of iden-
tifying patients who would subse-
quently recover consciousness (ie,
good outcome). Additionally, we
report on the early changes observed
in cortico-cortical FC between good
and poor outcome groups in a very
difficult group of patients with inde-
terminate outcome following stand-
ard clinical and electrophysiologic
tests.

Whole-Brain Functional
Connectivity Predicts Coma
Outcome
Postanoxic patients in a coma very

often undergo MR imaging to identify potential brain lesions
and determine neurologic outcome. Conventional MR imaging
based solely on structural images was found to underestimate
the severity of lesions, notably when performed soon after
CA.26 More recently, DWI was proposed to overcome these fail-
ings. It proved sensitive in detecting ischemic lesions soon after
CA (2–5 days).27 It was thus proposed as a neuroimaging tool
for early prognostication of postanoxic patients in a coma,
because the extent of lesions observed on DWI correlates with
neurologic outcome.9,26,28-30 Recent studies have reported that
quantitative DWI based on the extent of impaired brain volume
(with a threshold set at 10%, as in our study) offers high speci-
ficity for predicting poor outcome in postanoxic patients in a
coma, with PPVs between 96%29 and 100%.9 However, it was
less sensitive in identifying patients with good outcome, with
NPVs for poor outcome of between 54%31 and 73%.9 Similarly,
in our study, we found that quantitative DWI offered very high
specificity for predicting poor outcome (100% PPV), yet lower

FIG 3. Statistical analysis of the functional network topology of good and poor outcome groups.
A, Mean functional connectivity matrices of good and poor outcome groups. B, Statistical com-
parison of functional connectivity among all 90 brain regions of the Automated Anatomical
Labeling atlas, with a t-score given only for significant comparisons (P , .05 after correction for
multiple comparisons).

1026 Pugin Jun 2020 www.ajnr.org



performance for predicting good outcome (60.0% NPV). Thus,
both our results and those of recent studies demonstrate that all
patients not identified as having poor outcome retain indeter-
minate prognosis following quantitative DWI analysis. These
findings might lead to substantial clinical uncertainty and sig-
nificant variations in life-sustaining treatments.7

Rs-fMRI is available in most specialized large hospitals and
has been used successfully to evaluate the state of conscious-
ness of patients with chronic disorders of consciousness or
traumatic brain injuries.18 Here, we used rs-fMRI for early pre-
diction of postanoxic coma outcome in patients left with inde-
terminate prognosis after standard multimodal testing. We
accurately predicted the outcome of 16/17 (94.1%) patients in a
coma based on their whole-brain FC at rest. Using a support
vector machine classifier with LOOCV was found to offer very
high accuracy (100% PPV) for identifying patients with poor
outcome, similar to quantitative DWI. However, much higher
accuracy for predicting consciousness recovery (ie, NPV for
predicting poor outcome) was achievable using rs-fMRI (90%)
compared with quantitative DWI (60.0%). This outcome is
particularly interesting because there is a critical need to test
for predicting good outcome but no widespread and well-
accepted tool.

A recent study by Sair et al20 also evaluated postanoxic patients
in a coma, finding that higher default mode network connectivity
assessed soon after CA using rs-fMRI correlates with favorable

outcome at 1 year, compared with patients with unfavorable out-
come. Although the author investigated the long-term neurologic
outcome, these results are in line with ours because they also dem-
onstrate that whole-brain FC correlates with outcome in posta-
noxic patients in a coma. Here, we provide further evidence that
rs-fMRI could be used in patients comatose soon after CA. The
mean time between CA and fMRI in our cohort was 46 2.9 days
versus 12.6 6 5.6 days for Sair et al. All our patients underwent
fMRI between 2 and 8days after CA, except one who underwent
fMRI 13days after CA due to prior treatment with extracorporeal
membrane oxygenation. Despite the delay in recording fMRI, this
patient’s whole-brain FC was extremely similar to that of the others
in the good outcome group. Moreover, our study specifically
focused on a group of patients left with indeterminate prognosis af-
ter current multimodal testing, excluding patients with cata-
strophic outcome or patients already conscious, and revealed that
automatic outcome prognostication using machine learning based
on rs-fMRI outperforms current state-of-the-art DWI methods.
Finally, the study by Sair et al did not test whole-brain FC as in the
current study. Rather it tested within and between standard topo-
graphic network connectivity in terms of the relationship to the
outcome.

Overall, our results demonstrate that rs-fMRI achieves signifi-
cantly better prognostication of postanoxic patients in a coma left
with an indeterminate prognosis after standard multimodal test-
ing than DWI, notably with very high accuracy and higher speci-
ficity in predicting good outcome. This finding could have a great
impact on the identification and clinical management of patients
with good outcome, reducing the uncertainty that remains after
current multimodal prognostication.

Higher Whole-Brain Functional Connectivity in Patients
Recovering from Coma
Whole-brain activity varies greatly depending on states of con-
sciousness, both in healthy volunteers (eg, during sleep or seda-
tion)31,32 and in patients with disorders of consciousness.33 Most
neuroimaging studies investigating disorders of consciousness
have focused on patients with chronic impaired consciousness or
compared them with healthy volunteers.18,34,35 Here, we investi-
gated changes in brain activity in postanoxic patients comatose
shortly after CA and found differences in whole-brain FC observ-
able early on between patients with good and poor outcomes, even
in the absence of extended lesions on morphologic MR imaging.

Patients with good-versus-poor outcome exhibited higher FC
strength between widely distributed cortical areas, especially in the
occipital, frontal, parietal, and inferior temporal cortices. This sug-
gests that patients who subsequently recover from comas have bet-
ter preserved cortico-cortical connectivity, similar to the higher
cortico-cortical connectivity in higher states of consciousness
observed in patients with chronic disorders of consciousness18,36

and healthy volunteers under sedation.37,38 In our study, we could
not identify significant connections between the cortex and sub-
cortical regions despite the known role of thalamocortical and
other cortical-subcortical connections in consciousness. We reason
that this issue is because those connections tend to be weak in
states of reduced consciousness, and the patients in our studies
were indeed unconscious.

FIG 4. Outcome classification using rs-fMRI and DWI. A, Confusion
matrix for the rs-fMRI classification using support vector machine
(left, in orange) and DWI classifications using the model proposed by
Wijman et al,9 2009 (right, in blue). B, Receiver operating characteristic
curves for rs-fMRI and DWI classification models. AUC indicates area
under the curve.
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Our results also suggest that recovery from coma relies on bet-
ter preserved whole-brain cortico-cortical connectivity, plausibly
between the frontal and parietal areas, as shown by Crone et al39

in patients with chronic disorders of consciousness. In our study,
the most extensive changes were observed in visual areas (ie, occi-
pital and inferior temporal regions), with higher brain FC exhib-
ited by patients with good outcome, even if they kept their eyes
closed in the scanner. Our results are thus in line with the finding
of an increased connectivity of visual areas with increased levels of
consciousness when comparing chronic comatose patients and
healthy volunteers.40 This is also congruent with the preserved
ability for sensory processing41 and mental imaging42 observed in
patients with a minimal conscious state compared with a vegeta-
tive state. Studies assessing brain dynamic FC activity could bring
further insight into how the functional brain networks of these
patients are reorganized.

Patients with poor outcomes had few higher FC strengths
among the focal cortical areas, notably in the temporopolar
regions. Given the close link between the temporopolar regions
and other limbic areas,43 these findings might relate to limbic
hyperconnectivity observed in patients in chronic comatose and
vegetative states.44

Overall, we found much higher cortico-cortical connectivity in
patients with good outcome, consistent with the findings of higher
cortico-cortical connectivity with higher levels of consciousness in
both patients and healthy volunteers in other studies. Most inter-
esting, the changes observed in acute postanoxic patients in a
coma resemble those reported in patients with chronic conscious-
ness disorders, notably concerning the global higher whole-brain
FC found in patients who subsequently recover consciousness.35

This finding suggests that the changes in whole-brain connectivity
observed in chronic disorders of consciousness may develop soon
after loss of consciousness. Future studies should, however,
repeatedly investigate comatose patients to find further evidence
supporting whole-brain FC changes persisting from acute-to-
chronic disorders of consciousness.

In our study, we could not identify significant connections
between the cortex and subcortical regions despite the known
role of thalamocortical and other cortical-subcortical connec-
tions in consciousness. We reason that this issue is because
those connections tend to be weak in states of reduced con-
sciousness, and the patients in our study were indeed
unconscious.

Limitations
Although our results appear promising, they need to be further
validated in a larger prospective cohort study, notably using inde-
pendent training and testing samples to prove the accuracy of rs-
fMRI for early outcome prognostication in postanoxic patients in
a coma. A major limitation of our study is the small number of
patients included, despite screening 351 consecutive patients and
identifying 28/351 (8%) eligible ones (increasing to 53/351 [15%]
patients if adding the 25 patients with an extracorporeal mem-
brane oxygenation procedure, limiting MR imaging use). We
excluded all patients conscious before day 3 or identified with
poor prognosis using multimodal testing according to the
American Academy of Neurology guidelines.4 Moreover, we

included only patients who were sedation-free during the fMRI
session, to avoid drug-induced changes in brain activity.
Concerning DWI, previous studies specifically assessed the
impact of timing on DWI accuracy. This has not yet been done
with fMRI. The essential point of the current study was to per-
form fMRI early after cardiac arrest and to focus on those cases
with uncertain outcome because this scenario is, in our opinion,
the most challenging yet, at the same time, clinically most rele-
vant one. The effect of timing of fMRI assessment with respect
to coma onset should be specifically assessed, yet this is beyond
the scope of our current article. The current investigation did
not include a healthy control group because the objective of the
current study was to discriminate patients with good-versus-
poor outcomes. An additional control group is not necessary
for this objective. Although scientifically interesting, the dis-
crimination of patients versus controls is irrelevant from a clini-
cal perspective. Our strict selection of only patients left with
indeterminate prognosis after standard multimodal testing soon
after CA represents a population in which such diagnostic tests
would be crucial for clinical decision-making. On the basis of
our inclusion rate, we anticipate that rs-fMRI-based prognosti-
cation could be valuable for around 8%–15% of patients in a
postanoxic comatose state.

CONCLUSIONS
Using machine learning classification methods, we found that rs-
fMRI yields a valuable contribution in the prognostication of
postanoxic patients in a coma left with an indeterminate progno-
sis after standard multimodal testing, notably offering high accu-
racy for identifying patients with both good (ie, patients who will
regain consciousness) and poor (ie, patients who will evolve
poorly) outcomes. Our results might thus bridge the gap left in
early prognostication of postanoxic patients in a coma by achiev-
ing significantly better outcome prediction than current DWI
methods. Moreover, our study may contribute to improving
understanding of brain FC changes occurring after loss of con-
sciousness, with the early changes reported here mirroring
changes observed in chronic comatose patients.
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