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Abstract—We propose a novel compressed sensing technique
to accelerate the magnetic resonance imaging (MRI) acquisition
process. The method, coined spread spectrum MRI or simply
s MRI, consists of premodulating the signal of interest by a
linear chirp before random -space under-sampling, and then
reconstructing the signal with nonlinear algorithms that promote
sparsity. The effectiveness of the procedure is theoretically under-
pinned by the optimization of the coherence between the sparsity
and sensing bases. The proposed technique is thoroughly studied
by means of numerical simulations, as well as phantom and in
vivo experiments on a 7T scanner. Our results suggest that s MRI
performs better than state-of-the-art variable density -space
under-sampling approaches.

Index Terms—Compressed sensing,magnetic resonance imaging
(MRI), spread spectrum.

I. INTRODUCTION

I Nmagnetic resonance imaging (MRI), the signal of interest
represents the magnetization induced by resonance in the

imaged tissues. In the standard setting, data acquired in MRI
provide complete Fourier, or -space, measurements of this
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signal . Accelerating the acquisition process, or equivalently
increasing the achievable resolution for a fixed acquisition
time, is of major interest for MRI applications. Recent ap-
proaches based on compressed sensing seek to reconstruct the
signal from incomplete -space information, hence defining
an ill-posed inverse problem. The ill-posed inverse problem
is regularized by the introduction of sparsity priors, acknowl-
edging the fact that many MRI signals are sparse in well-chosen
bases; i.e., that their expansion contains only a small number
of nonzero coefficients. Such compressed sensing techniques
have been developed for static and dynamic imaging [1]–[5],
parallel MRI [6]–[8], MR spectroscopic imaging [9]–[11],
and many other applications. Several algorithms have also
been proposed to reconstruct MRI signals from under-sampled
-space measurements (see, e.g., [12]–[14]).
In the framework of compressed sensing, signals are usually

measured through random matrices to ensure that any sparse
signal can be recovered with overwhelming probability. The
common approach in MRI consists in also exploiting the
fact that the energy of MRI signals is usually concentrated at
low spatial frequencies. Therefore a variable density -space
random sampling where the under-sampling ratio increases at
high frequencies is usually used [1]. This method, heuristic in
nature, was shown to be very effective in enhancing the signal
reconstruction quality when random distributions optimizing
the associated point spread function are used. Other approaches
that optimize the acquisition procedure have also been pro-
posed: -space sampling optimization by Bayesian inference
[15]; random -space convolution with Toeplitz matrices
[16]–[18]; encoding by projection onto random waveforms
with Gaussian distributions [19].
In the present work, we propose the use of a spread spec-

trum technique to accelerate single coil MRI acquisition in
the framework of compressed sensing. We study this method,
coined spread spectrum MRI or simply s MRI, theoretically,
numerically via simulations, and empirically via real acquisi-
tions. The essence of our strategy consists of premodulating the
image by a linear chirp, which results from the application of
quadratic phase profiles, and then performing random -space
under-sampling. Images are then reconstructed with nonlinear
algorithms promoting signal sparsity. The enhancement of the
signal reconstruction quality is linked to a decrease of coher-
ence of the measurement system [20], [21]. In MRI, this type
of modulation is known as phase scrambling. It can be obtained
by using dedicated coils or by modifying radio-frequency (RF)
pulses. It has been used for various purposes, such as improving
dynamic range [22], [23], or reducing aliasing artifacts [24],
[25], but never in a compressed sensing perspective.
Let us acknowledge that this spread spectrum technique was

initially introduced by some of the authors for compressive sam-
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pling of pulse trains in [26]. Its transfer to a setting encom-
passing analog signals and modulations was studied in the con-
text of radio interferometry [21], [27], [28]. The effectiveness
of the method for MRI was briefly discussed in [29]–[31].
The paper is organized as follows. In Section II, we explain

the principle of the spread spectrum technique in a simplified
analog setting. In Section III, we formulate the inverse problem
for image reconstruction from under-sampled -space measure-
ments in the presence of chirp modulation and compare the
s MRI technique to the variable density sampling method on
the basis of numerical simulations of MR acquisitions of a brain
image. In Section IV, we describe our implementation of the
chirp modulation (on a 7T scanner) and show the effectiveness
of s MRI using numerical simulations in this precise setting
and real acquisitions of phantom and in vivo data. Finally, we
conclude and discuss potential evolutions of the technique in
Section V.

II. SPREAD SPECTRUM PRINCIPLE

A. Compressed Sensing

The essence of the recent theory of compressed sensing is
the merging of data acquisition and compression [32]–[38]. Be-
yondMRI, it is well known that a large variety of natural signals
are sparse or compressible in multiscale bases, such as wavelet
bases. In the compressed sensing theory, signals are usually ex-
pressed as -dimensional vectors: . By definition, a
signal is sparse in some orthonormal basis , called
a sparsity basis, if its expansion contains only a small number

of nonzero coefficients. More generally it is compress-
ible if its expansion contains only a small number of significant
coefficients. The decomposition of in is denoted ,
and it satisfies

(1)

The theory of compressed sensing demonstrates that a small
number of linear and nonadaptative measurements

suffices for an accurate and stable reconstruction of
the signal . Thesemeasurements may, for example, be obtained
by projection onto randomly selected basis vectors of an or-
thonormal basis , called a sensing basis. This selec-
tion process can be modeled by a multiplication with a rectan-
gular binary matrix that contains only one nonzero
value on each line, at the index of the basis vector to be selected.
To model a nonperfect sensing process, these measurements are
assumed to be contaminated by independent and identically dis-
tributed noise . The measurement model thus satisfies

(2)

where the matrix identifies the measurement matrix as seen
from the sparsity basis ( denotes the conjugate transpose op-
eration).
To reconstruct the signal from the measurements , the

compressed sensing framework proposes, among other ap-
proaches, to solve the Basis Pursuit (BP) minimization problem
[32]–[39]. This problem regularizes the originally ill-posed
inverse problem related to (2) with an explicit sparsity or

compressibility prior on the signal. In the presence of noise, the
BP problem is the minimization of the norm1 of under a
constraint on the norm2 of the residual noise

(3)

The corresponding reconstructed signal is .
In this setting, the compressed sensing theory shows that if

the number of measurements satisfies

(4)

for a universal constant , then is recovered accurately by
solving the BP problem (3) [39]. In relation (4), is the
mutual coherence between the sparsity and sensing bases. It is
defined as the maximum projection, in absolute value, between
the sparsity basis vectors , and sensing bases
vectors [36], [39]

(5)

The mutual coherence plays a crucial role in rela-
tion (4). Indeed, the number of measurements needed
to reconstruct -sparse signals increases quadratically
with its value: . In the worst case where

is of the order of the signal dimension
and under-sampling is impossible. However, when the mutual
coherence is at its minimum, is reduced to the
order of the sparsity level . This result can intuitively be
explained with a simple consideration on the spread of the
energy of the sparsity basis vectors in the measurement domain
. In an incoherent orthonormal system, the absolute value
of the scalar product between the sensing basis vector and
the sparsity basis vector is small for all pairs of indices

. As , the energy of the
sparsity basis vector spreads equally over the sensing basis
vectors . Consequently, whatever index is selected to per-
form a measurement, one always gets information concerning
all the sparsity basis vectors describing the original signal. The
number of measurements needed for accurate recovery thus
decreases.

B. Spread Spectrum and Coherence Reduction

The above considerations suggest that to reduce to the
number of measurements needed for accurate recovery of MRI
signals, one can try to modify the MRI acquisition procedure in
such a way that the energy of the sparsity basis vectors spreads
all over the -space. Following this idea, the s MRI technique
introduces a linear chirp modulation of the signal of interest
before random selection of -space coefficients (see Fig. 1).
Indeed, this modulation conserves the energy of the input signal
and corresponds to a convolution that generically spreads the
spectrum.
To study theoretically the proposed acquisition scheme, we

consider a simplified analog setting where the 1-D signal of in-
terest is denoted by a complex-valued function of the posi-
tion . This signal is limited on a finite field-of-view . For

1 where is the th entry of the vector .
2 where is the th entry of the vector .
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Fig. 1. Spread spectrum principle. A signal (top left panel) is modulated by a
linear chirp (top right panel). In -space, the modulation amounts to the convo-
lution of the Fourier transform of the signal (middle left panel) with that of the
chirp (middle right panel). The spectrum of the resulting signal (bottom panel)
spreads out in -space.

the sake of simplicity of the following theoretical result only,
we assume that the energy of this signal beyond the spatial fre-
quency is negligible3. We thus sample this signal on a discrete
uniform grid of points and represent the resulting
discrete signal by a vector . The vector is assumed
to be -sparse in an orthonormal basis . We also
consider a 1-D linear chirp, with chirp rate , that reads as
a complex-valued function . On the field-of-view
, this linear chirp is approximately band limited at its max-
imum instantaneous frequency . This band limit can be
parametrized in terms of a discrete chirp rate and
thus .
In this setting, the s MRI measurement model is given by (2)

with

(6)

In the above equation, the matrix represents an up-sampling
operator needed to avoid aliasing of the modulated signal due
to a lack of sampling resolution in a digital description of the
originally analog problem. Indeed, the convolution in Fourier
space induced by the analog chirp modulation implies that the
band limit of the modulated signal is the sum of the individual
band limits of the original signal and of the chirp . Therefore,
an up-sampled grid with at least points needs
to be considered and the modulated signal is correctly obtained

3In Section III, we will introduce a setting that properly takes into account
the fact that, in general, MRI signals are not band limited.

by applying the chirp modulation on the signal after up-sam-
pling on the points grid. The up-sampling operator , imple-
mented in Fourier space by zero padding, is thus of size
and satisfies . The matrix is
the diagonal matrix implementing the chirp modulation on the
up-sampled grid and the matrix stands for the
discrete Fourier basis on the same grid.
The s MRI sensing matrix is not orthogonal because of the

presence of the matrix . Consequently, the recovery condition
(4) does not strictly hold. However, one can obtain a similar
recovery condition [20]. In particular, if

(7)

for some universal constant , then the vector is accurately
recovered with high probability by solving the BP problem (3).
This result shows that the number of measurements needed
to reconstruct -sparse signals is proportional to the product

rather than to only. The s MRI tech-
nique is efficient only if this product decreases with the chirp
rate . In other words, the number of measurements needed for
accurate recovery of sparse signals decreases only for sparsity
basis for which the mutual coherence decreases
faster than increases.

C. Illustration

We illustrate here the effect of the chirp modulation on
the number of measurements needed for accurate recovery of
-sparse signals.
We consider a 1-D complex signal of size corre-

sponding to one line of an MRI brain image. This signal is de-
composed into three different sparsity bases and hard-thresh-
olded at a fixed sparsity . The sparsity bases consid-
ered are the Dirac basis, the Haar wavelet basis and the Fourier
basis. This signal is then probed according to relation (2) with

and , and reconstructed
from different numbers of measurements by solving the BP
problem (3). Each time, the probability of recovery4 of the signal
is computed over 1000 simulations. In this experiment, no noise
is added to the measurements , and the indices of the selected
Fourier basis vectors are chosen uniformly at random from

.
The BP reconstructions in the presence of chirp modulation

with chirp rate are denoted by . For each sparsity basis
and chirp rate considered, the curves of the probability of re-
covery as a function of the number of measurements are
reported in Fig. 2. The corresponding values of the product

are reported in Table I.
For the Dirac basis, the number of measurements needed to

reach a probability of recovery of 1 slightly increases with the
chirp rate, as suggested by the values of in Table I
and relation (7). On the contrary, for the Haar and Fourier bases,
the values of in the table predict a drastic im-
provement of the results with an increase of the chirp rate. This
prediction is confirmed by the results presented in Fig. 2. Note
that for the Haar and Fourier bases, the value of the product

4Perfect recovery is considered to occur if the -norm between the original
signal and the reconstructed signal satisfies:
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Fig. 2. Probability of recovery of the signal as a function of the number of
measurements for (dotted black curve), (continuous blue
curve), (continuous red curve), (continuous black curve),
and three sparsity bases: the Dirac basis (left); the Haar wavelet basis (middle);
the Fourier basis (right).

TABLE I
VALUES OF AT DIFFERENT CHIRP RATES

decreases much less between and
than between and , suggesting a smaller

improvement in the number of measurements needed for accu-
rate recovery. This is also in line with the curves of the prob-
ability of recovery in Fig. 2. In summary, as predicted by the
theory, the effect of the s MRI technique depends on the sparsity
basis. Note that the decrease of the performance for the Dirac
basis (optimally incoherent only at ) is negligible com-
pared to the improvement obtained for the two other bases. Note
also that MRI signals are usually sparse in wavelet bases [1].
The results obtained with the Haar wavelet basis therefore sug-
gest strong efficiency of the technique in MRI.
One can wonder if the proposed encoding scheme can result

in shift-variant reconstruction quality. Indeed, the phase varia-
tion at the center of the chirp is less rapid than at the limit of
the field-of-view. Let us consider the case of a signal sparse in
the Haar wavelet basis. This signal can, roughly, be separated
in large scale and fine scale sparsity basis vectors. The region
where the chirp is oscillating slowly is limited to a small part of
the field-of-view. Consequently, large scale sparsity basis vec-
tors are necessarily affected by the chirp modulation as they
have a wide support in signal space. The energy of these basis
vectors is thus spread in -space thus improving the reconstruc-
tion quality of the low scale structures of the signal. On the
other hand, the fine scale sparsity basis vectors at the center
of the field-of-view remains not significantly modulated. How-
ever, these vectors are already incoherent with the Fourier basis
as their energy naturally spreads out in -space. The fine scale
structure of the signal are well recovered in absence and pres-
ence of chirp modulation. In summary, almost no shift-variant
reconstruction quality is to be expected.
Let us acknowledge that the idea of convolving the -space

to optimize the acquisition procedure in the context of com-
pressed sensing can also be found in [16]–[18]. In these works,
the -space is convolved by a random Toeplitz matrices. We
should also note that the spread spectrum technique can be re-
lated to the random convolution approach where the signal is

convolved by a random sequence and under-sampled in real
space [40]. In our case, convolution and under-sampling occur
in -space. Finally, let us mention that in a discrete setting, i.e.,
in the absence of band limit extension, replacing the linear chirp
modulation by a random modulation leads to a universal en-
coding strategy, i.e., the reconstruction quality does not depend
on the sparsity basis [20]. The s MRI technique tries to emu-
late this universal encoding strategy. A universal compressed
sensing strategy might as well be obtained by projecting the
signal onto random waveforms with Gaussian distributions
[34], [35]. In the context of MRI, an encoding strategy based on
this sensing scheme was recently proposed in [19].

III. SPREAD SPECTRUM MRI (S MRI)

A. Quadratic Phase Profiles
The spread spectrum principle was explained in the previous

section in a simplified analog framework. Here, we move to
a setting encompassing realistic analog MR signals which are
limited in field-of-view and are consequently not band limited.
Standard MR measurements take the form of -space coef-

ficients, with , of the original three-dimen-
sional image probed representing the tissue magnetization as
a function of the position inside a given field-of-view. This
image is complex-valued due to magnetic field inhomogeneities
[41]. We consequently denote it by a complex-valued function

of the position , with components in
image space. conventionally corresponds to the phase
encoding directions, and corresponds to the readout direc-
tion. The field-of-view is . We also con-
sider quadratic phase profiles represented by a linear chirp in
the phase encoding directions

(8)

with chirp rate . This linear chirp is charac-
terized by an instantaneous frequency at position
. On the finite field-of-view , it is therefore approxi-
mately a band-limited function with approximate band-limits

in the phase encoding directions.
In this setting, MRmeasurements at spatial frequency

take the general form

(9)

In other words, the measurement corresponds to the coeffi-
cient at spatial frequency of a signal obtained as the product of
the original image with the linear chirp modulation .
In the absence of modulation , the measure-
ments simply reduce to standard -space measurements. In the
presence of quadratic phase profiles, the modulation amounts to
the convolution of the Fourier transform of the chirp with that
of the original image.

B. Under-Sampling in -Space and the Inverse Problem

Let us assume that we want to probe the signal at a
resolution corresponding to a band-limit .
Note that it does not imply that the signal is band-limited
and some energy may remain beyond . At this resolution,
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the signal of interest is discretized on a discrete uniform
grid of spatial frequencies

, in -space, with ,
and . In real space, this discretized signal may
equivalently be described by its coefficients on a discrete
uniform grid of points with . On this discrete
grid, the linear chirp can be parametrized in terms of discrete
chirp rates , thus exhibiting
approximate band-limits on the finite
field-of-view .
We assume that the spatial frequencies probed span the
-space up to the band-limits . We also assume that these
frequencies belong to the discrete grid of points , so that we
can avoid any re-gridding operation [41]. Due to the linear
chirp modulation, the measurements can contain significant
energy from -space coefficients beyond the band-limits .
Considering the estimated band-limits of the linear chirp, we
choose to reconstruct the original signal on a high resolution
grid of points in
order to prevent any aliasing in the reconstruction algorithm
from these high spatial frequencies. The sampled signal on this
high resolution grid is denoted by a vector . The re-
constructed signal is subsequently down-sampled at the desired
resolution by keeping only its spatial frequencies belonging to
the previously defined grid of size .
The -space coverage provided by the spatial frequen-

cies probed , with , can be represented by a
binary mask in -space, equal to 1 for each spatial frequency
probed and 0 otherwise. The measurements may be denoted
by a vector of -space coefficients

, possibly affected by noise, which is denoted by the vector
. In this setting, we consider an incom-

plete -space coverage , in order to accelerate the
acquisition time in comparison with a complete -space cov-
erage. In order to satisfy standard MRI constraints, an arbitrary
under-sampling can be considered in the phase encoding direc-
tions while all spatial frequencies in the readout direction are
probed. This form of under-sampling can directly be expressed
in terms of an acceleration of the acquisition. Thus, the s MRI
measurement model satisfies

(10)

where the matrix encodes the complete
linear relation between the signal and the measurements. The
rectangular matrix represents an up-sampling op-
eration, implemented in -space space by zero padding. This op-
eration is needed to avoid any aliasing of the modulated signal
due to a lack of sampling resolution in a discrete description of
the originally continuous problem. The modulated signal is cor-
rectly obtained by applying the chirp modulation to the signal
after up-sampling on the grid of

points by zero padding in the and directions.
The matrix is the diagonal matrix implementing
the chirp modulation on the up-sampled grid. The unitary ma-
trix stands for the discrete Fourier basis on this
high resolution grid. The matrix is the rectan-
gular binary matrix implementing the mask. It contains only one

nonzero value on each line, at the index of the -space coeffi-
cient corresponding to each of the spatial frequencies probed.
Regarding the reconstruction of the signal , (10) represents

the measurement constraint. We take a statistical point of view
and consider independent Gaussian noise on each measurement.
Considering a candidate reconstruction , the residual noise
reads as . The noise level estimator, defined
as twice the negative logarithm of the likelihood associated
with , reads as

(11)

where the symbol stands for the complex norm and
for the standard deviation of each of the real and imaginary
parts of the noise component . This noise level estimator
follows a chi-square distribution with degrees-of-freedom.
Typically, this estimator should be minimized by a good candi-
date for the reconstruction. As explained in [33], the measure-
ment constraint on the reconstruction may be defined as a bound

, with corresponding to some large percentile
of the chi-square distribution. In the remainder of the paper, we
choose the 99th percentile.

C. Variable Density Sampling

As discussed in [1], the method selecting the spatial frequen-
cies , with , is critical to achieve good recon-
struction. Their approach is based on the use of a variable den-
sity sampling method. The distributions, which are empirically
identified to provide optimized reconstructions, are defined by
a power law decaying function for
some power and real constant (
and is the highest spatial frequency of the -space domain
to probe). In the present work, the spatial frequencies are se-
lected using the method5 of [1]: the values are first thresh-
olded to restrict them to the interval independent binary
random variables taking value 1 with probability are
then generated; and finally the mask selecting the -space co-
efficients for which is created.
Let us highlight the importance of the value on the actual

shapeof thevariable density profile. For afixedpower , this con-
stant is computedbeforehand inorder to ensure that thenumberof
measurements is, on average, equal to its target value . Given
afixed number ofmeasurements,we denote the value of
forwhich .Forasmallvalueof ,onewould intu-
itively predict that the measurements spread all over the -space
domain with the density of points higher at the center of -space.
In fact, for , one has and a whole -space region
at high frequency remains unprobed. On the contrary, we have

for and the -space is probedwith a nonzero prob-
ability at the edges. Consequently, is the first power that
ensures that the entire -space domain is probed with a nonzero
probability. Also note that for , the center of the -space
is fully sampled, as , and that the size of the fully sampled
region increases when increases.
In practice, the choice of the power of the variable den-

sity profile is difficult and should be adapted with the number

5Toolbox available at http://www.stanford.edu/~mlustig/SparseMRI.html
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Fig. 3. Original brain image at 1 mm of resolution. The first panel represents its
absolute value. The second panel represents its phase mapped between and
. The last two panels represent the logarithm of the amplitude of its Fourier
transform before (third panel) and after (fourth panel) chirp modulation with
chirp rate . Dark and light regions respectively indicate low and high
intensities.

of measurements in order to obtain the best reconstruction qual-
ities. In the absence of chirp modulation, we performed recon-
structions for several values of and noticed that leads
to the best performance6. In the presence of a linear chirp mod-
ulation, the power spectrum of the original signal is spread and
flattened. However, in the range of the chirp rates studied, the
power spectrum of the modulated signal remains peaked at the
origin (Fig. 3). We therefore also apply a variable density sam-
pling and choose the power to be . Empirically, this value
also leads to the best reconstruction qualities. Note that choosing

seems reasonable, as, given the spread of the informa-
tion in the phase encoding directions, one wants to distribute the
measurements over the entire sampling region of size and also
limit the size of the fully sampled region at the -space center.
Let us acknowledge that recent theoretical results obtained in

[42] support the choice of such profiles in MRI.

D. Numerical Simulations

1) Simulation Protocol: To test the proposed technique,
a real brain image is acquired on a 7T short bore, actively
shielded, MR scanner (Siemens, Erlangen, Germany). The

6In practice, is determined by an iterative process. Starting from ,
we increase its value by 0.5 until we obtain for the number of measure-
ments considered.

Fig. 4. Simulated reconstructions for an under-sampling of 20% of and an
input snr of 32. The top row shows the reconstructions for the variable den-
sity sampling (left panel) and the s MRI (right panel) techniques, respectively.
The bottom row shows the error images (difference between the original image
and the reconstructions) in the absence (left panel) and presence (right panel)
of chirp modulation. For a better visualization, the error images were scaled by
a factor of 6. The colormap for the error images goes from white to black, indi-
cating low and high errors, respectively.

subjects provided written informed consent prior to the
imaging session, according to the guidelines of the local
ethics committee. The parameters of the acquisition are as
follows: with
a resolution of 0.5 0.5 4 mm . The matrix size is thus

. The standard clinical
MPRAGE sequence is used with echo time ms,
inversion time s, repetition time s, and
bandwidth Hz. Note that, for the sake of simplicity,
we restrict our analyses to one two-dimensional -slice of the
original three-dimensional acquisition with an under-sampling
in both phase encoding directions and . Also note that the
image used is complex-valued.
In order to model an analog acquisition scheme, the original

image at a resolution of 0.5 mm is used to compute the mea-
surements but the reconstruction is performed at a resolution of
1 mm. The reconstructed images are compared to the image ob-
tained with a full acquisition at 1 mm of resolution (Fig. 3).
The parameters of our analyses are as follows. Firstly, acqui-

sitions are considered for various numbers of complex mea-
surements corresponding to coverages of 5%, 10%, 15%, 20%,
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Fig. 5. Relative reconstruction errors as functions of the input snr for the variable density sampling technique (dashed blue curve) and the s MRI technique with
(dot–dashed red curve) and (continuous black curve). The first to sixth panels show the curves for coverages of 5%, 10%, 15%, 20%, 25%,

and 50% of , respectively. All curves represent the mean relative error over 30 simulations, and the vertical lines represent the error at 1 standard deviation.

Fig. 6. Relative reconstruction errors as functions of the input snr for the vari-
able density sampling technique (dashed blue curve) and the s MRI technique
(dot–dashed red curve) with varying chirp modulation. From left to right and
top to bottom, the panels show the curves for coverages of 15%, 25%, 50% of
respectively. All curves represent the mean relative error over five simula-

tions, and the vertical lines represent the error at 1 standard deviation.

25%, and 50% of . Secondly, instrumental noise is also added
to the measurements as independent and identically distributed
zero-mean Gaussian noise. The corresponding standard devia-
tion is identical for all the frequencies probed and we con-
sider values of input snr7 of , with . Thirdly, the
chirp modulation studied has the same chirp rate in both phase
encoding directions, i.e., , with values in the
range . Fourthly, the signals are reconstructed by solving
the BP problem where the Total Variation (TV) norm of the
signal is substituted for the norm8. This problem is solved
thanks the Douglas Rachford algorithm [44], [45]. Note that the
TV norm in combination with wavelet sparsity basis is, for ex-
ample, used for reconstructingMRI signals from under-sampled
-space in [1], [6], or [14]. For our problem, we tested several
multiscale representations such as Daubechies wavelets, steer-
able wavelets, or curvelets, but the best reconstructions were ob-
tained with the TV norm. Finally, for each value of and input
snr considered, 30 simulations are generated with independent
noise and mask realizations, and the relative reconstruction er-
rors are computed for the variable density sam-
pling and s MRI techniques. For each value of and input snr,
the discrete chirp rate that gives the smallest relative error
on average over the 30 simulations is recorded.9

7The snr is defined as the ratio between the mean value of the complex mag-
nitude of the original signal and the standard deviation of the noise .
8The TV norm of a signal is defined as the norm of the magnitude of its

gradient [32], [43]. Note that the recovery condition (7) does not hold with this
norm. However, one can notice that the TV norm of a signal is very similar to
the norm of its decomposition in the Haar wavelet basis. In the light of the
preliminary results of Section II-C, one can thus hope to obtain an improvement
of the reconstruction quality in presence of chirp modulation.
9s MRI toolbox available at http://lts2www.epfl.ch/people/gilles.

Fig. 7. Simulated reconstructions with varying chirp modulation for an under-
sampling of 50% of and an input snr of 32. The top row shows the recon-
structions of an axial slice for the variable density sampling (left panel) and the
s MRI (right panel) techniques, respectively. The bottom row shows the error
images (difference between the original image and the reconstructions) in the
absence (left panel) and presence (right panel) of chirp modulation. For a better
visualization, the error images were scaled by a factor of 8. The colormap for
the error images goes from white to black, indicating low and high errors, re-
spectively.

2) Simulation Results: The magnitudes of the reconstructed
images obtained with the s MRI and the variable density sam-
pling techniques for an acceleration factor of 5 and an input snr
of 32 are presented in Fig. 4, along with the corresponding error
images (magnitudes of the complex-valued differences between
the original image and reconstructed images). The relative er-
rors of the reconstructions as functions of the input snr for the



PUY et al.: SPREAD SPECTRUM MAGNETIC RESONANCE IMAGING 593

six coverages considered and for both methods are reported in
Fig. 5.
For acceleration factors larger than 2, the s MRI technique

with provides better reconstruction than the variable
density sampling technique with an improvement up to 0.05 of
the relative error. Indeed, the relative error is, on average, lower
in the presence of the chirpmodulation. The corresponding stan-
dard deviations are also much smaller, indicating that the s MRI
technique is more stable10. At an acceleration factor of 2, the
variable density sampling technique gives slightly better recon-
structions than the s MRI technique with . However,
with , the s MRI technique provides relative
errors similar to those obtained with the variable density sam-
pling technique. These results suggest to reduce the chirp rate as
the number of measurements increases. This is coherent with the
fact that modulation is not needed in the limit of no under-sam-
pling.
When comparing the magnitudes of reconstructed images in

Fig. 4, differences between both methods do not appear obvious.
However, one can notice that fine details are recovered better
with the s MRI technique: the vessel (white spot) indicated by
a blue arrow appears in the s MRI reconstruction, but not in
the variable density sampling reconstruction. The error images
bring more information, and one can notice that the errors are
smaller in the presence of chirp modulation. In particular, the
low scale structures, rendered incoherent with the chirp modu-
lation, are better recovered.

IV. S MRI IMPLEMENTATION AND EXPERIMENTAL RESULTS

A. Implementation

The s MRI technique is tested on the scanner described in
Section III-D with 3-D acquisitions of a phantom and a human
brain. For the brain experiment, the subjects provided written
informed consent prior to the imaging session, according to the
guidelines of the local ethics committee.
The chirp modulation is implemented through the use of a

second order shim coil . In our implementation, the chirp
rate varies linearly with the readout time (or equivalently )
and is proportional to the intensity of the quadratic magnetic
field : , where is the
gyromagnetic factor. The maximum chirp rate is reached
at , the mean chirp rate at , and
the minimum chirp rate at ( is the
readout duration). This chirp modulation can be introduced in
the measurement model by modifying (10) as follows:

(12)

In the above equation, and
implement the Fourier transform along the -direction and the
-directions, respectively. The matrix imple-

ments the chirp modulation. Signals are thus reconstructed on a

10Some leftover variability for the variable density sampling technique might
still be removed by increasing the number of simulations. However, this would
not modify the results and comparison with s MRI.

grid of points,
and .
This modulation can be decomposed as a quadratic phase

modulation in the planes with chirp rate , combined
with a linear phase modulation in . This linear phase modula-
tion produces shifts of the original signal by an amount propor-
tional to along the direction. The chirp modula-
tion used is thus not ideal, as it creates distortions of the original
object and complicates the measurement matrix. However, the
energy of sparsity basis vectors is still spread by the main chirp
modulation with chirp rate , and the previous conclusions
based on theory and simulations should still hold. This will be
confirmed by the numerical experiments of Section IV-B. Note
also that the reconstructed images are free of any distortion as
the complete effect of the modulation is modeled in (12). Let
us remark that these distortions might be avoided with the use
of RF pulses or dedicated coils applied only during phase en-
coding.
As in Section III-D, the s MRI technique is compared to the

variable density sampling method with . Full acquisi-
tions are performed both in the absence and in the
presence of the chirp modulation. The number of phase encod-
ings is then reduced retrospectively by applying a mask
on the complete data.
The noise level is evaluated directly on the under-sampled

data available for reconstruction. For each pair mea-
sured, all the frequencies are probed so that the signal is
available as a function of . The level of the noise is estimated
on probed pairs at positions that do not contain any
signal. This noise level is identical in the presence and absence
of chirp modulation.

B. Numerical Validation

In this section, we perform simulations using the acquisition
scheme described above to confirm that, even though the imple-
mentation of the chirp modulation is not ideal, the reconstruc-
tion quality is still enhanced with the s MRI technique.
For this numerical experiment, a brain volume was acquired

using the standard clinical MPRAGE sequence on a field-of-
view of mm, mm, and mm, with
a resolution of 1 mm in each direction (

). The echo time is ms, the inversion
time s, the repetition time s, the bandwidth

Hz. As in Section III-D, in order to model an analog
acquisition scheme, the original image at a resolution of 1 mm
is used to compute the measurements, but the reconstruction is
performed at a resolution of 2 mm. The reconstructed images
are compared to the image obtained with a full acquisition at 2
mm of resolution.
The parameters of our experiment are as follows. Firstly, ac-

quisitions are considered for various numbers of complex
measurements corresponding to coverages of 15%, 25%, 50%
of . Secondly, instrumental noise is also added to the mea-
surements as independent and identically distributed zero-mean
Gaussian noise. The corresponding standard deviation is iden-
tical for all the frequencies probed and we consider values of
input snr of , with . Thirdly, the simulated chirp
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Fig. 8. Phantom and brain reconstructions from real experimental data with the s MRI technique. The first to fourth columns show the magnitude of the recon-
structions from 15%, 25%, 50%, and 100% of phase encodings, respectively. The fifth column shows the reference images obtained by inverse Fourier transform
(F.T.) of the fully sampled -space.

modulation has a chirp rate varying linearly with :
and . These values for the dis-

crete chirp rate correspond to those used during the real experi-
ment performed hereafter at 1 mm of resolution. However, rel-
atively to the band-limit at 2 mm of resolution, the spectrum
is naturally more spread than relatively to the band-limit at 1
mm of resolution. Therefore, for a reconstruction at 2 mm of
resolution, the spectrum does not need to be spread as much as
for a reconstruction at 1 mm of resolution. We thus divided the

values of the chirp rate by 2 in both dimensions. Fourthly, the
signals are reconstructed by solving the BP problem where the
TV norm of the signal is substituted for the norm. Finally,
for each value of and input snr considered, five simulations
are generated with independent noise and mask realizations, and
the relative reconstruction errors are computed for the variable
density sampling and s MRI techniques.
The relative errors of the reconstructions as functions of

the input snr for the three coverages considered and for both
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Fig. 9. Phantom and brain reconstructions from real experimental data with the s MRI technique (first and third rows, respectively) and the variable density
sampling (VDS) technique (second and fourth rows, respectively). The first to fourth columns show the magnitude of the reconstructions from 15%, 25%, 50%,
and 100% of phase encodings respectively. The fifth column shows the reference images obtained by inverse Fourier transform (F.T.) of the fully sampled -space.
The white lines on these images indicate the location of the spatial profiles presented in Fig. 10.

methods are reported in Fig. 6. The magnitudes of a recon-
structed axial slice obtained with the s MRI and the variable
density sampling techniques for an acceleration factor of 5
and an input snr of 32 are presented in Fig. 7, along with
the corresponding error images. Conclusions of Section III-D
still hold with this acquisition scheme. The relative error of
reconstruction is lower in the presence of the chirp for the
three coverage considered. When comparing the error images
in Fig. 7, one can once more notice that the errors are smaller
with the s MRI technique.

C. Experiments

For the phantom experiment, a gradient echo sequence is used
on a field-of-view of mm in the three
directions with a resolution of 1 mm .

The echo time is ms, the repetition time
ms, the bandwidth Hz, and the quadratic magnetic
field intensity T/m . The discrete chirp rates satisfy

.
For the brain experiment, the standard clinical MPRAGE se-

quence is used on a field-of-view of mm,
mm and mm, with a resolution of 1 mm in each direc-
tion ( ). The echo time is

ms, the inversion time s, the repetition time
s, the bandwidth Hz, and the quadratic

magnetic field intensity T/m . The discrete chirp
rates satisfy and .
Slices of the 3-D reconstructions obtained with the s MRI

technique for 15%, 25%, 50%, and 100% of phase encodings
are presented in Fig. 8 for the phantom and brain acquisitions.
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Fig. 10. Phantom and brain reconstruction profiles from real experimental data with the s MRI technique (first and third rows, respectively) and the variable
density sampling (VDS) technique (second and fourth rows, respectively). The first to fourth columns show the profile magnitude of the reconstructions (continuous
red curve) from 15%, 25%, 50%, and 100% of phase encodings respectively as well as the reference profiles (dotted black curve) obtained by inverse Fourier
transform (F.T.) of the fully sampled -space.

The images obtained by inverse Fourier transform of the fully
sampled -space (after correction of the distortions due to the
small shifts in the direction) are also presented. Fig. 9 pro-
vides a comparison of the reconstructed images obtained with
the s MRI and the variable density sampling techniques. In the
aim of providing further insight on how each method preserves
image resolution or, in other words, captures shape and mag-
nitude of high frequency features, we also provide 1-D spatial
profiles in Fig. 10. The white lines in Fig. 9 indicate the location
of these profiles.
Firstly, as one would expect, the visual reconstruction quality

improves when the number of phase encodings increases.

In the limit of a coverage of 100%, we cannot identify any
loss of details between the reconstructed images and the ones
obtained by inverse Fourier transform. Moreover, the recon-
structed image contains much less noise than the image obtained
by inverse Fourier transform. Indeed, at a coverage of 100%, the
problem (3) is essentially reduced to a denoising problem.
Secondly, as in Section III-D, the differences between both

methods do not appear at first glance when comparing only
the magnitudes of reconstructed images in Fig. 9. Unfortu-
nately here, the ground truth image is not accessible, so the
corresponding error images cannot be displayed. However, a
thorough visual inspection reveals that, for acceleration factors
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Fig. 11. Axial reconstructed slice for a coverage of 100% in the presence
of chirp modulation on a high resolution grid of size (right
panel) and after dowsampling on the original grid of size .

larger than 2, some fine details are better recovered by our
approach. On the phantom reconstructions for acceleration
factors of 6.7 and 4 (coverages of 15% and 25%, respectively),
the separation between the two biggest circles is more visible.
The shapes of the circles are also more curved. On the brain
reconstructions for an acceleration factor of 6.7, the vessels at
the center of image are still visible with our method but not
with the variable density sampling technique. The cerebral
cortex also appears sharper. For an acceleration factor of 2, the
thin layer separating the two hemispheres of the brain remains
more visible with the s MRI technique.
Thirdly, the reconstructed spatial profiles of the phantom pre-

sented in Fig. 10 show that the shape and magnitude of high
frequency features are, more often, slightly better recovered
with the s MRI technique for acceleration factors larger than
4 (blue and red arrows indicate features better reconstructed
with s MRI and variable density sampling respectively). This
improvement is much more significant on the brain data (see ar-
rows), and holds for acceleration factors larger than 2.
Finally, the distortions are correctly taken into account by the

operator , as both fully sampled slices of the phantom with and
without chirp are identical (see Fig. 9). For the brain images,
some differences remain due to small movements of the subject
between both acquisitions. Let us remark that no fitting of the
chirp parameters (center and rates) was performed to improve
on the theoretical values. This highlights sufficient stability of
the technique relative to parameter approximations.

V. CONCLUSION AND DISCUSSION

We presented a spread spectrum technique (s MRI) designed
to accelerateMR acquisitions by compressed sensing. It consists
of premodulating the original image by a linear chirp, which re-
sults from the application of quadratic phase profiles, and then
performing random -space under-sampling. Nonlinear algo-
rithms promoting signal sparsity are then used for image recon-
struction.

In the context of compressed sensing theory, the effective-
ness of the technique is supported by a decrease of coherence
between the sensing and sparsity bases due to the premodula-
tion. Simulations in a simplified analog setting confirm that the
enhancement of the image reconstruction quality is linked to the
evolution of the mutual coherence. The s MRI technique was
compared with the state-of-the-art variable density sampling
using realistic numerical simulations and real acquisitions. Sim-
ulation results shows that the s MRI technique performs slightly
better than the variable density sampling technique in terms of
relative reconstruction error for acceleration factors larger than
2. The chirp modulation was also implemented on a 7T scanner
with the use of a second order shim coil. Simulations of this im-
plementation confirms again the slight superiority of s MRI. Vi-
sual inspection of reconstructions obtained from real acquisition
of phantom and in vivo data also shows that this first (nonideal)
implementation provides slightly better reconstruction qualities
than the variable density sampling method. The s MRI tech-
nique thus outperforms the variable density sampling technique
in terms of all the criteria used for evaluation.
Regarding future evolutions of the s MRI technique, an

implementation of the linear chirp modulation with the use of
RF pulses or dedicated coils could simplify the measurement
scheme by applying the chirp modulation only during phase
encoding in order to avoid object distortions, and, in turn,
further enhance the reconstruction quality. Moreover, fitting
the effective chirp center and rates on the basis of the data
could improve the measurement model and result in better
reconstructions.
Let us also emphasize the potential interest of the s MRI

technique from an enhanced resolution perspective as, in the
presence of the chirp modulation, the original image is recon-
structed at a high resolution in order to avoid any aliasing prob-
lems. One can indeed consider reaching a higher spatial resolu-
tion for a fixed acquisition time without probing higher spatial
frequencies in practice, which would require stronger gradient
coils. In this context, any regularization approach adding a spar-
sity prior can help to synthesize spatial frequency information
higher than that contained in the data. But the chirp modula-
tion implies that high spatial frequency information is actually
probed at lower frequencies. For illustration, Fig. 11 shows a
reconstructed slice for a coverage of 100% on a high res-
olution grid as well as the image obtained after
downsampling on the grid . One can notice that
the high resolution image provides sharper details with fewer
aliasing artifacts. In particular, the vessels are better resolved.

ACKNOWLEDGMENT

The authors would like to thank D. Shuman for his helpful
suggestions to improve the writing quality of the paper, as well
as the reviewers for their very useful comments.

REFERENCES
[1] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application

of compressed sensing for rapid MR imaging,” Magn. Reson. Med.,
vol. 58, pp. 1182–1195, 2007.

[2] H. Jung, J. C. Ye, and E. Y. Kim, “Improved k-t BLAST and k-t SENSE
using FOCUSS,” Phys. Med. Biol., vol. 52, pp. 3201–3226, 2007.

[3] U. Gamper, P. Boesiger, and S. Kozerke, “Compressed sensing in dy-
namic MRI,” Magn. Reson. Med., vol. 59, pp. 365–373, 2008.



598 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 31, NO. 3, MARCH 2012

[4] H. Jung, K. Sung, K. Nayak, E. Y. Kim, and J. C. Ye, “k-t FOCUSS:
A general compressed sensing framework for high resolution dynamic
MRI,” Magn. Reson. Med., vol. 61, pp. 103–116, 2009.

[5] M. Usman, C. Prieto, T. Schaeffter, and P. G. Batchelor, “k-t Group
Sparse: A Method for Accelerating Dynamic MRI,” Mang. Reson.
Med., vol. 66, pp. 1163–1176, 2011.

[6] D. Liang, B. Liu, J. Wang, and L. Ying, “Accelerating sense using com-
pressed sensing,” Magn. Reson. Med., vol. 62, pp. 1574–1584, 2009.

[7] M. Lustig and J. Pauly, “Spirit: Iterative self-consistent parallel
imaging reconstruction from arbitrary k-space,” Magn. Reson. Med.,
vol. 64, pp. 457–471, 2010.

[8] R. Otazo, D. Kim, L. Axel, and D. Sodickson, “Combination of com-
pressed sensing and parallel imaging for highly accelerated first-pass
cardiac perfusion MRI,” Magn. Reson. Med., vol. 64, pp. 767–776,
2010.

[9] S. Hu, M. Lustig, A. P. Chen, J. Crane, A. Kerr, D. A. Kelley, R. Hurd,
J. Kurhanewicz, S. J. Nelson, J. M. Pauly, and D. B. Vigneron, “Com-
pressed sensing for resolution enhancement of hyperpolarized C fly-
back 3-D-MRSI,” Magn. Reson. Med., vol. 192, pp. 258–264, 2008.

[10] S. Hu, M. Lustig, A. P. Chen, A. Balakrishnan, P. E. Z. Larson, R. Bok,
J. Kurhanewicz, S. J. Nelson, A. Goga, J.M. Pauly, and D. B. Vigneron,
“3-D compressed sensing for highly accelerated hyperpolarized C
MRSI with in vivo applications to transgenic mouse models of cancer,”
Magn. Reson. Med., vol. 63, pp. 312–321, 2010.

[11] P. E. Z. Larson, S. Hu, M. Lustig, A. B. Kerr, S. J. Nelson, J.
Kurhanewicz, J. M. Pauly, and D. B. Vigneron, “Fast dynamic 3-D
MR spectroscopic imaging with compressed sensing and multiband
excitation pulses for hyperpolarized (13)C studies,” Magn. Reson.
Med., vol. 65, pp. 610–619, 2010.

[12] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An inte-
rior-point method for large-scale -regularized least squares,” IEEE
J. Sel. Topics Signal Process., vol. 1, pp. 606–617, 2007.

[13] J. Trzasko and A. Manduca, “Highly undersampled magnetic reso-
nance image reconstruction via homotopic -minimization,” IEEE
Trans. Med. Imag., vol. 28, no. 1, pp. 106–121, Jan. 2009.

[14] M. Guerquin-Kern, M. Häberlin, K. P. Pruessmann, and M. Unser,
“A fast wavelet-based reconstruction method for magnetic resonance
imagings,” IEEE Trans. Med. Imag., vol. 30, no. 9, pp. 1649–1660,
Sep. 2011.

[15] M. Seeger, H. Nickisch, R. Pohmann, and B. Scholkopf, “Optimiza-
tion of k-space trajectories for compressed sensing by Bayesian exper-
imental design,”Magn. Reson. Med., vol. 63, no. 1, pp. 116–126, 2010.

[16] F. Sebert, Y. M. Zou, and L. Ying, “Compressed sensing MRI with
random B1 field,” in Proc. ISMRM, 2008, p. 3151.

[17] D. Liang, G. Xu, H. Wang, K. F. King, D. Xu, and L. Ying, “Toeplitz
random encoding MR imaging using compressed sensing,” in Proc.
IEEE Int. Symp. Biomed. Imag. Nano to Macro (ISBI), 2009, pp.
270–273.

[18] H. Wang, D. Liang, K. King, and L. Ying, “Toeplitz random encoding
for reduced acquisition using compressed sensing,” in Proc. ISMRM,
2009, p. 2669.

[19] J. Haldar, D. Hernando, and Z.-P. Liang, “Compressed-sensing in MRI
with random encoding,” IEEE Trans. Med. Imag., vol. 30, no. 4, pp.
893–903, Apr. 2011.

[20] G. Puy, P. Vandergheynst, R. Gribonval, and Y.Wiaux, “Universal and
efficient compressed sensing strategy through spread spectrum modu-
lation,” EURASIP J. Adv. Signal Process., 2011.

[21] Y. Wiaux, G. Puy, Y. Boursier, and P. Vandergheynst, “Spread spec-
trum for imaging techniques in radio interferometry,”Mon. Not. R. As-
tron. Soc., vol. 400, pp. 1029–1038, 2009.

[22] A. A. Maudsley, “Dynamic range improvement in NMR imaging using
phase scrambling,” J. Magn. Reson., vol. 76, pp. 287–305, 1988.

[23] V. J. Wedeen, Y. S. Chao, and J. L. Ackerman, “Dynamic range com-
pression inMRI by means of a nonlinear gradient pulse,”Magn. Reson.
Med., vol. 6, pp. 287–295, 1988.

[24] J. G. Pipe, “Spatial encoding and reconstruction in MRI with quadratic
phase profiles,” Magn. Reson. Med., vol. 33, pp. 24–33, 1995.

[25] S. Ito and Y. Yamada, “Alias-free image reconstruction using fresnel
transform in the phase-scrambling Fourier imaging technique,”Magn.
Reson. Med., vol. 60, pp. 422–430, 2008.

[26] F. M. Naini, R. Gribonval, L. Jacques, and P. Vandergheynst, “Com-
pressive sampling of pulse trains: Spread the spectrum!,” in Proc.
IEEE Int. Conf. Acoustics, Speech Signal Process., Taipei, 2009, pp.
2877–2880.

[27] Y. Wiaux, G. Puy, Y. Boursier, and P. Vandergheynst, “Compressed
sensing for radio interferometry: Spread spectrum imaging tech-
niques,” in Proc. SPIE Conf. Wavelet XIII, 2009, vol. 7446, p. 74460J.

[28] J. D. McEwen and Y. Wiaux, “Compressed sensing for wide-field
radio interferometric imaging,” Mon. Not. R. Astron. Soc., vol. 413,
pp. 1318–1332, 2011.

[29] G. Puy, Y.Wiaux, R. Gruetter, J.-P. Thiran, D. Van de Ville, and P. Van-
dergheynst, “Spread spectrum for interferometric and magnetic res-
onance imaging,” in Proc. IEEE Int. Conf. Acoustic, Speech Signal
Process., 2010, pp. 2802–2805.

[30] Y.Wiaux, G. Puy, R. Gruetter, J.-P. Thiran, D. Van de Ville, and P. Van-
dergheynst, “Spread spectrum for compressed sensing techniques in
magnetic resonance imaging,” in Proc. IEEE Int. Sym. Biomed. Imag.,
2010, pp. 756–759.

[31] G. Puy, J. Marques, R. Gruetter, J.-P. Thiran, D. Van de Ville, P. Van-
dergheynst, andY.Wiaux, “AcceleratedMR imagingwith spread spec-
trum encoding,” in Proc. ISMRM, 2011, p. 2808.

[32] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency infor-
mation,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb.
2006.

[33] E. J. Candès, J. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Comm. Pure Appl. Math.,
vol. 59, pp. 1207–1223, 2006.

[34] E. J. Candès, “Compressive sampling,” in Proc. Int. Congress Math.,
Madrid, Spain, 2006, vol. 3, pp. 1433–1452.

[35] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol.
52, pp. 1289–1306, 2006.

[36] E. J. Candès and J. Romberg, “Sparsity and incoherence in compressive
sampling,” Inverse Problems, vol. 23, pp. 969–985, 2007.

[37] R. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag., vol.
24, pp. 118–12, 2007.

[38] D. L. Donoho and J. Tanner, “Counting faces of randomly-projected
polytopes when the projection radically lowers dimension,” J. Amer.
Math. Soc., vol. 22, pp. 1–53, 2009.

[39] H. Rauhut, “Compressive sensing and structured random matrices,”
Radon Series Comp. Appl. Math., vol. 9, pp. 1–92, 2010.

[40] J. Romberg, “Compressive sensing by random convolution,” SIAM J.
Imag. Sci., vol. 02, pp. 1098–1128, 2009.

[41] E. M. Haake, R. W. Brown, M. R. Thompson, and R. Venkatesan,
Magnetic Resonance Imaging: Physical Principles and Sequence De-
sign. New York: Wiley, 1999.

[42] G. Puy, P. Vandergheynst, and Y. Wiaux, “On variable density com-
pressive sampling,” IEEE Signal Process. Lett., vol. 18, no. 10, pp.
595–598, Oct. 2011.

[43] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D, vol. 60, pp. 259–268, 1992.

[44] H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke,
and H. Wolkowicz, “Proximal splitting methods in signal processing,”
in Fixed-Point Algorithms for Inverse Problems in Science and Engi-
neering. New York: Springer-Verlag, 2011.

[45] M. J. Fadili and J.-L. Starck, “Monotone operator splitting for opti-
mization problems in sparse recovery,” in Proc. ICIP, Cairo, Egypt,
2009, pp. 1461–1464.


