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Understanding the organizational principles of human brain activity at the systems level remains a major chal- 

lenge in network neuroscience. Here, we introduce a fully data-driven approach based on graph learning to 

extract meaningful repeating network patterns from regionally-averaged timecourses. We use the Graph Lapla- 

cian Mixture Model (GLMM), a generative model that treats functional data as a collection of signals expressed 

on multiple underlying graphs. By exploiting covariance between activity of brain regions, these graphs can be 

learned without resorting to structural information. To validate the proposed technique, we first apply it to task 

fMRI with a known experimental paradigm. The probability of each graph to occur at each time-point is found to 

be consistent with the task timing, while the spatial patterns associated to each epoch of the task are in line with 

previously established activation patterns using classical regression analysis. We further on apply the technique 

to resting state data, which leads to extracted graphs that correspond to well-known brain functional activation 

patterns. The GLMM allows to learn graphs entirely from the functional activity that, in practice, turn out to reveal 

high degrees of similarity to the structural connectome. The Default Mode Network (DMN) is always captured 

by the algorithm in the different tasks and resting state data. Therefore, we compare the states corresponding to 

this network within themselves and with structure. 

Overall, this method allows us to infer relevant functional brain networks without the need of structural con- 

nectome information. Moreover, we overcome the limitations of windowing the time sequences by feeding the 

GLMM with the whole functional signal and neglecting the focus on sub-portions of the signals. 
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. Introduction 

Functional magnetic resonance imaging (fMRI) is a unique tool to

robe the functional architecture of the human brain. Specifically, spon-

aneous fluctuations of blood-oxygenation-level dependent (BOLD) sig-

als have shown to be synchronised between brain regions during rest-

ng state (RS) despite the absence of task or external stimuli ( Biswal

t al., 1995; Smith et al., 2009; 2011 ). A repertoire of functional net-

orks have been identified in healthy ( Beckmann et al., 2005; Shirer

t al., 2012; Thomas Yeo et al., 2011 ) and clinical populations ( Liao

t al., 2014; Tagliazucchi et al., 2010; Zöller et al., 2019 ). These func-

ional networks include both sensory regions and higher-level cognitive

nes, such as the default-mode network (DMN), which generally shows

educed activity during an externally-oriented task ( Greicius et al.,
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003 ), and becomes more engaged during internal mentation ( Andrews-

anna, 2012; McCormick and Telzer, 2018 ). 

The interest in understanding the intrinsic functional organization of

he human brain has motivated many new methods to deal with RS. Con-

entional functional connectivity (FC) constitutes a single whole-brain

unctional connectome by measuring Pearson correlation between pairs

f regionally-averaged time courses ( Bullmore and Sporns, 2009 ). FC is

hus computed using the entire RS scan, intrinsically assuming a “sta-

ionary ” relationship, but several “dynamic ” extensions that acknowl-

dge temporal fluctuations of FC have been proposed ( Bolton et al.,

020; Chang and Glover, 2010; Hutchison et al., 2013; Preti et al.,

017 ). One popular approach is the sliding-window technique ( Elton

nd Gao, 2015b; Kucyi and Davis, 2014; Madhyastha and Grabowski,

014 ), where time courses are segmented into temporal windows so that

 time-dependent FC matrix can be obtained. Then, further analysis by

raph metrics ( Betzel et al., 2016; Sizemore and Bassett, 2018 ), or di-
bruary 2022 
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g  
ensionality reduction methods such as singular value decomposition

SVD) ( Leonardi et al., 2013 ), k-means clustering ( Allen et al., 2014 ),

r hierarchical clustering ( Yang et al., 2014 ), can be applied to extract

he most relevant brain patterns. The timescale of these dynamically-

ccurring FC patterns is limited by the temporal window length, and

heir spatial specificity by the nature of FC that characterizes interact-

ng activity between brain regions. For this reason, Bayesian and prob-

bilistic methods represent good examples of extracting repeating ac-

ivity patterns from whole-brain data ( Smith et al., 2011; Varoquaux

t al., 2010; Vidaurre et al., 2017 ). In neuroimaging, these approaches

ave been explored with the aim of applying unsupervised learning to

stimate different hidden temporal states; e.g., Hidden Markov Models

HMM) ( Eavani et al., 2013 ) to perform an activation network analy-

is ( Taghia et al., 2018; Vidaurre et al., 2018a; 2018b; 2019; 2016 ). 

While dynamic FC patterns are generated by looking at fluctuations

n second-order statistics (i.e., correlation), alternatively, instantaneous

ctivity-based brain states can access shorter timescales and directly ex-

lain the empirical BOLD time courses. 

In this work, we propose a new framework to estimate multiple

unctional states, using a recently introduced Bayesian-based generative

odel that is the Graph Laplacian Mixture Model (GLMM), suitable for

ixed signals expressed on different graphs ( Maretic et al., 2018; Petric

aretic and Frossard, 2020 ). Several graph learning techniques ( Dong

t al., 2019; Mateos et al., 2019 ) have been recently proposed in order

o infer a meaningful graph structure from data. Due to the instanta-

eous nature of these methods, the choice of crucial parameters such as

indow lengths ( Leonardi and Van De Ville, 2015 ) is eliminated. 

General approaches for learning graphs to represent data structure

tarted with Dong et al. (2016) who focuses on graph Laplacian ma-

rix inference, which enforces data smoothness on the inferred graph

 Kalofolias, 2016 ). Using a more efficient solution, dictionary-based

ethods assume that signals can be modeled as a sparse combina-

ion of localised graph dictionary atoms ( Petric Maretic et al., 2017;

hanou et al., 2017 ). Multiple graph inference methods include works

n time-varying graphs ( Kalofolias et al., 2017; Yamada et al., 2019 ),

here temporal signals reflect the structure of several graphs, each

f which is active in a pre-defined time period. The recent work of

an et al. (2019) imposes that the sparsity pattern on all inferred graphs

hould be similar through a Bayesian prior. All of these works focus ei-

her on inferring only one graph or already have a predefined set of sig-

als for each graph that needs to be inferred. Such a strong assumption is

ot realistic in RS fMRI data, where a wide array of dynamic functional

etworks are known to occur. By appealing to GLMM ( Petric Maretic

nd Frossard, 2020 ), we simultaneously learn multiple graph structures

represented by graph Laplacian matrices) and, separately, nodal activa-

ion patterns. Additionally, along with these two elements, brain signals

re decomposed into clusters with a certain probability. These three el-

ments form together what we call here state . 
Interestingly, when we validate this approach with task fMRI data,

e observe the probabilities reflecting the dynamic of epochs of the

xperimental paradigms, even though these are completely unknown to

he method – which is anyway the case for RS fMRI data. Different from

ther HMM frameworks, we have neither a Markovian assumption nor

ny constraint on the temporal axis. By being more flexible, we still are

ble to capture a meaningful dynamic. 

We also show that the extracted states consist of brain areas that

re consistent with previously observed regions implicated in the corre-

ponding task. We then apply the GLMM to RS data and obtain the most

revalent states governing spontaneously interacting brain areas. 

Overall, this approach allows us to revisit the relationship between

rain function and underlying structure, which is one of the fundamen-

al questions in neuroscience ( Atasoy et al., 2016; Betzel et al., 2016;

oni et al., 2014; Gu et al., 2015; Hutchison et al., 2013; Preti and Van

e Ville, 2019; Tarun et al., 2020 ). The traditional approaches to es-

imate structural connectivity from FC, do not account for fluctuations

f brain activity and thus how the structure-function link is exploited
2 
ifferently over time. Therefore, here we show that the estimated graph

aplacian matrices reveal indicative similarities with SC. Moreover, we

bserve that the most notable brain pattern that consistently is part of

tates in all tasks, as well as in RS, is the default mode network (DMN).

ifferent studies have tried to capture how the DMN differs in different

eurological conditions ( Nair et al., 2020 ; Ren et al., 2020 ; Shine et al.,

015; Starck et al., 2013 ). That is why we finally focus our attention to

he similarities and differences of the DMN patterns estimated during

he rest epochs across all task paradigms and during resting state. The

uestion consequently arises as to how the differences in connectivity

tructure that give rise to various DMN graphs are related to the brain’s

nderlying anatomical structure. 

Finally, we leverage on a dissimilarity score to index the level of cog-

itive association: the more dissimilar the score is, the more it indicates

hat that network belongs to a higher cognitive level task, suggesting

n appropriate method of comparison with respect to classical Pearson

orrelations. 

. Materials and methods 

.1. Data and preprocessing 

We use MRI data from the Human Connectome Project (HCP). The

RI acquisition protocols have been extensively described and pre-

ented elsewhere ( Glasser et al., 2013 ). In particular, we used 50 subjects

see Supplementary Appendix A.6 for IDs) consisting of 4 sessions of RS

cans (1200 volumes each, a total of 4800 frames), and 2 sessions each

f task fMRI data (i.e., working memory, relational memory, social, lan-

uage, emotion, and motor tasks). Functional volumes underwent the

tandard pre-processing steps ( Van Dijk et al., 2010 ). All functional im-

ges were first realigned to the mean functional volume for each partici-

ant. The realigned volumes were registered to the structural T1 data us-

ng rigid-body registration (SPM12, https://www.fil.ion.ucl.ac.uk ), and

ere detrended (i.e., constant, linear, quadratic) to remove signal drifts.

hen, the images were smoothed using a Gaussian kernel with FWHM

qual to 6mm. Finally, we used the Automated Anatomical Labeling

AAL, 90 regions) atlas that was re-sliced to native fMRI space to par-

ellate fMRI volumes and compute regionally averaged fMRI BOLD sig-

als. The structural and diffusion-weighted MRI data of each subject

ere downloaded from the HCP and were processed using MRtrix3

 http://www.mrtrix.org/ ). We used single shell (b = 3000) multi-tissue

o estimate the response function, while fiber orientation distribution

unctions were computed using constrained spherical deconvolution of

rder 8. Tractogram generation was performed using deterministic trac-

ography with about 2 × 10 7 output streamlines and was seeded from the

hite matter. Fiber density was used as metric to define the individual

Cs and were computed by dividing the total number of fibers that con-

ect each of the pairwise regions of the AAL atlas with both the mean

ber length and the average of the sizes of the two regions considered.

he normalization with respect to the region sizes is done to ensure

hat the strength of the connection is not biased towards the size of the

OIs. The final SC matrix was obtained by averaging all SC matrices of

ll subjects. 

.2. Graph Laplacian mixture model 

The GLMM is a generative model assuming that the observations be-

ong to different types of signals with different underlying graph struc-

ures ( Petric Maretic and Frossard, 2020 ). The graphs are unknown and

re modeled by their graph Laplacian matrix; i.e., \boldmath 𝐿 = \bold-

ath 𝐷 - \boldmath 𝐴 , where \boldmath 𝐷 is a diagonal matrix of node

egrees, and \boldmath 𝐴 is the weighted adjacency matrix. \unbold-

ath 

The model estimation problem wants to fit the observed data to re-

over signal clusters, as well as the associated activation patterns and

raph structures. Specifically, observed fMRI signals are grouped into

https://www.fil.ion.ucl.ac.uk
http://www.mrtrix.org/
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lusters defined by different unknown brain activation patterns. The

odel recovers these clusters, characterized by graph Laplacians to-

ether with the probability of each cluster to occur. These graph Lapla-

ians bring information on the brain networks activation patterns (es-

imating means), functional brain connectivity structure (Laplacians),

nd dynamics (probability of occurrence as a function of time). 

Formally, each of the 𝑀 observed signals 𝒙 𝑚 ∈ ℝ 

𝑁 belongs to exactly

ne cluster 𝑘 represented by the graph Laplacian 𝑳 𝑘 ∈ ℝ 

𝑁×𝑁 and mean

𝑘 ∈ ℝ 

𝑁 . A binary latent variable 𝒛 𝑚 ∈ ℝ 

𝐾 has exactly one non-zero

alue, which denotes the cluster 𝑘 that 𝒙 𝑚 belongs to. A probability

𝑘 defines a prior probability distribution of 𝒙 𝑚 belonging to cluster 𝑘 ,

amely 𝑝 ( 𝑧 𝑚,𝑘 = 1) = 𝛼𝑘 , ∀𝑚 . 

Finally, the graph Laplacian 𝑳 𝑘 ∈ ℝ 

𝑁×𝑁 models smooth changes in

ignals on the corresponding graph. Large edge weight values in 𝑳 𝑘 thus

apture pairs of vertices that change their values in similar ways. These

onnections can be seen as partial correlations between two vertices in

 certain state ( Dempster, 1972 ). 

Under these assumptions, signals in each cluster 𝑘 follow a Gaussian

istribution determined through the graph Laplacian 1 𝑥 ∼  ( 𝝁𝑘 , 𝑳 

−1 
𝑘 
)

 Dong et al., 2016 ): with 𝐿 𝑘 = 𝐷 𝑘 − 𝑊 𝑘 . 

 ( 𝒙 𝑚 |𝑧 𝑚,𝑘 = 1) = 𝑝 ( 𝒙 𝑚 |𝝁𝑘 , 𝑳 𝑘 ) =  ( 𝝁𝑘 , 𝑳 

−1 
𝑘 
) (1) 

ecall that the cluster of each signal is a priori unknown. Marginalising

ver latent variables 𝑧 denoting which cluster the signals belongs to, we

ave: 

 ( 𝒙 𝑚 ) = 

∑
𝒛 𝑚 

𝑝 ( 𝒛 𝑚 ) 𝑝 ( 𝒙 𝑚 |𝒛 𝑚 ) (2) 

 

𝐾 ∑
𝑘 =1 

𝑝 ( 𝑧 𝑚,𝑘 = 1) 𝑝 ( 𝒙 𝑚 |𝑧 𝑚,𝑘 = 1) (3) 

 

𝐾 ∑
𝑘 =1 

𝛼𝑘  ( 𝝁𝑘 , 𝑳 

−1 
𝑘 
) , (4) 

.t. 𝑳 𝑘 ∈  , ∀𝑘 (5) 

𝐾 ∑
𝑘 =1 

𝛼𝑘 = 1 , (6) 

𝑘 > 0 , ∀𝑘 (7) 

ere (5) ensures that all 𝑳 𝑘 ’s are valid Laplacian matrices,  = { 𝑳 |𝐿 𝑖,𝑗 =
 𝑗,𝑖 ≤ 0 , ∀𝑖 ≠ 𝑗 &

∑𝑁 

𝑗=1 𝐿 𝑖,𝑗 = 0 , ∀𝑖 } . Eqs. (6) and (7) ensure that 𝛼 defines

 valid probability measure. 

.2.1. GLMM algorithm 

Given 𝑀 observed 𝑁-dimensional signals in the data matrix 𝑿 ∈
 

𝑁×𝑀 , we want to recover the parameters of our generative model (4) .

o do so, we will look at the maximum a posteriori (MAP) estimate for

ur parameters: probabilities 𝜶 = 𝛼1 , … , 𝛼𝐾 , means 𝝁 = 𝝁1 , … , 𝝁𝐾 and

raph Laplacians 𝑳 = 𝑳 1 , … , 𝑳 𝐾 . Namely, we assume the data has been

ampled independently from the distribution ( (4) ) defined through the

raph Laplacians. In addition, we take into account the constraints on

he graph structure given in (5), as well as possible prior information

n the graphs (such as sparsity), and we maximise over the a-posteriori

istribution of our model: 

rg max 𝜶, 𝝁, 𝑳 ln 𝑝 ( 𝜶, 𝝁, 𝑳 |𝑿 ) (8) 

arg max 𝜶, 𝝁, 𝑳 ln 𝑝 ( 𝑿 |𝜶, 𝝁, 𝑳 ) 𝑝 ( 𝑳 ) (9) 
1 Note that 𝑳 

−1 
𝑘 

here denotes a pseudo-inverse of the graph Laplacian 𝑳 𝑘 

 

b  

t  

3 
 arg max 𝜶, 𝝁, 𝑳 ln 

𝑀 ∏
𝑚 =1 

𝑝 ( 𝒙 𝑚 |𝜶, 𝝁, 𝑳 ) 𝑝 ( 𝑳 ) (10) 

 arg max 𝜶, 𝝁, 𝑳 ln 

𝑀 ∏
𝑚 =1 

𝐾 ∑
𝑘 =1 

𝛼𝑘  ( 𝒙 𝑚 |𝝁𝒌 , 𝑳 

−𝟏 
𝒌 
) 𝑝 ( 𝑳 𝒌 ) (11) 

 arg max 𝜶, 𝝁, 𝑳 

𝑀 ∑
𝑚 =1 

ln 

𝐾 ∑
𝑘 =1 

𝛼𝑘  ( 𝒙 𝑚 |𝝁𝒌 , 𝑳 

−𝟏 
𝒌 
) 𝑝 ( 𝑳 𝒌 ) . (12) 

his problem does not have a closed form solution. It could be simpli-

ed through posterior probabilities 𝜸 ∈ ℝ 

𝑀×𝐾 , with 𝛾𝑚,𝑘 modeling the

robability that the signal 𝒙 𝒎 belongs to cluster 𝑘 : 

𝑚,𝑘 = 𝑝 ( 𝑧 𝑚,𝑘 = 1 |𝒙 𝑚 , 𝝁𝑘 , 𝑳 𝑘 ) (13) 

= 

𝑝 ( 𝑧 𝑚,𝑘 = 1) 𝑝 ( 𝒙 𝑚 |𝑧 𝑚,𝑘 = 1 , 𝝁𝑘 , 𝑳 𝑘 ) ∑𝐾 

𝑙=1 𝑝 ( 𝑧 𝑚,𝑙 = 1) 𝑝 ( 𝒙 𝑚 |𝑧 𝑚,𝑙 = 1 , 𝝁𝑙 , 𝑳 𝑙 ) 
(14) 

= 

𝛼𝑘  ( 𝒙 𝑚 |𝝁𝒌 , 𝑳 

−𝟏 
𝒌 
) 

∑𝐾 

𝑙=1 𝛼𝑙  ( 𝒙 𝑚 |𝝁𝒍 , 𝑳 

−𝟏 
𝒍 
) 

(15) 

The parameters 𝜶, 𝝁 and 𝑳 can now be estimated iteratively using

n expectation maximisation (EM) algorithm, in which the graph Lapla-

ians 𝑳 are estimated with a graph learning scheme. 

It is worth noting that the graph learning step includes the graph pri-

rs imposed through 𝑝 ( 𝑳 𝑘 ) , including the sparsity prior which helps con-

rol the sparsity/density of the solution and is directly enforced through

he following regularisation term: 

 𝛽1 ,𝑘 𝑡𝑟 ( 𝟏 𝑇 𝑙𝑜𝑔( diag ( 𝑳 𝑘 ))) + 𝛽2 ,𝑘 ‖𝑳 𝑘 ‖2 𝐹 , off
. (16) 

he term diag( 𝑳 𝑘 ) is a vector with the diagonal values (node degrees)

rom 𝑳 𝑘 , and ‖𝑳 𝑘 ‖2 𝐹 , off
is the Frobenius norm of the off-diagonal values

n 𝑳 𝑘 . The graph learning problem naturally provides sparse solutions,

hile increasing 𝛽1 ,𝑘 strengthens graph connectivity, and increasing 𝛽2 ,𝑘 
romotes density. For a detailed derivation and analysis of this part of

he algorithm, we refer to the appendix. 

.3. Application to fMRI data 

The general workflow of this work is summarized in Fig. 1 . We build

 data matrix 𝑿 that contains the timecourses of all AAL 90 regions.

he timecourses of all sessions and all subjects are then concatenated

ogether to form a huge data matrix 𝒀 . This is then fed to the GLMM

lgorithm, which learns the several graph Laplacians ( 𝑳 𝑘 ), means ( 𝝁𝑘 )

or each graph and signal clustering probabilities ( 𝜸). The means and

raph Laplacians will be representing the whole population, while the

robabilities could be interpreted subject- specific because a probability

s assigned to each time point. We then validate the performance of

he proposed framework using task fMRI as reference ground truth, by

emonstrating that the timing of the task paradigms are captured by

he averaged 𝜸-values across all subjects. In order to have a timescale

omparable to the experimental timing, we average the probabilities 𝜸)

cross subjects. 

We can visualize the graph representation of each state by associat-

ng to each node a color that reflects its mean activation (encoded in

he estimated 𝝁) and each brain region is connected with a weighted

djacency matrix computed from the inferred Laplacians. The activa-

ion patterns are also associated to a probability of occurrence thanks to

heir clustering probabilities ( 𝜸). This allows us to associate each state

o a task experimental phase. 

The hyper-parameters of the model are optimized with a grid-search

y splitting the data in half and running the GLMM in parallel in the

wo groups and matching exclusively the activation patterns ( 𝝁 ). More
𝑘 
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Fig. 1. General workflow: from fMRI signals to the extraction of states. (A) Mean BOLD signals from four sessions of fMRI recordings are computed within each 

region of the AAL90 atlas and are concatenated together to form the subject data matrix 𝑿 , whose dimensionality is 𝑁 x 𝑀 where 𝑀 represents the timecourse 

and 𝑁 corresponds to the number of regions. The final data ( 𝒀 ) is obtained by concatenating 50 HCP subjects. (B) Plate notation of the generative model for 

extracting functional states and their corresponding estimated graphs represented through the Laplacians. (C) The output of the algorithm are 𝐾-number of states, 

their corresponding graph Laplacians, and the probability that each state would occur at a particular time-point. In the above example, we show K = 3. 
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tors of SC. 
etails are provided in Supplementary Appendix A.2. The optimization

f the number of clusters ( 𝐾) is also guided by the consistency of the

btained clustering probabilities with the task paradigm. We cannot ex-

ect 𝐾 to correspond to the number of tasks, since we cannot discount

he possibility for a state to correspond to more than one task epoch. For

hat reason, we evaluate the results by iteratively changing 𝐾 according

o the concordance of the estimated 𝜸 with respect to the experimental

ask paradigm. In doing so, we observe that the set of meaningful net-

ork patterns is the same regardless of the proposed number of clusters

 . Furthermore, varying 𝐾 in such a way results in better overall accu-

acy, suggesting that the number of optimal clusters might be different

rom the number estimated through more traditional methods. We de-

ote this method as 𝐾 - 𝛾 itero-homogeneity . See Supplementary Material

or further information (Appendix A.2.1, Fig. A2). 

On the other hand, RS data lacks a ground truth, so the number of

lusters 𝐾 has been chosen based on the optimized silhouette measure

nd the consensus clustering procedure Monti et al. (2003) , which is a

esampling-based method for optimal class discovery. 𝐾 has eventually

een varied according to the procedure mentioned above, in order to

apture multiple networks. In practice, changing the optimal number of

lusters does not seem to affect the final estimation, instead, it opens

he possibility of inferring more or fewer networks. 

.4. Comparison of learned functional graphs to brain structure 

The GLMM not only solves a clustering problem but additionally esti-

ates a direct correlation matrix represented by the Laplacian and, dif-
4 
erently from a Gaussian Mixture Model, the GLMM performs an implicit

imensionality reduction while leading to more interpretable results. An

mportant benefit of the algorithm compared to other clustering meth-

ds is indeed the estimation of the graph Laplacian , directly estimating

ts inverse 𝑳 

−1 
𝑘 

. Not only does this help in obtaining more meaningful

rain patterns, but it also conveys much more information and details

bout our clusters, allowing a direct comparison of the functional con-

ectivity matrix with the structural connectome. 

Since the DMN is strongly emerging in the state of all datasets being

nalyzed, they have been compared to each other with canonical met-

ics (Pearson correlation) focusing mainly on the activation patterns ( 𝝁).

he DMNs used for comparison are the ones extracted from both task

nd RS data. While in RS, we rely simply on the visualization of the

ctivation patterns of the brain areas involved, in the task data we can

erify the occurrence of the corresponding state dynamic looking at the

probabilities and matching the corresponding rest epoch of the experi-

ent (that are basically the rest periods between task blocks). This gives

s an additional validation of the assessed brain network. 

Additionally, we also compare connectivity matrices of each DMN-

tate with SC derived from DW-MRI by using a spectral euclidean dif-

erence. The comparison is done by first decomposing the weighted ad-

acency matrices ( 𝑨 ) of each graph derived from the Laplacians ( 𝑨 =
 − 𝑳 ) into their constituent eigenvalues and eigenvectors. After a nor-

alization step of both the functional matrix 𝑨 and the structural one,

he eigenspectrum of 𝑨 is transformed using the Procrustes algorithm

 Goodall, 1991; Kendall, 1989 ) to match the ordering of the eigenvec-
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The output of the Procrustes transform is the rotation matrix that is

sed to retrieve the transformed (functional) eigenvalues. In particular,

iven the rotation matrix 𝒁 generated by the transformation, the rotated

igenvalues are computed as follows: 

̂ = 𝒁𝑬𝑾 , (17)

here 𝑾 is the weighted adjacency matrix of the functional network

aken into consideration and 𝑬 is the vector of its original eigenvalues.

The spectral Euclidean difference reflects the degree of similarity be-

ween the learned graphs in each task and the anatomy defined by the

C. Thus, each network will have a certain score of distance that indi-

ates how that function couples with structure: the smaller the metric,

he closer the estimated graph to the structure. Subsequently, the scores

ave been normalized and sorted to see how the multiple DMNs esti-

ated from the different tasks and RS differ from the structure. 

. Results 

.1. Estimated network timecourses are consistent with the timing of task 
aradigms 

The GLMM algorithm enables the recovery of three important ele-

ents for the whole pull of subjects: (1) means or centers of activity;

2) connectivity matrices in the form of graph Laplacians; (3) temporal

ctivity profile of each network in terms of their likelihood to occur at

ach time point. The proposed framework extracts consistent patterns

f brain activity for each of the considered tasks, along with a temporal

rofile that is strikingly in agreement with the experimental paradigm,

ven though the GLMM is not given any information on the timings.

ig. 2 displays the estimated timecourses for six selected tasks overlaid

ith task conditions, which are distinguished by the background col-

rs. Each task has rest epochs in between the task blocks and these are

onsistently associated with corresponding Default Mode Networks A4.

he choice of the number of states visualized is driven by the K- 𝛾 itero-

omogeneity , as explained in the section above 2.3 . 

States 2 and 3 of the Language task capture moments when subjects

ndergo the Story and Math epochs, respectively, while State 1 corre-

ponds to the resting epoch of the task. For the Social task, State 3 con-

istently captures the RS epoch. However, the method does not distin-

uish the conditions Mental and Random since the plotted likelihood ( 𝜸)

f State 3 corresponds to both task epochs. On the other hand, State

 captures the transition between the rest and task epochs. The same

bservation can be made in the other tasks, in particular, the motor, re-
ational, and working memory . In each of these tasks, some states capture

ransitions between epochs and uniquely identify whether it is a transi-

ion between rest and task condition or a transition between two differ-

nt task conditions; i.e, State 2 in Relational Memory captures transitions

etween the conditions Relation and Match , while State 4 captures tran-

itions between rest and any of the two tasks. Another consistent state

hat is always present regardless the number of states estimated is the

tate 1 of the Motor task that seems to correspond to the tongue move-

ent in the experimental paradigm. 

.2. GLMM captures activation patterns corresponding to each task and 
onsistent meta-analytic characteristics 

In order to better interpret the states and maximize the concordance

f the estimated 𝜸 with respect to the experimental task paradigm, the

ptimal has been set to the number of task conditions. Figs. 3 (A) and (B)

isplay a representative set of GLMM results for the Language and Emo-

ion tasks, respectively. Along with the 𝜸 probabilities, already shown

efore, GLMM also recovers a brain graph represented with nodes whose

olor corresponds to the means ( 𝝁) estimated. Active nodes (brain ar-

as) represented in red correspond to more positive 𝝁 values. These val-

es represent the mean activation of each node in terms of signals. The

ize of the nodes is proportional to their degree and the edges are the
5 
eighted edges estimated from the Laplacians inferred. While the means

ive information on which node is active the most, the graph structure

n top of this gives the interactions between those activations, namely

ow connected two different activations are. 

The states for RS epochs of both tasks reveal a spatial pattern that

orresponds to the DMN network. Even though they have the same coac-

ivation patterns, they differ in the way they are connected. The regions

mplicated in State 2 (encoding the condition Math ) include the pari-

tal areas (superior and inferior) and the frontal region (e.g., middle

rontal gyrus, opercular part of the inferior frontal gyrus). These re-

ions are well in-line with the established associated areas correspond-

ng to numbers and calculations ( Arsalidou et al., 2018 ). On the other

and, active areas in State 3 (condition Story ) are the hippocampus,

rontal, and the bilateral superior and anterior temporal cortex, consis-

ent with previously observed regions implicated with story processing

asks ( Barch et al., 2013 ). 

Meanwhile, states 2 and 3 of the Emotion task correspond to the Fear
nd Neutral conditions, respectively, with strong differences in terms of

he regions activated. In particular, Fear triggers activations in the bi-

ateral central gyrus, superior occipital gyrus, and the parietal cortices.

hese regions cover the somatosensory cortex, which is responsible not

nly for processing sensory information from various parts of the body,

ut also for emotional processing, including generation of emotional

tates and emotion regulation ( Bufalari et al., 2007; Dolan, 2002; Kropf

t al., 2019 ). Meanwhile, the Neutral state shows activation of visual re-

ions that are strongly related to shape ( Anzai et al., 2007; Hegdé and

an Essen, 2000 ). Unexpectedly, we have found relatively low means

n the amygdala, a well-known region that is typically activated in emo-

ional matching paradigms ( Hariri et al., 2000; Preckel et al., 2019 ). 

Another relevant brain pattern is the one associated to the Motor task

nd in particular to the tongue movements. The first State is not only

apturing perfectly the dynamic but also highlighting activations of the

perculum, insula, thalamus, medial and posterior cingulate in line with

iterature ( Corfield et al., 1999; Xiao et al., 2017 ). 

.3. Extracted states during resting state 

After validating the outcome of the proposed framework when ap-

lied to task fMRI using the known experimental task paradigm as the

round truth, we apply the method to RS fMRI. The RS brain net-

orks that GLMM is capable of capturing are consistent with literature

 van den Heuvel and Hulshoff Pol, 2010 ). Fig. 4 (A) displays the es-

imated brain networks together with the average likelihood to occur

cross subjects with its standard deviation. 

Fig. 4 (B) shows the probability ( 𝜸) of each state to occur at each

ime-point for one representative subject, giving a proxy of the state’s

ctivity profiles in the same order presented in (A). As expected, we

bserve the DMN to be highly occurring. We have found a state that

learly covers areas of the visual cortex, another state that shows re-

ions corresponding to the auditory network and some portions of the

rontoparietal cortex, and another one that contains the bilateral tempo-

al cortices and the insula, which is analogous to the salience network.

dditionally, we also have found activations in the left and right hemi-

pheres to be separately clustered. 

Hence, GLMM uses an existing pool of empirical fMRI data to approx-

mate graphs that, interestingly, arise to be meaningful brain networks

onsistent with the literature ( van den Heuvel and Hulshoff Pol, 2010 ).

.4. Comparison of learned graphs reminiscent of the DMN 

We have found that states corresponding to the rest epochs of the dif-

erent tasks always bear striking similarity to the DMN, as expected. To

nderstand the nature of the recovered DMN-related states, we compute

earson correlation between the coactivation patterns between these

MN-related means ( 𝜇) for each task as well as RS, which have an im-

ortant topological meaning, since each node represent a brain area.
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Fig. 2. Estimated timecourses with respect to selected task paradigms. The 𝜸 values are plotted over the experimental paradigm of Language (A), Emotion (B), Social 

(C) and Relational Memory (D) tasks. The black signal corresponds to the probability of belonging to a specific state . 
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ig. 4 (C) displays the correlation between the extracted DMN-related

tates from all tasks and RS fMRI. The axes are sorted from lowest

o highest total correlation per row. A separation between low-level

ensory-motor ( e.g. , language, motor, rest) versus high-level cognition

 e.g. working memory, relational memory, social and emotion). 

These co-activation patterns are all highly correlated but Language,
elational Memory and Rest DMNs present some negative correlations

ith the other tasks DMNs. The reader is pointed to figure A4 in Sup-

lementary Material to visually assess these differences. 

.5. Comparison of learned functional DMN graphs with structure 

Here we want to compare the DMN-related states to structure by sim-

le visualization and applying some similarity or dissimilarity metrics. 

As mentioned above, these states are related to the rest epoch of the

ifferent tasks datasets and the DMN-state extracted from RS. 

Fig. 5 (A) shows the group-averaged SC across all subjects consid-

red in this work, and Fig. 5 (B) displays the weighted adjacency matrix

omputed as 𝑨 = 𝑫 − 𝑳 from the estimated graph Laplacian matrix of

he DMN network of the Resting State. The adjacency matrix is visually

ore sparse than the SC. Moreover, a direct comparison (i.e., Pearson

orrelation across connections) between the state matrices and SC re-

eals similarity values within the range of 𝑟 = 0 . 48 − 0 . 63 , as shown in

ig. 5 (C). It is also noteworthy that, compared to the conventional FC-

C relationship, where FC is obtained by correlating inter-regional BOLD
6 
imecourses using either Pearson correlation or partial correlation, the

orrelation with SC is much higher for GLMM-based state matrices. It

as to be noticed that they are not statistically different within meth-

ds, namely the correlation of each DMN with SC is similar in all the

ethods. 

By computing the dissimilarity spectral scores for each DMN and

orting them in ascending order, it emerges that there is a trend of “ex-

ernally directed ” or less introspective tasks. This score is normalized to

nhance the visualization and it is only representative of the gradient,

ot of the significant difference. 

Low cognitive level tasks, such as Motor and Resting State and Lan-

uage, are expected to have low scores of dissimilarity with structure,

ence are more similar to structure. Conversely, more introspective and

internally directed ” tasks, such as Relational Memory, Social and Emo-

ion, differ more from structure. Fig. 5 (D) wants to highlight the gra-

ient and order of the DMN under consideration to assess a potential

ecoupling index with the aim of creating a framework for potential

pplication in meta-analyses ( Preti and Van De Ville, 2019 ) (see Sup-

lementary Materials Appendix A.5). 

Fig. 5 can be complemented with the visualization of the DMNs in

ppendix A.4 to advance reasonable conclusions. In fact, even though

he identified brain pattern in the rest epochs across all tasks contains

he key regions of the DMN, the corresponding connectivity structure of

he state matrix varies, suggesting task-specific mechanisms in the way

rain areas connect. 
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Fig. 3. States corresponding to each epoch of the (A) Language task and (B) Emotional task paradigms. Each node corresponds to each brain region in the AAL atlas. 

The colors denote the values of the extracted clusters (means 𝜇), the edges denote the connectivity derived from the estimated graph Laplacians, and the size the 

nodes indicate the degree of each node’s connections. The rest epochs of the two tasks show regions of the default mode network. 
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.6. Extracted states during resting state 

After validating the outcome of the proposed framework when ap-

lied to task fMRI using the known experimental task paradigm as the

round truth, we apply the method to RS fMRI. The RS brain net-

orks that GLMM is capable of capturing are consistent with literature

 van den Heuvel and Hulshoff Pol, 2010 ). Fig. 4 (A) displays the es-

imated brain networks together with the average likelihood to occur

cross subjects with its standard deviation. 

Fig. 4 (B) shows the probability ( 𝜸) of each state to occur at each

ime-point for one representative subject, giving a proxy of the state’s

ctivity profiles in the same order presented in (A). As expected, we

bserve the DMN to be highly occurring. We have found a state that

learly covers areas of the visual cortex, another state that shows re-

ions corresponding to the auditory network and some portions of the

rontoparietal cortex, and another one that contains the bilateral tempo-

al cortices and the insula, which is analogous to the salience network.

dditionally, we also have found activations in the left and right hemi-

pheres to be separately clustered. 
7 
Hence, GLMM uses an existing pool of empirical fMRI data to approx-

mate graphs that, interestingly, arise to be meaningful brain networks

onsistent with the literature ( van den Heuvel and Hulshoff Pol, 2010 ).

.7. Comparison of learned graphs reminiscent of the DMN 

We have found that states corresponding to the rest epochs of the dif-

erent tasks always bear striking similarity to the DMN, as expected. To

nderstand the nature of the recovered DMN-related states, we compute

earson correlation between the coactivation patterns between these

MN-related means ( 𝜇) for each task as well as RS, which have an im-

ortant topological meaning, since each node represent a brain area.

ig. 4 (C) displays the correlation between the extracted DMN-related

tates from all tasks and RS fMRI. The axes are sorted from lowest

o highest total correlation per row. A separation between low-level

ensory-motor ( e.g. , language, motor, rest) versus high-level cognition

 e.g. working memory, relational memory, social and emotion). 

These co-activation patterns are all highly correlated but Language,
elational Memory and Rest DMNs present some negative correlations
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Fig. 4. Extracted states from resting-state (A) Six states corresponding to the RS data. Values in percentage show the mean occurrences of each state with its standard 

deviations across all 50 subjects considered. (B) Example activity profile of each state for an example subject in the same order presented in (A). (C) Spatial correlation 

of estimated means corresponding to DMN extracted from resting state and all DMNs from task fMRI data. 
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ith the other tasks DMNs. The reader is pointed to figure A4 in Sup-

lementary Material to visually assess these differences. 

.8. Comparison of learned functional DMN graphs with structure 

Here we want to compare the DMN-related states to structure by sim-

le visualization and applying some similarity or dissimilarity metrics. 

As mentioned above, these states are related to the rest epoch of the

ifferent tasks datasets and the DMN-state extracted from RS. 

Fig. 5 (A) shows the group-averaged SC across all subjects consid-

red in this work, and Fig. 5 (B) displays the weighted adjacency matrix

omputed as 𝑨 = 𝑫 − 𝑳 from the estimated graph Laplacian matrix of

he DMN network of the Resting State. The adjacency matrix is visually

ore sparse than the SC. Moreover, a direct comparison (i.e., Pearson

orrelation across connections) between the state matrices and SC re-

eals similarity values within the range of 𝑟 = 0 . 48 − 0 . 63 , as shown in

ig. 5 (C). It is also noteworthy that, compared to the conventional FC-

C relationship, where FC is obtained by correlating inter-regional BOLD

imecourses using either Pearson correlation or partial correlation, the

orrelation with SC is much higher for GLMM-based state matrices. It

as to be noticed that they are not statistically different within meth-

ds, namely the correlation of each DMN with SC is similar in all the

ethods. 

By computing the dissimilarity spectral scores for each DMN and

orting them in ascending order, it emerges that there is a trend of “ex-
8 
ernally directed ” or less introspective tasks. This score is normalized to

nhance the visualization and it is only representative of the gradient,

ot of the significant difference. 

Low cognitive level tasks, such as Motor and Resting State and Lan-

uage, are expected to have low scores of dissimilarity with structure,

ence are more similar to structure. Conversely, more introspective and

internally directed ” tasks, such as Relational Memory, Social and Emo-

ion, differ more from structure. Fig. 5 (D) wants to highlight the gradient

nd order of the DMN under consideration to assess a potential decou-

ling index with the aim of creating a framework for potential applica-

ion in meta-analyses Preti and Van De Ville (2019) (see Supplementary

aterials Appendix A.5. 

Fig. 5 can be complemented with the visualization of the DMNs in A4

o advance reasonable conclusions. In fact, even though the identified

rain pattern in the rest epochs across all tasks contains the key regions

f the DMN, the corresponding connectivity structure of the state ma-

rix varies, suggesting task-specific mechanisms in the way brain areas

onnect. 

. Discussion 

.1. General findings 

We have proposed the GLMM framework for explaining brain activ-

ty based on a generative model. Specifically, we were able to obtain
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Fig. 5. Weighted adjacency matrix computed from the learned Laplacian and its relation to the structural connectome. (A) Normalized group-averaged SC matrix 

corresponding to all subjects considered in this work. (B) Normalized adjacency matrix extracted from the Laplacian matrix of the DMN extracted from Resting State. 

(C) Similarity between SC and different FC measures: using (1) GLMM-based adjacency extracted from learned graphs and classical measures of FC using (2) Pearson 

Correlation and (3) Partial Correlation. (D) Percentage dissimilarity scores for networks of a specific task, relative to the DMN score of that same task. 
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tates that are characterized by: (1) spatial pattern of regional activa-

ion levels; (2) underlying graph that describes the interactions of the

egions; (3) likelihood over time. 

First, we validated the approach by demonstrating that the extracted

atterns are consistent with established neurophysiological descriptions

orresponding to the tasks. We also showed that the probability of these

tates to occur at each time-point is able to capture the timing of the task

aradigms, even though no temporal information is given to the GLMM.

urprisingly, also the hyperparameters are optimized by focusing solely

n the activation patterns. Therefore the algorithm has no clue on the

imings. 

Setting the number of states to a number that is comparable with the

ask epochs allows us to have simpler visualization and clearer interpre-

ation of each state with respect to the task paradigm, keeping in mind

hat the one state might correspond to a combination of task epochs and

ice versa . Interestingly, when the states are significantly more than the

umber of task epochs, the most prominent activation patterns were the

nes characterized by the activation of medial prefrontal cortex, poste-

ior cingulate cortex and angular gyrus - that are commonly associated

o the Default Mode Network ( Buckner and DiNicola, 2019 ). Moreover,

heir corresponding temporal dynamic was always characterized by a

igh likelihood ( 𝜸) during the rest epochs of task fMRI data. 

Secondly, we applied the approach to RS data, which revealed contri-

utions of some of the well-known RS networks, such as the DMN, visual,
9 
uditory/attention, and salience networks. Finally, we took advantage

f the estimated graph Laplacian matrices to understand the interac-

ions of the regions, and how the strength of these interactions relates

o the underlying brain structure obtained from DW-MRI. We showed

hat the adjacency matrices computed from the graph Laplacians bear

loser similarity to SC than conventionally defined FC matrices obtained

y Pearson or partial correlations of time-courses. We conclude that the

raphs estimated by the GLMM are generally more correlated to struc-

ure even if the direct input is simply the empirical fMRI data, without

ny additional structural information. 

Since a DMN-related state was found in all datasets, we have com-

ared the spatial patterns to assess how they correlate to each other.

orting the correlation values, a distinction between low- and high-level

ognitive tasks was revealed. It is interesting to notice that the corre-

ations can be explained by visually looking at which brain area has

ositive or negative activations ( 𝝁) (Fig. A4). In particular, the DMN es-

imated from Language seems to have low correlations with the DMNs

stimated from the other tasks because the nodes corresponding to infe-

ior frontal and temporal gyrus, hippocampus, amygdala and calcarine

ssure have opposite sign values. 

Comparison of the matrices using the spectral approach also showed

 similar trend of low-level and high-level cognitive tasks . Comparing

he DMN-related graphs to the SC is beneficial to evaluate how the

o-activation patterns are supported in terms of connectivity, consid-
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ring the estimated Laplacians that is one of the main benefits of using

LMM. 

One limitation of our approach might be the concatenation in time

f all subjects’ data, therefore we assume that parameters are constant

n the whole population, which is a clear over- simplification knowing

hat individual fingerprinting can be reliably achieved on the basis of

S fMRI recordings Finn et al. (2015) . Nonetheless, we are able to con-

truct a set of maps that represent the entire population and this could be

elpful as a normative model of healthy individuals to assess patients

n a clinical setting, knowing that there are functional differences in

he brain network related to autism Nair et al. (2020) , Alzheimer’s Dis-

ase ( Grieder et al., 2018 ) and other neurological conditions ( Liao et al.,

014; Starck et al., 2013; Tagliazucchi et al., 2010; Zöller et al., 2019 ).

oreover, the subject specificity can be taken into account when look-

ng at the time dynamic of the 𝛾 probabilities, since temporality plays

lso a key role in the human brain fingerprinting ( Van De Ville et al.,

021 ). 

.2. Estimated Graph Laplacians conform with structural connectivity from
W-MRI 

Pearson correlation has been widely deployed to measure FC be-

ween different brain regions ( Chang and Glover, 2010; Friston et al.,

994; Honey et al., 2009; Horn et al., 2014; Hutchison et al., 2013; Preti

t al., 2017; Supekar et al., 2010 ). The simplicity of the approach, how-

ver, comes with a number of well-known limitations: it only reflects

n averaged measure of the association between regions at all time-

oints, leaving out the dynamic nature of brain function ( Preti et al.,

017 ). Moreover, it does not provide evidence of a direct relationship

etween pairwise regions without possible confounding effects that is

ntroduced by a relationship to a third region due to the inherent tran-

itive nature of the metric. To address this issue, partial correlation has

een shown to improve the results by regressing out the effects of other

ariables ( Deligianni et al., 2013; Liégeois et al., 2020; Smith et al.,

011; Wang et al., 2016 ). The GLMM approach directly estimates a

aplacian matrix to characterize the connectivity profile of a state; e.g.,

he GLMM adjacency matrix in Fig. 5 (B) is much sparser than the FC

atrix, even sparser than the SC, because of the regularization which

ontrols sparsity. We also show in Fig. 5 (C) that the GLMM adjacency

atrices bear higher similarity to SC than FC variants. Unlike classical

C, GLMM adjacency matrices include direct interactions between re-

ions within a network and do not include indirect correlations which

re dependant on other regions of interest. This phenomena occurs be-

ause the GLMM, built on Gaussian Graphical models, provably have

his property ( Uhler, 2017 ). Moreover, the GLMM method is a dynamic

pproach, whereby each GLMM matrix corresponds to particular time-

oints ( i.e. , each task epoch turns out to correspond to a specific state,

nd consequently to a specific matrix). It has been shown in previous

ork ( Liégeois et al., 2016 ) that there are fluctuations in similarity be-

ween FC and SC when sliding-window analysis is applied instead of

tatic FC. 

As shown in Fig. 5 (C), the GLMM state matrices have closer sim-

larity to the SC. This could be explained by the fact that these are

tate-specific graphs whose edges reflect pairwise regions that show syn-

hronous changes. In this case, since we are specifically comparing the

raphs corresponding to the DMN in rest, and in all tasks, the edges

f the learned graphs reveal how signals defined on the regions com-

rising the DMN simultaneously fluctuates with all others. Therefore,

hese graphs recovered by the GLMM offer a more accurate description

f functional connectivity networks. We surmise that their close sim-

larity with SC support previous findings that brain activity is shaped

y the anatomical backbone on which it manifests Cabral et al. (2011) ;

oney et al. (2009) ; Liégeois et al. (2016) . 

From the standard deviation of how the different DMNs are corre-

ated to the SC, it can be noticed that there is no statistical difference

ithin the same FC method chosen, but a similar trend is consistently
10 
ound applying the spectral dissimilarity and running the GLMM with

ifferent conditions (hyper-parameters). 

The GLMM provides a good tool to describe functional connectivity

f a whole-population with meaningful comparisons to structure. There-

ore, in future works this approach could be applied to a pull of patients

o better assess these differences. 

.3. Distance between functional states and structural connectome reflects 
 gradient along tasks 

The dissimilarity score based on spectral distance can be interpreted

s a function-structure decoupling index of each state. In particular, each

MN-related state is associated with a value that indicates how far away
t is from structure. This metric of function-structure distance was capa-

le of separating low- from high-level tasks. As shown in previous works

 McCormick and Telzer, 2018 ), task engagement plays a role in the regu-

ation of DMN in order to perform goal-directed behaviors. Even though

ubjects are resting, they are involved with different levels of engage-

ent. 

Generally, there has always been an interest in disentangling the

ole of the DMN in different tasks ( Elton and Gao, 2015a ). Here, we

ocus on how these DMN-related states connect functionally, and their

istance with anatomy as reflected by the SC. It is interesting to notice

hat structure-function decoupling allows distinguishing the different

asks. Thus, as shown in Elton and Gao (2015a) , the DMN may play a

reat role in internal and external tasks through a flexible coupling with

ask-relevant brain areas. 

However, it is important to highlight that this metric is introduced

s a simple tool of sorting the (dis)similarity of functional networks with

espect to structure. We acknowledge that this metric is extremely de-

endent on the choice of SC and FC generation and no statistical dif-

erence is claimed: the scores are normalized for a better visualization.

onetheless, the trend highlighted is also found using traditional Pear-

on correlation, as shown in Fig. 5 (C). Moreover, this gradient can also

e explained visually, looking at the density of the connections. 

.4. Methodological perspectives 

Dynamic analyses of functional imaging data during rest and tasks

ave been going on for a decade ( Chang and Glover, 2010 ). Since their

nception, several methodological advances have been introduced to

robe the functional organization of the brain from a dynamical point of

iew. A thorough review of the existing methodological tools ( Hutchison

t al., 2013; Preti et al., 2017 ) has classified existing approaches into

our distinct groups of methods: (i) sliding-window correlations, (ii)

rame-wise analyses, (iii) state modeling, and (iv) temporal modeling.

e consider our proposed technique to be an integration of state and

emporal modeling, whereby the GLMM approach provides states char-

cterized in terms of activity and connectivity, as well as the state time

ourse, akin to how Hidden Markov Models (HMM) ( Stevner et al.,

019; Vidaurre et al., 2017 ) are able to capture various brain states

nd their likelihood to occur at each time-point. Unlike HMMs, how-

ver, GLMM does not assume any Markovian process and, differently

rom a Gaussian Mixture Model (GMM), it extracts the states directly

rom the averaged BOLD data within parcellated brain regions with-

ut a dimensionality reduction step such as PCA, that are often needed

o apply GMMs. The reason is the implicit dimensionality reduction

hat occurs in GLMM by imposing a Laplacian structure on the inferred

raphs ( Petric Maretic and Frossard, 2020 ). This model has been shown

o outperform standard clustering methods on high-dimensional tasks,

ven when intuitively there is a priori no inherent graph structure in

he data, achieving better clustering accuracy. The reader is directed to

etric Maretic and Frossard (2020) for more details and proofs. Addi-

ionally, the inferred Laplacians add a strong layer of interpretability

o our findings and offer multiple possibilities for further analysis and
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nderstanding of brain networks. The extracted individual graph struc-

ures describe the interactions of regions comprising the states. Apart

rom the enhanced visual understanding of interactions between the

rain regions, these graphs enable further comparison of different brain

etworks, as shown in Figs. 4 and 5 . 

Meanwhile, the extraction of the activity time course is a relevant as-

ect that this method highlights: in conventional methods, a functional

raph is a representation of the functional connectome, which reflects

he statistical inter-dependency between brain signals across all brain

egions (nodes). The main issue with this approach is that one needs to

efine time windows and the size of these windows may bias the analy-

is ( Hindriks et al., 2016; Leonardi et al., 2013 ). Furthermore, the input

o the GLMM algorithm is the concatenated raw fMRI signals, and thus

he experimental paradigm is completely unknown to the algorithm.

evertheless, the 𝜸 values (probabilities of belonging to a cluster) im-

ressively manage not only to capture the experimental conditions of

he tasks, but also to extract network activity patterns that are consis-

ent with previously established knowledge using classical regression

nalyses. 

A particularity of the model is the imposition of a special struc-

ure on the Gaussian, bringing several benefits. Namely, as shown in

etric Maretic and Frossard (2020) , the model is very robust to a high-

imensional setting, when compared to standard mixtures of Gaussians.

urthermore, the graph Laplacian matrices obtained with this method

ffer a high level of interpretability. Therefore, the method can be ap-

lied directly to atlas-based time courses, and does not need to resolve

o any prior dimensionality reduction, providing results which can be

irectly connected to the atlas under consideration, making the results

ore explicable. 

.5. Technical limitations 

While the proposed method permits to capture more information

bout estimated brain networks, it still suffers from some limitations,

ostly due to the oversimplification of a very complex problem. Firstly,

he method makes the assumption that each fMRI signal corresponds to

xactly one graph, i.e., one brain network. When fitting the model, it

oes return probabilities of the signal belonging to each of the states,

ut that is largely different from assuming that one signal actually orig-

nated as a combination of several neurological networks, a phenomena

hat could very well be present in practice due to temporal overlap at the

emodynamic timescale. Furthermore, the method does not specify any

ime constraints. Even though the experimental paradigm is completely

nknown to the algorithm, the 𝜸 values (probabilities of belonging to

 state) manage to capture the timing of the experimental conditions.

his observation helped us to validate the method, showing that even

ith no temporal information, meaningful states are obtained. 

Finally, additional information from the literature could be incor-

orated into the graph inference problem, so that more accurate and

eliable findings can be obtained. These limitations can be addressed in

uture work. 

. Conclusion 

This study presents a new framework for uncovering dynamic rep-

esentations of brain activity. The extracted state graphs are sparse and

ainly capture connections supported by the underlying SC. 

The degree of dissimilarity between DMN-related states and SC may

llow to advance a distinction between tasks, with a trend that could be

eplicated by running the algorithm multiple times in different condi-

ions. Even though the majority of the DMN functional connectivity ma-

rices are not statistically different, the spectral distance can be a good

pproximation of the matricial information that the FC carries and can

e an interesting decoupling metric to investigate behavioral specializa-

ion through meta-analyses in future works. 
11 
Overall, our findings validate the potential of the proposed technique

n providing a meaningful representation of brain activity. Future works

ould focus on application of our method in clinical settings for popula-

ion studies, or focusing the attention on a more subject-specific analy-

is. 
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