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1.  INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a non-
invasive imaging technique that has revolutionized our 
ability to investigate the central nervous system (CNS). 
By exploiting the blood-oxygenation-level-dependent 
(BOLD) signal, a hemodynamic proxy of neural activity 
(Logothetis, 2003), fMRI has become a method of choice 
for exploring brain function. Notably, the acquisition of 
fMRI data during resting state—marked by the absence 
of explicit tasks or stimuli—has garnered significant 
attention. This interest stems from the compelling obser-
vation that spontaneous BOLD fluctuations can be 
parsed into so-called resting-state networks (Biswal 

et  al., 2010; Damoiseaux et  al., 2006; Fox & Raichle, 
2007), which reflect the brain’s intrinsic functional organi-
zation. These networks have been shown to be behavior-
ally relevant, making them valuable tools to study healthy 
and impaired brain function (van den Heuvel & Hulshoff 
Pol, 2010).

More recently, the scope of resting-state fMRI has 
expanded beyond the confines of the cortex, for instance 
to probe the intrinsic organization of the spinal cord; see 
(Harrison et al., 2021) for review. Notably, studies focusing 
on the cervical spinal cord have uncovered organized 
spontaneous signals, utilizing both data-driven methods, 
such as independent component analysis (ICA) (Kong 
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et al., 2014; Landelle et al., 2021), and innovation-driven 
coactivation pattern analysis (iCAP) (Kinany et al., 2020), 
and hypothesis-driven approaches (Barry et  al., 2014; 
Eippert, Kong, Winkler, et  al., 2017; Harita & Stroman, 
2017; Kaptan et al., 2023; Liu et al., 2016; Weber et al., 
2018). These studies have effectively revealed spinal 
resting-state networks, prominently featuring functional 
connectivity between bilateral ventral (i.e., motor) and dor-
sal (i.e., sensory) horns. Building on these auspicious 
results, further studies have then explored the reliability of 
these functional connectivity patterns, a critical consider-
ation to ensure their broader applicability in fundamental 
and clinical applications. For instance, Barry and col-
leagues demonstrated their stability within the same scan-
ning session (Barry et al., 2016). Additional investigations 
have evaluated the impact of different acquisition and pro-
cessing choices (Barry et al., 2018; Eippert, Kong, Winkler, 
et al., 2017; Kinany et al., 2023), as well as the influence of 
distinct noise sources (Kaptan et al., 2023). These collec-
tive efforts have underscored the robustness of functional 
connectivity patterns in the cervical spinal cord.

Despite these promising findings, areas situated cau-
dal to the cervical spinal cord have so far largely eluded 
investigation. Remarkably, the lumbosacral spinal cord, 
crucial for motor control and sensory processing of the 
lower limbs, has been largely unexplored. This lack of 
studies can be attributed, in part, to the challenges asso-
ciated with fMRI acquisition, processing, and analysis in 
this region, stemming from the smaller size of the cord 
(Frostell et  al., 2016), heightened anatomical variability 
(Tins & Balain, 2016; Van Schoor et  al., 2015), and the 
lack of dedicated tools have compounded this difficulty. 
Nonetheless, it is interesting to note that the lumbosacral 
cord has a greater proportion of gray matter compared 
with cervical segments (Henmar et  al., 2020). To date, 
only one study (Combes et  al., 2023) has deployed 
resting-state fMRI to uncover the intrinsic organization of 
the lumbosacral spinal cord, shedding light on sensorim-
otor networks reminiscent of those observed in the cervi-
cal spinal cord. Drawing on these promising observations, 
a critical aspect yet to be explored pertains to the robust-
ness of these lumbosacral functional connectivity pat-
terns. Addressing this is pivotal for the advancement of 
resting-state metrics as potent tools to identify functional 
biomarkers, especially in the context of neurological con-
ditions such as movement disorders and spinal cord inju-
ries (Conrad et  al., 2018; Kreiter et  al., 2022; Rowald 
et al., 2022).

To address this knowledge gap, this study sets out to 
systematically investigate spontaneous BOLD fluctua-
tions in the human lumbosacral spinal cord. Recognizing 
the susceptibility of spinal cord fMRI to a variety of noise 
sources, our aims are twofold: firstly, to confirm the pres-

ence and nature of organized fluctuations in the lumbo-
sacral spinal cord, employing a sequence distinct from 
the one used by Combes et al. (2023); and secondly, to 
assess the robustness of functional connectivity mea-
sures to variations in the denoising procedure. By identi-
fying the optimal approach for assessing functional 
connectivity in the lumbosacral spinal cord, we intend to 
contribute to the development of robust methods for 
studying the functional architecture of this region. Ulti-
mately, our work will enhance our ability to investigate the 
CNS on a larger scale, opening up new avenues for 
research and clinical applications.

2.  METHODS

2.1.  Participants

In total, 22 healthy volunteers were enrolled in this study 
(14 male, 14 female, 28 ±  2.28  years old). Participants 
reported no history of neurological or motor disorders. All 
participants gave their written informed consent to par-
ticipate, and the study was approved by the Commission 
Cantonale d’Éthique de la Recherche Genève (CCER, 
study 2019-00203).

2.2.  Data acquisition

All experiments were performed on a Siemens Prisma 
scanner (3 Tesla) (Erlangen, Germany), equipped with a 
32-channel spine coil of which 16 were used for the 
acquisitions. Participants were placed in the scanner in 
supine position. Functional images were acquired using a 
T2*-weighted echo-planar imaging (EPI) sequence with 
ZOOMit selective field-of-view imaging (see example 
image in Fig. 1A), based on our previous cervical proto-
cols (Kinany et al., 2019, 2020, 2023), but adapted for the 
lumbosacral spinal cord (repetition time (TR) = 2.5 s, echo 
time (TE)  =  34 ms, FOV  =  44  ×  144, flip angle  =  80°, 
GRAPPA acceleration factor: 2, in-plane resolu-
tion = 1.1 × 1.1 mm2, slice thickness = 3 mm). Compared 
with cervical recordings, a wider field-of-view (i.e., chang-
ing in-plane resolution from 1 to 1.1 mm) was employed 
to account for the additional tissue volume present at the 
levels of the hips, and to avoid aliasing artifacts. The lum-
bosacral enlargement (approximately from at vertebral 
levels T11 to L2) was covered using 27 axial slices, posi-
tioned perpendicularly to the spinal cord to limit signal 
dropouts due to field inhomogeneities (Finsterbusch 
et al., 2012). Manual shimming adjustments focused on 
the spinal cord were conducted prior to the functional 
acquisitions to optimize the magnetic field homogeneity. 
For each participant, 360 volumes (i.e., 15  min) were 
acquired, during rest (i.e., no explicit task) with eyes open 
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(an empty screen was shown). Additionally, high resolu-
tion T2-weighted images (64 sagittal slices; resolution: 
0.4 × 0.4 × 0.8 mm3; field-of-view: 250 × 250 mm2; TE: 
133 ms; flip angle: 140°; TR: 1500 ms; GRAPPA acceler-
ation factor: 2; partial Fourier factor: 6/8; acquisition time: 
6:03 min) were acquired for normalization purposes.

During the fMRI data acquisition, we recorded periph-
eral physiological signals to perform physiological noise 
modeling: cardiac data were acquired using a pho-
toplethysmograph and respiratory signals were obtained 
with a belt (Biopac MP150 system, California, USA). 
Simultaneous recordings of scanner triggers ensured 
synchronization of the recordings.

2.3.  Data preprocessing

Preprocessing steps were performed using Python (ver-
sion 3.9,7), with nilearn library (version 0.9.1) falling under 
the umbrella of scikit-learn (version 0.24.2), FMRIB Soft-
ware Library (FSL; version 5.0) and Spinal Cord Toolbox 
(SCT; version 5.3.0; De Leener et al., 2017).

2.3.1.  Preprocessing of fMRI data

The first step of the preprocessing pipeline was slice-
timing correction of the functional volumes, using the 
FSL command “slicetimer.”

2.3.1.1.  Motion correction.  Given the small size of the 
spinal cord, in particular at the lumbosacral levels (Frostell 
et al., 2016), motion correction is a crucial step. The vol-
umes of each functional run were averaged and the cen-
terline of the spinal cord was automatically extracted 
from the resulting image. A cylindrical mask along this 
centerline was drawn (30 mm) and further used to exclude 
regions outside the spinal cord, thus limiting the impact 

of regions that might move independently of the cord. To 
account for the articulated structure of the spine, in-plane 
slice-wise realignment (in x and y) was then performed 
using the SCT function “sct_fmri_moco” (De Leener 
et al., 2017), with no z-regularization and a B-spline inter-
polation. Motion correction parameters were computed 
as the average absolute motion across slices and subse-
quently employed as regressors for the denoising strat-
egy (see Section 2.3.2.). To provide an overall estimate of 
motion between each time point, framewise displace-
ment (FD) was computed by summing the absolute val-
ues of the derivatives of the motion parameters in x and 
y. The mean FD was then used to determine which sub-
jects to exclude from the analyses.

2.3.1.2.  Segmentation.  For the anatomical image, the 
spinal cord was automatically segmented with SCT deep 
learning model (sct_deepseg -task lumbar) and the 
masks were manually adjusted.

For the functional runs, we use the FSLeyes software to 
manually create binary masks of the spinal cord only and 
the spinal cord with the surrounding subarachnoid cavity, 
using mean motion-corrected images. The subtraction of 
the former from the latter generated the mask of the CSF 
only, which was manually inspected for each participant.

2.3.1.3.  Normalization.  Functional images were first 
coregistered to the corresponding T2 anatomical image 
with nonrigid transformations, using the SCT function 
“sct_register_multimodal” (De Leener et al., 2017). Nor-
malization warping fields from anatomical image to 
PAM50 template space were also estimated. Vertebrae-
based alignment, standardly used for cervical images, is 
suboptimal in the lumbosacral region due to its smaller 
size and to large shifts between spinal segmental levels 
and vertebral bodies (Frostell et al., 2016). To circumvent 

Fig 1.  Data quality. (A) Mean functional image (fMRI) for an example participant in native space. Left: Sagittal and coronal 
views. Right: Three axial views (slice position indicated by dashed lines). The last column shows ROI masks overlaid on 
axial views of the mean functional image. (B) Left: Coronal and sagittal views of the mean normalized functional image 
across all participants. Panels for tSNR display average values (conventional PNM + Moco + CSF denoising). A sagittal 
view of the T2w-PAM50 template is included for reference, with labeled vertebral bodies. Right: Corresponding axial views 
(slice position indicated by dashed line) with gray matter (GM) mask overlaid on the template image.
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Table 1.  Denoising pipelines.

Baseline CSF
Milton  

parameters CompCor Cardiac Respiratory
Card-resp 
interaction # regressors

Baseline 0
CSF  1
Moco  2
CompCor  5
Moco + CompCor   7
Cardiac  8
Respiratory  8
PNM    32
PNM + CSF     33
PNM + Moco     34
PNM + Moco + CSF      35
All       40
# regressors (per option) 0 1 2 5 8 8 16

This table depicts the nuisance regressors taken into account (columns) for each denoising pipeline (rows), along with the count of 
regressors of interest per option (last row) and the overall total considering the several combinations (last column).

this issue, we placed a label on the conus medullaris 
(tip of the cord, at the beginning of the cauda equina), 
which was used as reference for alignment instead. The 
SCT function “sct_register_to_template” was used to 
straighten the spinal cord along its centerline and nor-
malize it to the PAM50 template (De Leener et al., 2017) 
using nonrigid registration. The warping fields obtained 
for the coregistration (functional images in the anatomical 
space) and normalization (anatomical images in the tem-
plate space) were concatenated to generate warping 
fields from the functional to the template space. The 
warping field template-to-functional was then applied 
(using the function “sct_apply_transfo”) to the PAM50 
gray matter probability maps (thresholded across sub-
jects at a value that preserved 50% of the probability dis-
tributions and binarized), to bring them into the native 
space where subsequent analyses were carried out. This 
was used to define regions-of-interest (ROIs) corre-
sponding to each horn, ensuring a gap of one voxel 
between them (see examples in Fig. 1A).

2.3.2.  Denoising and temporal filtering

We systematically investigated the impact of distinct 
denoising procedures in the lumbosacral spinal cord by 
applying denoising pipelines incorporating different con-
founds. A temporal band-pass filter (cutoff frequencies: 
0.01 Hz and 0.13 Hz) was applied. Each denoising proce-
dure relies on the usage of the “clean_img” function from 
nilearn library, which allows us to remove the noise con-
founds orthogonally to the temporal filter. Specifically, con-
founds and temporal filter were projected onto the same 
orthogonal space, following the methodology outlined in 
Lindquist et al. (2019), instead of being applied sequentially.

Physiological data were used to build nuisance regres-
sors, using a model-based approach derived from the 
RETROspective Image CORrection (RETROICOR) proce-
dure (Glover et al., 2000). This model assumes the phys-
iological signals to be quasi-periodic, which leads to 
uniquely assigning the cardiac and respiratory phases to 
each image using a Fourier expansion. To this aim, we 
resorted to FSL’s physiological noise modeling (PNM) 
tool to generate regressors from cardiac, respiratory, and 
CSF signals. Cardiac peaks were automatically detected 
using the “scipy.signal.find_peaks” function (Virtanen 
et al., 2020), with manual inspection to ensure reliability.

We followed recommendations for PNM in the spinal 
cord (Kong et al., 2012). For both cardiac and respiratory 
regressors, we employed an order of 4, which means that 
the base frequency was used along with the first three 
harmonics. Cardiac and respiratory signals were com-
bined with an interaction order of 2. This resulted in a 
total of 32 slice-wise regressors. A CSF regressor was 
also calculated as the mean signal from the top 10% of 
CSF voxels with the most signal variability. Of note, for 
these slice-wise regressors, the “clean_img” function 
was applied independently on each slice.

In addition to model-based denoising approaches, we 
leveraged the CSF signal to account for non-neural fluc-
tuations using a data-driven method. Specifically, we 
used a component-based noise correction technique 
known as CompCor (Behzadi et  al., 2007), which esti-
mates K regressors (K set to 5 in our case) corresponding 
to the most significant principal components derived 
from CSF noise. We implemented this method using the 
“nipype.algorithms.confounds” module.

The combination of all the above mentioned procedures 
resulted in 12 denoising pipelines illustrated in Table 1.
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2.3.3.  Temporal SNR (tSNR) and explained variance

To evaluate the impact of the different denoising proce-
dures on the signals, we calculated for each participant 
the temporal signal-to-noise ratio (tSNR) and the 
explained variance of the time series within a mask com-
bining horns across slices (see Section 2.4). The voxel-
wise tSNR values were obtained with the SCT’s function 
“sct_fmri_compute_tsnr” (De Leener et al., 2017) which 
computes each voxel’s temporal mean and divides it by 
its standard deviation. TSNR values were also averaged 
in the four gray matter ROIs. The explained variance (R2) 
was computed as the fractional reduction of signal vari-
ance (Birn et al., 2014):

	 R2 = 1− σdenoised

σbaseline
,�

where σdenoised is the variance of the denoised signals for 
a specific denoising procedure and σbaseline indicates the 
baseline variance of the time series before denoising (i.e., 
after motion correction). The R2 values were then adjusted 
to take into account the number of regressors used in the 
denoising procedure:

	 Adjusted  R2 = 1− (1− R2  )(n−1)
(n− k −1)

⎡

⎣
⎢

⎤

⎦
⎥

⎧
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⎬
⎪
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,�

where n represents the number of time points and k the 
number of regressors in the nuisance model.

As the Kolmogorov–Smirnov test rejected the normal-
ity assumption for the tSNR and R2 distributions, we 
resorted to the Welch’s t-test, which is robust for small 
sample size and non-normality (Ahad & Syed-Yahaya, 
2014). In particular, we compared the explained variance 
distributions in order of increasing complexity: compar-
ing each denoising method against the previous, less 
complex, strategy (namely, Moco with CSF, CompCor 
with Moco, etc.). As for the tSNR, we also relied on 
Welch’s t-test, this time to compare each denoising pro-
cedure distribution with respect to the baseline.

2.4.  Data analyses

Functional connectivity (FC) analyses were performed in 
the native functional space of the participants, using a 
ROI-based approach. For each slice, ROIs in four spe-
cific locations were used (ventral and dorsal horns on 
both sides, Fig. 2A).

Static functional connectivity was estimated by means 
of Pearson correlation coefficients and two types of anal-
yses were conducted: (i) ROI-to-ROI and (ii) ROI-to-
voxels.

2.4.1.  ROI-to-ROI functional connectivity

Functional connectivity was computed using a region of 
interest (ROI)-based approach where we considered the 
four ROIs to extract ROI-specific time courses (i.e., aver-
age time course for each ROI, slice, and participant). This 
methodology aligns with earlier work in the cervical spinal 
cord (Barry et al., 2014; Eippert, Kong, Jenkinson, et al., 
2017; Kaptan et al., 2023; Kinany et al., 2019; Kong et al., 
2014; Weber et al., 2016). We computed slice-wise Pear-
son correlation coefficients between those time courses, 
resulting in a 4 x 4 matrix that summarizes the connectiv-
ity patterns of interest: ventral-ventral (VV), dorsal-dorsal 
(DD), within (W), and between (B) hemicords (Fig.  2A). 
Slice-wise correlation coefficients were then averaged 
over slices to yield one 4 x 4 matrix per participant. We 
performed this analysis across all the denoising proce-
dures to compare the impact of each strategy on func-
tional connectivity estimates.

The significance of functional connectivity estimates 
was assessed using nonparametric tests. Indeed, even 
after applying a Fisher z-transformation to the correlation 
values, the Kolmogorov–Smirnov test rejected the 
assumption of normal distributions. Consequently, the 
Wilcoxon test was conducted on the correlation values to 
evaluate which connectivity pattern was significantly dif-
ferent from zero using the different denoising techniques 
(corrected for multiple comparison with Benjamini–
Hochberg method).

2.4.2.  ROI-to-voxels functional connectivity

To further explore ROI-based correlations, functional 
connectivity was estimated within each slice, focusing on 
a single ROI at a time. The correlations between the aver-
age time courses of this ROI and those of each voxel 
within the slice were computed. This enabled visual 
assessment of FC patterns, similar to earlier work (Barry 
et  al., 2014). For the sake of brevity, we present these 
results exclusively for time series processed using the 
denoising approach typically used in spinal cord fMRI 
(i.e., PNM + Moco + CSF).

2.4.3.  Split-half temporal stability

To investigate the temporal stability of lumbosacral 
resting-state functional connectivity patterns, we split the 
fMRI time series of each participant into two halves in 
which correlation values were independently extracted. 
We computed the intraclass correlation coefficient (ICC) 
to measure the stability of functional connectivity esti-
mates across the temporal splits, for each denoising pro-
cedure. For this analysis, we used a two-way random 
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effect model, “Case 2” intraclass correlation coefficient 
defined as

	 ICC(2,1) = σ2
between

σ2
between + σ2

session + σ2
error

,�

where σ2
between corresponds to the variance between 

participants and σ2
session indicates the variance between 

sessions (i.e., the two halves). This metric, known as 
“absolute agreement” in the literature, quantifies the pro-
portion of total variance attributed to between-
participants differences (Kaptan et al., 2023; McGraw & 
Wong, 1996; Shrout & Fleiss, 1979). To assess the uncer-
tainty of this metric, we calculated the 95% confidence 
interval (CI) of the ICC values using a bootstrap proce-
dure implemented in Python with the pingouin library 
(Vallat, 2018). According to established standards 
(Cicchetti & Sparrow, 1981; Hallgren, 2012), the ICC val-
ues are interpreted as follows: poor <0.4, fair 0.4–0.59, 
good 0.6–0.74, excellent ≥0.75.

To have a direct comparison between split-half and full 
connectivity (only for the standard PNM + Moco + CSF 
pipeline), we also tested whether FC distribution for each 
connectivity pattern in the split-half datasets differed sig-
nificantly from those derived from the full timeseries 
(Kruskal–Wallis test).

In addition to investigating the temporal stability of 
functional connectivity estimates, we also calculated ICC 
in the split-half datasets for the following metrics: (i) CSF, 
(ii) cardiac, and (iii) respiratory. For (i) CSF, we computed 
the mean amplitude of the signal from the power spectral 
density of each half of the regressor. For (ii) cardiac, we 
computed the average difference between cardiac peaks. 
For (iii) respiratory, respiration traces were first band-pass 
filtered (cutoff frequencies: 0.01  Hz and 0.6  Hz), and 
median filtered over 1 s. Subsequently, we identified the 
respiratory cycle by applying a Hilbert transform and by 
computing the phase of the signals (which measures the 
position of a waveform in time). We then determined the 

Fig. 2.  Extension of resting-state FC to the lumbosacral cord. (A) Schematic cross sections of the spinal cord. The left panel 
illustrates the spinal cord’s structure, featuring the characteristic butterfly-shaped gray matter (GM) surrounded by white 
matter (WM). The GM can be divided into four horns, housing motor (ventral horns, V) and sensory (dorsal horns, D) neurons. 
The right panel outlines potential connectivity patterns between these four regions of interest (ROIs). (B) TSNR in the four 
ROIs, for the PNM + Moco + CSF denoising strategy. Each box represents the distribution (i.e., from the 25th to the 75th 
percentile) of tSNR values across participants, with medians represented by the horizontal white line inside the box. Vertical 
lines correspond to the 1.5 interquartile range and dots represent tSNR values for each of the 17 participants. (C) 4 x 4 
correlation matrix showing FC between the four horns (ROI-to-ROI analysis, for the PNM + Moco + CSF denoising strategy). 
Significant connectivity is observed between bilateral ventral horns (r = 0.05), between bilateral dorsal horns (r = 0.06), and 
between bilateral dorsoventral horns (r = 0.032). (D) Example slices showcasing results from the ROI-to-voxels analysis, for 
the PNM + Moco + CSF denoising strategy. The voxels of the ROIs are outlined with a dotted line. Resulting correlations (i.e., 
other voxels) overlaid on the mean functional image. In the top row, correlation patterns for an ROI in the left ventral (VL) horn 
are shown. The highest correlation is observed in the contralateral ventral horn (r = 0.3). Corresponding time courses are 
presented. The bottom row presents additional connectivity maps for ventral ROI on the left panel, while examples for dorsal 
ROI are presented on the right panels. VR = ventral right, VL = ventral left, DR = dorsal right, DL = dorsal left.
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occurrence of zero-crossings within the detected respira-
tory cycles.

3.  RESULTS

3.1.  Functional data quality control

Out of the initial 28 participants, 4 were excluded from the 
study due to excessive motion (i.e., average FD >0.4 mm). 
In Figure 1B, we present the mean functional image for the 
remaining 24 participants, normalized to the PAM50 
space, along with the corresponding tSNR map (using the 
conventional PNM + Moco + CSF denoising scheme). The 
distinctive butterfly shape of the gray matter is clearly dis-
cernible, confirming the accuracy of the normalization pro-
cedure. The tSNR values are presented independently for 
each of the four horns (Fig. 2B): ventral right =11.93 (8.23–
15.41) (median across participants and interquartile range, 
IQR), ventral left =11.80 (8.09–15.74), dorsal right =11.88 
(10.04–14.36), dorsal left =12.03 (10.06–15.15).

3.2.  Extending resting-state FC to the  
lumbosacral spinal cord

A main goal of this study was to extend resting-state FC 
fMRI findings beyond the cervical spinal cord, by deploy-
ing such analyses at the lumbosacral level. To this end, 
we investigated connectivity patterns between the ventral 
and dorsal horns of both left and right hemicords (Fig. 1C). 
Using this ROI-based approach, we observed a signifi-
cant positive correlation between bilateral ventral horns 
(median correlation value r = 0.05, Wilcoxon test, W = 3, 
p < 0.004, Benjamini–Hochberg corrected) and between 
dorsal horns (r  =  0.06, W  =  5, p  <  0.004). Additionally, 
dorsal-ventral connectivity between hemicords was also 
significantly positive (r = 0.032, W = 87, p < 0.004). Within-
hemicord connectivity, instead, was nonsignificant 
(r = 0.017, p = 0.08). When assessing the robustness of 
these connectivity estimates in each participant, we 
observed that ventral and dorsal connectivities were pos-
itive in 70.8% and 83.3% of participants, respectively. 
Overall, 62.5% exhibited positive dorsal-ventral within-
hemicord connectivity, and 72.9% exhibited positive 
dorsal-ventral between-hemicord connectivity.

Evidence of ventral and dorsal connectivity patterns, 
both within and between hemicords, was also observed 
using an ROI-to-voxels analysis (Fig. 2D).

3.3.  Impact of denoising strategies  
on signal properties

Given the inherent sensitivity of spinal cord fMRI to vari-
ous noise sources (e.g., breathing, heart rate, motion, …), 

we systematically and quantitatively compared the 
impact of different denoising techniques.

First, we assessed changes in signal quality, by evalu-
ating tSNR and variance explained (i.e., adjusted R2) for 
each applied strategy (Fig. 3). We observed that the addi-
tion of nuisance regressors led to an increase of tSNR, 
with all denoising approaches significantly increasing the 
tSNR compared with the baseline pipeline (p  <  0.001, 
Welch’s t-test corrected for multiple comparisons). The 
largest changes were observed when going from the 
baseline pipeline to mild denoising (e.g., CSF or Moco 
pipelines, 24% and 24.5% increase compared with the 
baseline, respectively), and when adding the PNM-
related regressors (e.g., 31% for the PNM pipeline). The 
tSNR reaches its highest value for the most stringent 
denoising technique (i.e., with all regressors combined) 
(12.13 (9.3–15.3), median across participants (IQR), 34% 
increase compared with baseline). As for R2, the peak 
was also observed when combining all regressors. Gen-
erally, methods incorporating PNM regressors (PNM: 
0.11 (0.08–0.19), PNM + CSF: 0.12 (0.09–0.19), PNM + 
Moco: 0.13 (0.9–0.19), PNM + CSF + Moco: 0.13 (0.1–
0.2), PNM + CSF + Moco + CompCor: 0.15 (0.12–0.22), 
median R2 across participants (IQR)) explained more vari-
ance than those that did not (CSF: 0.005 (0.001–0.015), 
Moco: 0.02 (0.01–0.06), CompCor: 0.05 (0.02–0.11), 
Moco  +  CompCor: 0.03 (0.03–0.13), Cardiac: 0.022 
(0.02–0.032), Respiratory: 0.05 (0.03–0.12)). When com-
paring procedures sequentially, we observed that  
Cardiac exhibited an R2 significantly lower than the sur-
rounding approaches (Moco + PNM and Respiratory) and 
there is a significant improvement when using PNM with 
respect to respiratory (p < 0.001, Welch’s t-test corrected 
for multiple comparisons).

3.4.  Impact of denoising strategies  
on functional connectivity

We then focused on assessing the different denoising 
procedures from the perspective of functional connectiv-
ity (Fig. 4). Connectivity between bilateral ventral (VV) and 
dorsal (DD) horns, as well as between hemicords (B), 
appeared to be significant, regardless of the denoising 
method employed. In contrast, FC within hemicords (W) 
was not significant for four pipelines (Moco + CompCor, 
PNM + CSF, PNM + Moco + CSF, and All). For all condi-
tions, the highest connectivity values were obtained for 
the nondenoised time series (VV: 0.14 (0.04–0.28), DD: 
0.12 (0.01–0.26), W: 0.05 (-0.001–0.19), B: 0.06 (0.002–
0.2), median across participants (IQR)), as well as for the 
images denoised with the Cardiac pipeline (VV: 0.09 
(0.02–0.21), DD: 0.08 (-0.005–0.19), W: 0.03 (-0.017–0.15), 
B: 0.05 (0.005–0.16). Stricter denoising procedures led to 
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Fig. 4.  Static functional connectivity using distinct denoising strategies. For each ROI-to-ROI pattern (Fig 2A), we present 
functional connectivity estimates (y-axis) for each denoising strategy (x-axis). The boxes represent the interquartile range 
(IQR), spanning from the 25th to the 75th percentile, with the horizontal white line within each box indicating the median 
value across participants. Each dot represents the mean FC (across slices) for a specific participant. *Indicates p < 0.05 
and **p < 0.01.

Fig. 3.  Signal properties following distinct denoising strategies. Temporal signal-to-noise ratio (tSNR) (A) and variance 
explained (adjusted R2) (B) values (y-axis) are presented for each denoising strategy (x-axis). The boxes represent the 
interquartile range (IQR), spanning from the 25th to the 75th percentile of the data, with the horizontal white line within 
each box indicating the median value across participants. Each dot represents the average metric (tSNR and adjusted R2) 
of the voxels within the mask combining horns across slices for a specific participant.
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reduced functional connectivity, with connectivity being 
the weakest for the All pipeline (VV: 0.04 (0.001–0.14), 
DD: 0.05 (-0.004–0.12), W: -0.001 (-0.04–0.04), B: 0.03 
(0.001–0.06)).

3.5.  Temporal stability

Finally, we investigated the split-half temporal stability of 
the connectivity estimates (Fig. 5, see Fig. S1 for scatter 
plots and Fig. S2 for a comparison between split-half FC 
values and those derived from the full dataset). In gen-
eral, VV, DD, and B connectivity demonstrated a high sta-
bility, predominantly within the good range (VV  =  0.65, 
DD = 0.74, B = 0.73, on average over denoising strate-
gies). ICC estimates for W showed a broader distribution 
(ICC = 0.45 on average), with one value in the excellent 
range, two in the good range, and six and three in the fair 
and poor ranges, respectively. For all connectivity pat-
terns, a similar ICC profile was observed, albeit with dif-
ferent amplitudes. Notably, the baseline denoising 
strategy consistently exhibited the highest temporal sta-
bility, achieving an excellent rating. For VV, W, and B con-
nectivity patterns, strong declines in ICC were observed 
when removing CompCor regressors, which brought reli-

ability in the fair (VV and B) and poor (W) ranges. For W, 
applying the All pipeline also resulted in an ICC value in 
the poor range. In general, removing respiratory regres-
sors led to a larger decrease in ICC than removing car-
diac ones. On the stringent side of the denoising 
spectrum, we observed that the PNM/PNM + CSF/PNM 
+ Moco/PNM + Moco + CSF strategies exhibited a good 
to excellent stability for VV, DD, and B, while they were in 
the fair range for W.

To evaluate the temporal stability of noise estimates, 
we also computed ICC values for CSF, respiratory and 
cardiac time series, which all fell in the excellent range. 
Specifically, cardiac signals exhibited the highest ICC 
score with 0.95 (confidence interval at 95%, CI95% [0.96, 
0.98]), followed by the respiratory signals with 0.89 
(CI95% [0.75, 0.95]), and finally the CSF ICC value was 
0.87 (CI95% [0.72, 0.94]).

4.  DISCUSSION

In recent years, a growing body of evidence has high-
lighted distinct spatial patterns of spontaneous activity 
within the human spinal cord at rest, consistently reveal-
ing correlations between its horns (Barry et  al., 2014, 

Fig. 5.  Split-half temporal stability using ICC. Distribution of ICC (Interclass Correlation) scores, depicting the temporal 
stability of functional connectivity patterns derived from the fMRI signals of each participant. Each point in the figure 
represents the ICC score for a specific denoising technique employed in the analysis (x-axis), and the bars represent the 
confidence intervals at 95%. The dotted lines indicate the ICC ranges: poor <0.4, fair 0.4–0.59, good 0.6–0.74, excellent 
≥0.74.
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2018; Eippert, Kong, Winkler, et al., 2017; Kaptan et al., 
2023; Kinany et al., 2023; Kong et al., 2014). However, 
while these analyses have provided insights into the 
functional architecture of the cervical region of the spinal 
cord, a significant gap remains in the examination of such 
patterns within the lumbosacral area. In this study, we 
tackled this by systematically investigating horn-to-horn 
functional connectivity in the lumbosacral spinal cord of 
healthy participants. We first demonstrated that, akin to 
the cervical spinal cord, characteristic connectivity pat-
terns can be identified in the lumbosacral region. In a 
subsequent step, we assessed the impact of different 
denoising strategies on these functional connectivity 
estimates.

4.1.  Imaging the lumbosacral spinal cord

Despite its relevance for healthy and impaired human 
behavior, the human lumbosacral spinal cord has been 
largely unexplored in neuroimaging studies. Previous 
studies examining lumbosacral activity were primarily 
conducted during task (Jia et  al., 2019; Kornelsen & 
Stroman, 2004, 2007; Moffitt et al., 2005; Stroman et al., 
2004), using a non-BOLD contrast mechanism known as 
signal enhancement from extravascular water protons 
(SEEP) (Stroman, Krause, Frankenstein, et  al., 2001; 
Stroman, Krause, Malisza, et al., 2001). However, the reli-
ability of SEEP has been a matter of debate (Bouwman 
et  al., 2008; Jochimsen et  al., 2005). Only one recent 
study capitalized on the BOLD signal within the lumbosa-
cral cord during resting-state scans, providing evidence 
of discernible patterns of functional connectivity in the 
spinal cord (Combes et al., 2023).

Several distinctions between cervical and lumbosacral 
imaging are noteworthy. One primary concern is the 
marked size difference. The cross-sectional dimensions 
and lengths of lumbosacral segments are notably smaller 
(7.7 ± 2.2 mm in average) compared with the more exten-
sively studied cervical region (13.3  ±  2.2  mm) (Frostell 
et al., 2016; Kinany et al., 2023). Furthermore, the ana-
tomical positioning of both regions implies the presence 
of different organs in their vicinity, potentially rendering 
them differentially susceptible to physiological noise. 
Interestingly, it has been suggested that lumbosacral 
regions are less prone to cardiac-related motion artifacts 
(Figley et al., 2008).

In addition to its smaller size, the lumbosacral cord is 
also characterized by high intersubject variability (Tins & 
Balain, 2016; Van Schoor et al., 2015), marked by sub-
stantial shifts between spinal segments and vertebrae, 
thus making conventional normalization based on verte-
bral landmarks suboptimal.

4.2.  Extension of static functional  
connectivity to the lumbosacral cord

In order to extend prior investigations of functional con-
nectivity to the lumbosacral spinal cord, we resorted to 
established analysis techniques, commonly employed in 
the cervical spinal cord (Barry et al., 2014, 2018; Eippert, 
Kong, Winkler, et al., 2017; Kaptan et al., 2023; Kinany 
et al., 2023; Kong et  al., 2014). Through a ROI-based 
approach and using a standard denoising strategy (PNM 
+ Moco + CSF), we demonstrated significant functional 
connectivity between bilateral ventral horns, bilateral 
dorsal horns, and between contralateral dorsoventral 
hemicords. A subsequent slice-wise ROI-to-voxels anal-
ysis, similar to the approach employed by Barry et  al. 
(2016), further underscored the presence of these sen-
sory and motor networks. This corroborates the findings 
of Combes et al. (2023). However, it is noteworthy that 
the connectivity estimates reported in their study demon-
strated a stronger amplitude than our observations, as 
well as the presence of significant connectivity within 
hemicord. These differences might be attributed to their 
use of trilinear interpolation, which is known to augment 
spatial smoothness in the dataset, could possibly con-
tribute to the observed inflation in correlation values 
(Eippert, Kong, Jenkinson, et al., 2017).

The observation of bilateral connectivity patterns 
echoes prior investigations in the cervical spinal cord, 
where it has been repeatedly documented, both in animal 
models (L. M. Chen et al., 2015; Wu et al., 2018, 2019) 
and in human studies that used various processing and 
acquisition procedures (Barry et al., 2014, 2018; Eippert, 
Kong, Winkler, et  al., 2017; Kaptan et  al., 2023; Weber 
et al., 2018). Ventral and dorsal networks are known to be 
involved in motor and sensory processing, respectively 
(Kinany et al., 2022; Landelle et al., 2021). These bilateral 
networks are postulated to arise from commissural inter-
neurons connecting neurons from the two hemicords 
(Maxwell & Soteropoulos, 2020). Ventral networks may 
serve multiple functions such as maintaining basal mus-
cle tone—a state where motoneurons uphold posture 
and muscle tonicity even during quiescence (Latash & 
Zatsiorsky, 2015). In the lumbosacral spinal cord, which 
innervates lower limb muscles, these patterns may also 
be indicative of activity related to central pattern genera-
tors, pivotal in orchestrating locomotion (Grillner & 
Jessell, 2009).

Finally, we did not observe significant connectivity 
within (i.e., dorsoventral) hemicords, using this standard 
denoising strategy (PNM + Moco + CSF). Such patterns 
have been observed in the lumbosacral (Combes et al., 
2023) and cervical spinal cord (Eippert, Kong, Winkler, 
et al., 2017; Kaptan et al., 2023; Weber et al., 2018). While 
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these dorsoventral connections may potentially support 
polysynaptic spinal reflexes (Sandrini et  al., 2005), it is 
important to emphasize that they seem to be strongly 
influenced by the specific processing approach (Eippert, 
Kong, Jenkinson, et al., 2017; Kaptan et al., 2023) and 
have exhibited poor reliability (Kaptan et al., 2023). Our 
subsequent investigations using distinct denoising pipe-
lines appear to support these conclusions.

4.3.  Impact of denoising on signal quality

Given that lumbosacral BOLD imaging has been virtually 
unexplored, a primary contribution of this study was the 
systematic evaluation of diverse denoising strategies on 
the time series. This comprehensive assessment included 
the examination of both variance explained (i.e., adjusted 
R2) and their impact on the temporal signal-to-noise ratio 
(tSNR).

Notably, a progressive enhancement in tSNR was 
observed with more rigorous denoising. This trend was 
mirrored in the adjusted R2, with the exception of the Car-
diac pipeline, which exhibited limited explanatory power, 
hinting at a restricted influence of cardiac physiological 
noise in this spinal cord region. We could argue that the 
lumbar region is relatively spared from the influence of 
cardiac signals due to its anatomical distance from the 
heart, shielding it from the pulsating movement. From an 
anatomical point of view, the heart overlaps more with 
the upper regions of the spinal cord, and its upward beat-
ing within the respiratory cage may have a more pro-
nounced impact on the cervical region compared with 
the lumbar region. These considerations are in line with 
work reporting limited cardiac-related motion in the cau-
dal part of the spinal cord (Figley et al., 2008).

Of particular interest was the pivotal role of PNM 
regressors in improving the tSNR, underscoring their effi-
cacy in capturing the variance of the signal. In contrast, 
using CompCor regressors to account for physiological 
noise yielded a more moderate effect on signal quality. 
These results suggest that accounting for the interaction 
between cardiac and respiratory signals is valuable. 
Besides, it hints at the fact that, despite the position of 
the lumbosacral region, relatively distant from the heart 
and lungs, mitigating potential physiological signals 
remains beneficial. Indeed, even in the brain, physiologi-
cal fluctuations can induce notable change in fMRI time 
series, shown to lead to “physiological networks” (J. E. 
Chen et  al., 2020) reminiscent of large-scale networks 
conventionally attributed to distantly synchronized neu-
ronal activity.

In light of these results, our recommendation is to 
adopt a denoising pipeline that incorporates PNM regres-
sors to achieve optimal enhancement of signal quality. 

This is in agreement with observations in the cervical spi-
nal cord (Brooks et al., 2008; Kong et al., 2012), where 
PNM was found to be an effective denoising strategy, 
notably by eliminating false-positive activations, such as 
active voxels in the CSF space surrounding the cord.

4.4.  Robustness and temporal stability  
of functional connectivity

Since our work primarily centered on functional connec-
tivity, our subsequent objective was to evaluate the 
extent to which the strength and temporal stability of 
connectivity patterns were influenced by the denoising 
procedures applied.

While our analyses revealed a general decrease in 
functional connectivity with more stringent denoising, 
bilateral ventral (VV) and dorsal (DD) networks, as well as 
between-hemicords (B) connectivity, appeared to be sig-
nificant regardless of the deployed denoising. This sup-
ports the genuine nature of these motor networks, 
emphasizing their robustness. Conversely, within hemi-
cords (W), connectivity patterns were only significant 
using 8 out of 12 denoising strategies. In particular, incor-
porating motion parameters and physiological noise 
(PNM or CompCor) as regressors led to nonsignificant 
connectivity estimates.

To further explore the stability of these connectivity 
estimates, we deployed a split-half analysis to evaluate 
intraclass correlation coefficients (ICC). Reassuringly, 
DD, VV, and B connections appeared to be reliable, with 
ICC values primarily scoring as good (ICCs  >  0.6). In 
comparison, cervical networks obtained using correlation 
analyses have been shown to exhibit a fair to good level 
of reproducibility, both at 7T (Barry et al., 2016) and 3T 
(Kaptan et al., 2023) field strengths. Likewise, similar lev-
els of stability were reported for networks retrieved using 
independent component analysis (Kong et al., 2014).

Upon closer examination of the relationship between 
denoising strategies and the stability of functional con-
nectivity, we did not observe a consistent decrease in 
stability with an increasing number of regressors, unlike 
recent findings in the cervical spinal cord (Kaptan et al., 
2023). Instead, we noted that the removal of CompCorre-
gressors had the most significant impact on stability. We 
posit that the sensitivity of the lumbosacral signals to the 
removal of CSF-derived principal components may per-
tain to the substantial volume of the subarachnoid space 
in these segments. Specifically, the relative average area 
of the spinal cord in relation to CSF in the lumbosacral 
cord is 29.4%, as opposed to 52.5% in the cervical region 
(percentages determined by calculating the average 
cross-sectional area of the PAM50 masks at the respec-
tive levels). This may imply additional CSF-related motion 
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in the caudal region of the cord. Provided that CSF sig-
nals seem to exhibit structured properties, as evidenced 
by their ICC score in the excellent range, the CSF pipeline 
may impact the temporal stability by removing a large 
portion of reliable artifactual signals. In comparison, even 
though they also demonstrated high stability, physiologi-
cal signals—particularly the cardiac ones—may have a 
comparatively lesser impact on FC stability, owing to their 
more limited influence on these segments of the cord.

Meanwhile, we observed that PNM-based pipelines 
led to robust patterns of connectivity, achieving ratings 
falling mostly in the good range for VV, DD, and B con-
nections. Considering the substantial portion of variance 
removed by these denoising techniques (as indicated by 
the adjusted R2), this suggests that they may be a good 
approach to eliminate nuisance signals while preserving 
meaningful functional connectivity. Notably, even when 
combined with CSF regressors (PNM + CSF or the stan-
dard PNM  +  Moco  +  CSF), VV connectivity remained 
within the good range. Furthermore, our results indicate 
that connectivity patterns captured in split-half datasets 
are in agreement with those derived from the full dataset, 
supporting the use of runs shorter than 10 min to esti-
mate lumbosacral resting-state functional connectivity.

4.5.  Limitations of the study

The current study has several limitations that warrant 
acknowledgment. First, we could not define ROIs directly 
in the native space, due to the limited spatial resolution of 
the functional images. Instead, ROIs were defined using 
the PAM50 atlas warped into the functional space of each 
participant. Even though the normalization procedure 
appeared to be accurate, this method may have resulted 
in underestimated connectivity estimates. Future work 
could focus on optimizing acquisition parameters to 
achieve a higher contrast between gray and white matter 
in the functional scans. Alternatively, acquiring additional 
high-resolution T2*-weighted images could provide bet-
ter delineation of the different horns by facilitating gray 
matter segmentation. Second, the temporal stability esti-
mates were derived from split-half time series, potentially 
leading to inflated values compared with those obtained 
from separate test–retest runs, despite the length of the 
runs (15 min in total). Employing distinct test–retest ses-
sions could offer a more accurate reflection of the reliabil-
ity of functional connectivity patterns. Third, we did not 
investigate intersegmental functional connectivity esti-
mates. Given the small size of the lumbosacral segments, 
this effort may require the acquisition of additional ana-
tomical images with sufficient resolution to precisely 
identify the nerve roots and, thus, the spinal segments 
(Rowald et al., 2022) Finally, the present results do not 

offer direct insights into the mechanisms driving the 
observed correlations. To address this limitation, future 
research endeavors should consider integrating behav-
ioral or clinical data alongside functional imaging.

4.6.  Conclusion and outlook

In summary, our findings underscore the existence of 
intrinsic functional connectivity in the lumbosacral region, 
in the form of bilateral ventral connectivity. Importantly, the 
robustness of these connectivity patterns was confirmed 
by their persistence across various denoising strategies. 
In addition, our results hint at the effectiveness of physio-
logical noise modeling (PNM) as a valuable approach for 
denoising lumbosacral spinal cord fMRI images, while pre-
serving the strength and stability of functional connectivity 
estimates. Finally, given the nascent stage of lumbosacral 
fMRI research, future investigations are needed to probe 
these findings across diverse acquisition and processing 
schemes. While the current study proposes a first step in 
this direction, further research is necessary to ascertain the 
robustness and broader applicability of the observed func-
tional connectivity patterns in the lumbosacral spinal cord.
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