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Multiple sclerosis (MS), a variable and diffuse disease affecting white and gray matter, is known to cause
functional connectivity anomalies in patients. However, related studies published to-date are post hoc; our
hypothesis was that such alterations could discriminate between patients and healthy controls in a predictive
setting, laying the groundwork for imaging-based prognosis. Using functional magnetic resonance imaging
resting state data of 22 minimally disabled MS patients and 14 controls, we developed a predictive model
of connectivity alterations in MS: a whole-brain connectivity matrix was built for each subject from the
slow oscillations (b0.11 Hz) of region-averaged time series, and a pattern recognition technique was used
to learn a discriminant function indicating which particular functional connections are most affected by dis-
ease. Classification performance using strict cross-validation yielded a sensitivity of 82% (above chance at
pb0.005) and specificity of 86% (pb0.01) to distinguish between MS patients and controls. The most discrim-
inative connectivity changes were found in subcortical and temporal regions, and contralateral connections
were more discriminative than ipsilateral connections. The pattern of decreased discriminative connections
can be summarized post hoc in an index that correlates positively (ρ=0.61) with white matter lesion load, pos-
sibly indicating functional reorganisation to cope with increasing lesion load. These results are consistent with a
subtle but widespread impact of lesions in white matter and in gray matter structures serving as high-level in-
tegrative hubs. These findings suggest that predictive models of resting state fMRI can reveal specific anomalies
due to MS with high sensitivity and specificity, potentially leading to new non-invasive markers.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Multiple sclerosis (MS) is a common neurological disease, especially
among the young in northern countries and is characterized by recur-
rent or progressive inflammatory events that lead to spatially dissemi-
nated demyelination of the central nervous system, followed by
subsequent axonal loss (Compston and Coles, 2008). Early treatment
is important to avoid permanent damage and might slow or delay pro-
gression (Jacobs et al., 2000; Kappos et al., 2007). However, due to the
variety of clinical presentations and its large differential diagnosis,
early identification of the disease is especially problematic (Rolak and
Fleming, 2007; Swanton et al., 2007). In its most common relapsing–
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remitting form (RRMS), patients present attacks alternating with epi-
sodes of clinical improvements, following an unpredictable rhythm
(Noseworthy et al., 2000). Current diagnostic workup is based on clini-
cal examination together with structural magnetic resonance imaging
(MRI) of brain and spine as well as cerebrospinal fluid analysis, seeking
for evidence of both dissemination in time and dissemination in space
of the inflammatory lesions (Compston and Coles, 2008). The role of
MRI, most often relying on T2-weighted and gadolinium-enhanced im-
ages to establish the diagnosis, is of growing importance to establish the
diagnosis and follow disease progression or remission (Barkhof et al.,
2009; Polman et al., 2005, 2011). However, conventionalMRI has sever-
al recognized limitations; the “hidden” damage known to occur in the
normal appearing brain tissue (NABT) (Fu et al., 1998) is not captured;
structural lesions are not always specific to MS (Barkhof and Filippi,
2009; multiple sclerosis MRI surrogate); T2 hyperintensities are
histologically unspecified since inflammation and demyelination as
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well as axonal damage and gliosis have similar signal characteristics
(Ratchford and Calabresi, 2008); and the correlation of lesion load and
clinically significant impairment is poor (Barkhof, 2002; Filippi and
Agosta, 2010). Therefore, current radiological signs obtained from
structural MRI may not reflect the actual disease state.

In this context, interest is growing for alternative MRI modalities
that may provide complementary information, with the aim of find-
ing additional imaging markers for MS (Filippi and Agosta, 2010).
One such modality is diffusion MRI: there is evidence that axial diffu-
sion is relatively specific to axonal degeneration (Song et al., 2003),
while increased radial diffusion is mainly driven by demyelination
(Budde et al., 2009; Zhu et al., 1999. The use of advanced tractography
methods suggests that a connectional framework may lead to im-
proved sensitivity and specificity to the disease and its related clinical
impairment (Ciccarelli et al., 2005; Lin et al., 2005; Dineen et al.,
2009).

Another technique that also builds on the connectional framework
and has potential sensitivity to detect “invisible” lesions is functional
MRI (fMRI). Based on the blood oxygen level dependent (BOLD) sig-
nal, this technique gives an indirect measure of aggregate neuronal
excitation-inhibition in gray matter microcircuits (Logothetis, 2008).
MS lesions can alter neuronal networks in several ways. Several
fMRI studies have highlighted brain circuit plasticity and its potential-
ly adaptive role in recovery or compensation in response to brain le-
sions (Reddy et al., 2000b), for motor (e.g., finger tapping) (Lee et al.,
2000; Morgen et al., 2004; Reddy et al., 2000a) as well as cognitive
tasks (e.g., working memory and attention tasks) (Mainero et al.,
2004; Morgen et al., 2007). While permanent axonal changes already
accompany even early acute inflammatory responses (Trapp et al.,
1998), fMRI studies indicate that adaptive plasticity might limit the
initial clinical expression of the disease (Cifelli and Matthews, 2002;
Rocca and Filippi, 2007) and that patients can show complete clinical
recoveries after relapses, explaining the missing link between clinical
and radiological presentation. Pathological functional effects have
been shown, as for example the loss of interhemispheric inhibition,
related to corpus callosum atrophy (Manson et al., 2006, 2008). A
negative effect of disease progression on plasticity has also become
clear, limiting the potential for adaptive capacity and leading to glob-
ally reduced brain connectivity and dysfunction (Cader et al., 2006;
Morgen et al., 2004).

Furthermore, beyond local changes in activity, fMRI can provide in-
formation on the architecture and interconnectivity ofmore distributed
brain networks, notably by measuring patterns of spontaneous fluctua-
tions during resting state (Biswal et al., 1995; Greicius et al., 2003). Rest-
ing state connectivity analysis has benefitted from recent advances in
fMRI methodology allowing to investigate intrinsic (i.e., not task relat-
ed) brain activity across the whole brain and to identify the degree of
functional correlation between distant areas (Greicius et al., 2009).
Many publications have focused on analyzing the default mode net-
work (DMN) (Buckner et al., 2008), a set of regions highly synchronized
during rest. This methodology has been used in several diseases charac-
terized by diffuse lesions (Fox and Greicius, 2010) such as schizophre-
nia (Jafri et al., 2008), Alzheimer's disease (Greicius et al., 2004; Li et
al., 2002) or depression (Greicius et al., 2007), but investigations in
MS are limited to relatively fewer publications. For example, Cover et
al. (2006) found decreased inter-hemispheric connectivity in MS pa-
tients at rest, using a coherence measure based on magneto-
encephalography (MEG). Rocca et al. (2010) found reduction of activity
in the anterior cingulate cortex (ACC) at rest in MS patients relative to
controls and in cognitively impaired MS patients related to cognitively
intact MS patients.Weaker DMN connectivity in the ACC of MS patients
was also reported by Bonavita et al. (2011) using independent compo-
nent analysis of fMRI resting state data. Roosendaal et al. (2010) inves-
tigated fMRI resting state networks in patients with clinically isolated
syndrome (CIS) and patients with RRMS and observed an increased
synchronization of some resting state networks in CIS patients, which
disappeared in those with RRMS, suggesting initial functional compen-
sation that is lost with disease progression. Using ICA and seed correla-
tion, Jones et al. (2011) showed significant differences in connectivity at
rest between a singleMS patient with an important thalamic lesion and
a group of controls, in particular, in the default mode network.

Based on these studies, resting state fMRI offers a promising avenue
to further investigate the functional impact of pathology, including at
early stages of MS where long-range connectivity can be altered by
both inflammatory processes and mild axonal damage. However, a
comprehensive assessment of altered brain connectivity would need
to detect subtle and distributed patterns throughout the brain, in a
data-driven and objective manner despite the highly variable location
of lesions in MS. Moreover, for both task-based activity and resting
state connectivity analyses, functional changes and compensatory
mechanisms can appear either as increases or decreases, depending
on the task, individual patient, and/or disease state. Given the high
number of possible connections to test, mass-univariate or summary
statistics have difficulties to find significant differences; e.g., mean con-
nectivity between specific regions of interest may show no consistent
differences between MS and controls (Lowe et al., 2008). Instead, here
wepropose the use of predictivemultivariatemodels that can generalize
to unseen subjects (those not used to learn the parameters of a model)
and thus potentially lead to a new imaging-basedmarker forMS. Recent
work has highlighted the feasibility of using single structural scans for
reliable MS diagnosis (Rovira et al., 2009), the ability of local multivari-
ate predictive methods to discriminate between MS patients and con-
trols with high accuracy, even when using NABT structural data
(Weygandt et al., 2011), and the possibility of using global multivariate
methodswith structural data to distinguish various aspects ofMS sever-
ity (Bendfeldt et al., 2012). Accordingly, given the increased use and de-
velopment of predictive modeling techniques in fMRI research,
originally derived from machine learning or pattern recognition
(Ethofer et al., 2009; Kamitani and Tong, 2005; Mourao-Miranda et al.,
2005; Shirer et al., 2011; Weil and Rees, 2010), it would appear highly
suitable and advantageous to apply similar techniques to characterize
high-dimensional fMRI data obtained during resting state (Richiardi et
al., 2010, 2011). There has also been a slow concurrent increase in the
use of multivariate predictivemodeling techniques applied to function-
al connectivity data of pathological subjects. For example, Craddock et
al. (2009) have proposed using the temporal pairwise correlations be-
tween 15 expertly selected regions of interest as features for a support
vector machine classifier applied to depressive patients. More recently,
Chen et al. (2011) have used a low-dimensional representation of con-
nectivity differences obtained from non-parametric hypothesis testing
and linear discriminant analysis to classify Alzheimer's disease patients,
MCI patients, and normal subjects. To our knowledge, however, nomul-
tivariate predictive modeling approach based on functional connectivi-
ty has been reported in MS.

Here, we describe a functional connectivity analysis of resting
state data adapted from our recently developed multivariate connec-
tivity decoding technique (Richiardi et al., 2011), which we use to dis-
criminate between minimally disabled MS patients (median EDSS
2.0) and healthy controls, a first step towards the development of
predictive prognosis models. Our approach exploits whole-brain
data rather than restricting the study to a few regions of interest
such as motor cortices or the DMN. By doing so, we aim at exploring
global connectivity changes in MS and defining which functional con-
nections are particularly affected by the disease. Beyond the data-
driven exploration of the functional impact of distributed connectivi-
ty damage associated with MS, our method provides a classifier
model that gives predictive information on individual status (as op-
posed to whole-group analysis based on a priori classification). The
ability to classify patients based on fMRI connectivity patterns is a
first step towards developing useful tools for improving the diagnos-
tic workup and the monitoring and prognosis of MS patients, even in
the absence of overt clinical signs or visible structural lesions.
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Materials and methods

Subjects and task

Twenty-two relapsing–remitting (RR) MS patients according to
McDonald's diagnostic criteria (Polman et al., 2005) were selected from
our outpatient clinic database. The selection criteria were (1) mild to
moderate neurological disability but unimpaired ambulation (Expanded
Disability Status Scale (EDSS)≤2.5 in all cases; Kurtzke, 1983); (2) no
clinical relapse and no corticosteroid therapy for at least 6 weeks before
inclusion in the study; and (3) no other neurological diagnosis,major de-
pression, or psychiatric illness according to the DSM-IV criteria. All
underwent a similar MRI protocol during their follow-up, with all pa-
rameters of the imaging sequence equal and with the sameMRI scanner
in all subjects, in order to prevent confounding factors in the analysis. All
patients were only minimally disabled (median EDSS 2, range 1.5–2.5),
with five subjects having had a single attack at the time of imaging. At
the time of scanning, 11 out of 22 patients were receiving disease-
modifying therapies (interferon β-1a or 1b in nine cases, glatiramer ace-
tate in two cases) for a mean duration of 38.8±37.1 months).

The control group consisted of 14 healthy subjects with no history
of alcohol or drug abuse, major psychiatric disorder (major depres-
sion, psychosis, untreated bipolar disorders), head trauma, other neu-
rological disorder, or systemic illness.

The characteristics of the study population are summarized in
Table 1, and full details are provided in Supplementary Table 1.

The study was approved by the local university ethics committee,
and all subjects gave informed consent for their participation in ac-
cordance with the Declaration of Helsinki.
Data acquisition

Data was acquired on a Siemens 3 T TrioTIM (VB15) platform, using
a 32-channel head coil. Functional imaging data were acquired in one
session using gradient-echo echo-planar imaging (TR/TE/FA=1.1 s/
27 ms/90°, matrix=64×64, voxel size=3.75×3.75×5.63 mm3, 21
contiguous transverse slices, 450 volumes). Longitudinal magnetization
was assumed to reach steady state after approximately 10–11 s, and the
first 10 scans of each acquisition were discarded. In total, T=440 vol-
umeswere kept for analysis. The resting state scanning took 8 min. Par-
ticipants were instructed to lie still with their eyes closed to relax and
let their mind wander without doing anything in particular (as is stan-
dard practice in resting state fMRI studies; Fox and Raichle, 2007;
Mantini et al., 2007; Helekar et al., 2010).

A structural image was also acquired using a high‐resolution three-
dimensional T1-weighted MPRAGE sequence (160 slices, TR/TE/
FA=2.4 s/2.98 ms/9°, matrix=256×240, voxel size=1×1×1.2 mm3).

In addition, a turbo spin-echo proton density (PD) image (46 slices,
TR/FA=2640 ms/150°, matrix=204×256, voxel size=0.98×0.98×
3 mm3) was acquired for lesion tracing.
Data processing and construction of the functional connectivity matrix

Lesion masks and lesion load computation
Lesions were traced manually on the PD image by two indepen-

dent radiologists (Medical Image Analysis Center, University Hospital
Table 1
Demographic information of the study population.

Patients (n=22) Controls (n=14)

Gender (M/F) 8/14 5/9
Mean age at inclusion (SD) 36.8 (7.9) 38.4 (6)
Median EDSS (range) 2.0 (1.5–2.5) –

Mean years of disease duration (SD) 4.7 (3.5) –
Basel, E.W. Radue). Lesion load was calculated by multiplying the
total number of traced lesion voxels by the voxel volume.

Structural and resting state data
To extract the resting state functional connectivity matrix, we fol-

low the methodology described in previous work (Achard et al., 2006;
Richiardi et al., 2011). Supplementary Section 1 provides an overview
of the processing pipeline.

For each subject, the functional data is spatially realigned and
motion-corrected to the mean image with SPM8 (least square tech-
nique with rigid body and quadratic interpolation). Movement pa-
rameters are checked for excessive translation and rotation, and the
volumes were inspected visually for intensity spikes, which are due
to the spin-history effect in case of large movement (Friston et al.,
1996). One patient (not included in Table 1) was excluded due to ex-
cessive movement.

Each subject's structural image is normalized to MNI space and
segmented using the SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) new
segmentation algorithm, an updated version of the unified segmenta-
tion algorithm (Ashburner and Friston, 2005). The structural image is
co-registered to the mean image of the functional data. An individual
brain atlas containing 90 cortical and sub-cortical regions of interest
(ROIs) is then computed with a modified version of the IBASPM tool-
box (Alemán-Gómez et al., 2006) and the AAL atlas (Tzourio-Mazoyer
et al., 2002). A full list of these regions is provided in Supplementary
Table 2. This structural atlas is then mapped back onto the native res-
olution of the functional data, the time series are linearly detrended,
and region-averaged time series are obtained. These regional time se-
ries are windsorized to the 95th percentile to increase robustness to
outliers. At this stage, each subject's functional data is contained in
a 90×T matrix (multivariate time series).

The regional time courses are then filtered into frequency sub-
bands using a wavelet transform (cubic orthogonal B-spline wave-
lets). The subband of interest for this study contains frequencies in
the 0.06–0.11 Hz range, to focus on resting state activity (Richiardi
et al., 2011). While the commonly used frequency band is wider
(Biswal et al., 1995; Lowe et al., 1998), the use of wavelet correlation
(Achard et al., 2006) relies on a dyadic wavelet decomposition, where
the influence of boundary conditions becomes more important as we
move to coarser (lower frequency) subbands. Given the available ac-
quisition time, the current subband is theoretically a good compro-
mise between boundary condition artifacts (getting worse towards
lower frequencies because there are fewer independent samples)
and signal-to-noise ratio (getting worse towards higher frequencies
because of the hemodynamic response acting as a low-pass filter).
To further ensure that the time course noise (due to movement or
scanning artifacts) does not add a confound and is equal between
control and subject groups, the average standard deviation of the re-
gional filtered time courses �σ R is computed for each subject, and a
Kruskal–Wallis test is conducted on the hypothesis of no difference
in median value of �σ R between groups.

After computing pairwise Pearson correlations between all ROIs in
the atlas, a 90×90 correlation matrix is obtained for each subject.
Note that for the whole procedure, the data of each subject is not
influenced by the data of other subjects; e.g., no groupwise registra-
tion is used. This will ensure independence later on in the modeling
stage and allows a proper deployment of predictive approach.

Modeling and classification of connectivity matrices

The functional connectivity matrix can be considered as the adja-
cency matrix of an undirected, weighted, complete graph by removing
the diagonal elements. This defines the connectivity graph, where each
atlas ROI corresponds to a vertex and the strength of functional con-
nectivity between two ROIs is encoded in the edge weight (a correla-
tion coefficient). To permit the use of machine learning algorithms,

http://www.fil.ion.ucl.ac.uk/spm/
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we use the direct graph embedding method (Richiardi et al., 2010), in
which the upper triangular part of the adjacency matrix is lexico-
graphically organized in a vector representation. This provides a flex-
ible approach enabling us to model the whole-brain graph, or to
examine a specific hemisphere or lobe, or even to consider connec-
tions inside functionally defined networks. These types of sub-
graphs can be readily extracted from the full adjacency matrix and
represented as vectors. It is possible to train the classifier on the
whole graph and then to study the relative discriminative importance
(weights, see below) of various subgraphs or to directly train the clas-
sifier on subgraphs. In the remainder of this work we focus on the for-
mer method. Thus, at this stage, each subject's resting state data is
represented by a feature vector whose elements are pairwise regional
correlation coefficients. We point out that the input features used in
Craddock et al. (2009) are equivalent to our direct embedding ap-
proach, the difference being the addition of a Fisher R-to-Z transform
step and the lower dimensionality of the feature space generated (15
regions lead to 105 edge weights in feature space).

For classification, we use an ensemble of functional trees
(Richiardi et al., 2011), a variation on the random forest scheme occa-
sionally used in neuroimaging (Langs et al., 2011). This classifier
yields a discriminative weight wi for each functional connection in
our resting state data. This value represents the relative ability of
each connection to discriminate between controls and MS patients.
Their interpretation is very close to that of regression coefficients, ex-
cept that they only make sense as part of a multivariate pattern: con-
nections with high discriminative weight are useful in predicting
patient status (they are a good predictor), while connections with
low discriminative weight carry little information. After permutation
testing to remove connections with insignificant discriminative
weights, the set of remaining connections yields what we call a dis-
criminative graph. The discriminative weight of each connection can
then be used to compute regional discriminative weights by summing
the discriminative weights of all connections attached to a particular
region. The regions and connections of the discriminative graph can
be represented in MNI space. By visualizing the connections and re-
gions that are jointly most discriminative (those fromwhich a predic-
tion of the MS status of any new subject can be made), we can obtain
a map of all connections driving the classification between patient
and control groups. Supplementary Section 1.4 contains more details
about the computation of discriminative weights, including the per-
mutation testing approach used for statistical control.

In order to evaluate the performance and generalization ability of
the classifier, we adopt a leave-one-subject-out cross-validation ap-
proach, whereby the dataset is split N times into a training set con-
taining N−1 subjects and a test set containing one subject. The
training set is used for learning the classifier parameters, while the
held-out testing set is used for prediction. We can then measure
howwell the classifier is performing by aggregating prediction results
across the cross-validation folds.

We report the classification performance using the familiar mea-
sures sensitivity and specificity. Supplementary Section 7 contains
more details about the computation of performance measures.

Summary indices of connectivity alterations

Wecan divide the set of connectionsC that provide discrimination be-
tween controls andMS patients into two distinct, non-overlapping parts:
connections that are, on average,weaker in patients than in controls (C−),
and those that are stronger (C+). Thus, we have C=C_∪C+ and
C_∩C+=∅. Then, we can compute two summary measures per subject,
which can serve for post hoc comparison of the results between groups.

For each subject s, the increased connectivity index (ICI) is the sum
of correlation values of the connections in C+, denoted ρis, each mul-
tiplied by its normalized discriminative weight ŵi ¼ wi

jjwjj1. Thus, we
have ICIs ¼ ∑j∈Cþ ρ

s
j ŵj. The reduced connectivity index (RCI) is
computed in the same way, but from the set of connections that are
weaker in patients, C−; that is for each subject, RCIs ¼ ∑j∈C ρs

j ŵj.
These two different indices can be plotted jointly to provide a simple
two-dimensional view of discriminative connectivity alterations in
MS patients with respect to controls, e.g., subject 4 would be plotted
in ℝ2 as (RCI4, ICI4). Fig. 1 of the results section provides an example.

Additionally, for statistical analysis we may want to remove the
bias due to total edge strength of the connectivity graph (sum of
edge weights ∑i ρs

i ), which can vary considerably between subjects,
and we can compute the normalized RCI, respectively ICI, as
nRCIs ¼ 1

∑i ρs
i
RCIs. This reflects the discriminative importance and

connection strength in the discriminative (sub)graph with respect
to the total edge strength of the connectivity graph.

These indices are different from a simple averaging of correlation
values, because only a discriminative subset of connections is used,
and the sum is weighted by the discriminative importance of each
connection. We should also point out that Chen et al. (2011) have
previously defined a “decreased connectivity index” and an “in-
creased connectivity index”. While related to our ICI and RCI, these
are different from our indices. They are computed from an “increased
connection set” (respectively decreased), which is the set of connec-
tions whose z-scores, obtained from a Wilcoxon rank-sum test be-
tween groups, are the n most positive (respectively negative).
Within the increased (respectively decreased) connection set, the
correlation values are averaged, forming the indices. Furthermore,
they are used as input features to an LDA classifier in that paper, as
opposed to being a post hoc summary measure of a high-
dimensional discrimination function in our approach.

Results

Predictive modeling of whole-brain resting state functional connectivity
patterns has high sensitivity for MS

The pattern of correlation coefficients between all pairs of ROIs
was calculated for each subject in the MS and control groups and sub-
mitted to our multivariate decoding algorithm to determine the most
consistent differences in the low-frequency functional connectivity in
resting state between the two groups.

After cross-validation, 18 out of 22 patients and 12 out of 14 con-
trols were classified correctly. These results correspond to a sensitiv-
ity of 82% (above chance at pb0.005, Wilson's method for the
binomial distribution) and a specificity of 86% (above chance at
pb0.01). Importantly, these classification results are not driven by
noise differences between patients and controls, as indicated by cal-
culating the standard deviation of the regional filtered time courses
�σ R (p=0.24, Kruskal–Wallis test on the null hypothesis of no differ-
ence in median value of �σ R between groups).

When looking at the misclassified patients (details in Supplemen-
tary Table 1), it can be seen that two of them had only a single attack
preceding their inclusion in our study and a lesion load in the lowest
quartile of our sample (0.39 and 0.51 cm3). The two other mis-
classified patients had an EDSS score of 1.5, i.e., the lowest in our da-
tabase. This suggests that a potential source of classification errors
might concern the minimal disability caused by the disease when le-
sion load still has little or no impact on global functional connectivity.
Regarding patient treatment, it seems to have no effect on the perfor-
mance of the classification algorithm, but the sample size is not suffi-
cient to assert this with confidence.

Fig. 1 shows the scatterplot of the increased and reduced connec-
tivity indices (ICI and RCI) computed post hoc on the whole group
(see method described in Section Summary indices of connectivity al-
terations). This representation, where each index is based on a dis-
tinct sub-network of the discriminative graph, reveals good
separation between the groups. This suggests that the discriminative
graph can indeed successfully capture a predictive subset of
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connections and that the discriminative weight is reliably estimated
across different subjects. As shown in this figure, misclassified pa-
tients are generally in the region of the RCI/ICI graph corresponding
to high connectivity for patients, both in the C− and C+ subnetworks.
This entails these patients tend to exhibit stronger connectivity with
respect to controls than the classifier expected from the training sam-
ple. Likewise, the misclassified controls tend to be those with the
weakest connectivity in both the C− and C+ subnetworks.

Interestingly, there is a significant positive correlation between
nRCI (see Section Summary indices of connectivity alterations) and
the lesion load computed in MNI space (robust correlation coeffi-
cient; Rousseeuw and Driessen, 1998: 0.61; IRWLS robust linear re-
gression: pb0.001 to reject the null hypothesis of a zero slope
coefficient). This suggests that, while total edge strength (∑i ρs

i , com-
puted over the whole connectivity graph for each subject) might not
be a good indicator of lesions (non-significant correlation between
the vector whose elements are the total edge strengths from all pa-
tients and the vector whose elements are the corresponding lesion
load values from all patients), the effect of white matter lesion can
be observed within a small subgraph (part of the discriminative sub-
graph) learned on resting state connectivity, linking known physio-
logical effects of the disease with functional MRI connectivity
measurements. Indeed, this finding may be taken as evidence that
discriminative functional connectivity changes can at least partly be
attributed to white matter lesions. Furthermore, although no causal
mechanism is clear, this may indicate that connectivity strength of
the C− subgraph relative to the rest of the network is increased in
these minimally disabled patients in an effort to compensate for in-
creasing lesion load, while still being below the connectivity strength
of controls.

Supplementary Table 4 contains the weight of all connections that
make up the two indices. For an anatomical representation of sub-
graphs corresponding to the ICI and RCI, see Fig. 4.

Connections distinguishing MS from controls at rest form a large-scale
network with low edge density

To visualize the anatomical organization of connectivity changes
(see Section 1.4), we first extract the discriminative graph indicating
which connections and regions are jointly most discriminative be-
tween controls and MS patients. In this sample we find 161 connec-
tions (out of 4005) that have significant discriminative weights
(pb0.05, corrected for multiple comparisons by permutation testing),
corresponding to an edge density (connectance) D ¼ 161

4005≈0:04.
Since D≪1, we interpret the discriminative graph as having a low
edge density. The connections with significant discriminative weights
are shown in Fig. 2. The size of the ROIs spheres and connection paths
is proportional to the number of times a connection to or from a re-
gion is selected for classification during cross-validation and how
discriminative it is between the groups. Note that since the method
is multivariate, these connections are not discriminative on their
own, but rather, the joint set of connections is discriminative.

The overall pattern of changes reveals a network of functional con-
nections mainly centered on subcortical and fronto-parieto-temporal
regions, consistent with the typically widely distributed lesions in MS.
However, different patterns can be seen in different parts of the brain.
A notable feature is that occipital regions are not particularly important
in the differentiation ofMS from control brains, even though visual net-
works often constitute a distinctive component of resting state activity
in normal conditions (Mantini et al., 2007; Raichle et al., 2001; Salvador
et al., 2005). The frontal lobe contains relatively few connections with
high discriminative weight, both long range and short range. More re-
markably, the temporal lobe and subcortical gray nuclei contain a few
important hubs showing marked changes in connectivity between pa-
tients and controls.

The discriminative power of each individual lobe is summarized in
Fig. 3 (left), with separate plots for within-lobe and between-lobe
connections. As can be seen, discriminative connections are predom-
inantly inter-lobe, but intra-lobe connections are equally or more im-
portant for temporo-parietal regions. The latter typically correspond
to long range pathways in posterior-anterior axis along the per-
iventricular regions. Connections to and from subcortical regions are
also particularly discriminative, highlighting the widespread connec-
tivity of these structures.

Because inter-hemispheric connections are likely to rely on the cor-
pus callosum, which is a known location for MS lesions (Compston and
Coles, 2008; Noseworthy et al., 2000; Rocca et al., 2007), it is of particu-
lar interest to separate the discriminative graph into ipsi- and contra-
lateral subgraphs (CI and CC). Inspection of the discriminative graph in
Fig. 2 suggests that some connections with contralateral areas may
have larger discriminative power (a detailed subdivision is available
in Supplementary Fig. 3). This is confirmed (p≪0.01 and generalized
η2=0.8) by a repeated measures ANOVA testing the effect of grouping
by subgraphs CI or CC on the sumof significant discriminativeweights in
each cross-validation folds. Nevertheless, it should be noted that there
clearly is a large amount of discriminative information in the ipsi-
lateral subgraph as well. This implies that the functional connectivity
at rest is altered by MS both within and between brain hemispheres,
and that both types of changes are reliable indicators of the disease.

Moreover, at detailed look at connections across lobes reveals a
subtler picture: when the discriminative weights of each lobe are di-
vided into ipsi- and contra-lateral parts (Fig. 3, right part) the tempo-
ral lobe shows the most predictive differences for inter-hemispheric
connections, whereas limbic structures (cingulum, hippocampus
and parahippocampal formation, and amygdala) and the insula only
show alterations in intra-hemispheric functional connectivity. Parie-
tal and frontal lobes seem to have an equal balance of discriminative
weight between inter- and intra-hemispheric connections.

Finally, it is also important to distinguish between increases and
decreases in connectivity. When examining the whole network, we
found that discrimination is mostly driven by connections that are
on average stronger in controls, suggesting a characteristic reduction
of functional connectivity in patients. However, there is a set of ROIs
where some connections with other areas show increased connectiv-
ity in patients. Fig. 4 shows a division of the discriminative graph into
a subnetwork with increased connectivity in patients with respect to
controls (C+) and vice versa (C−). It is apparent that the regions in-
volved in C+ form a network whose main connections link the thala-
mus to medial and anterior temporal pole, mainly contralaterally
(with stronger effects for the right hippocampus, right amygdala,
and bilateral temporal poles). Connections are also heightened be-
tween the right amygdala, right hippocampus, and right temporal
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pole. Several connections to and from the left parahippocampal re-
gions are also stronger in this network. Supplementary Fig. 2 shows
the relative discriminative weight of some of these connections.
These increases of connectivity in MS patients therefore appear
much more circumscribed than decreases, which are observed for
long-range pathways both within and across hemispheres.

Connections outside the default mode network are also informative

Studies have highlighted alterations to the DMN (Buckner et al.,
2008) associated with multiple sclerosis (Bonavita et al., 2011;
Roosendaal et al., 2010). To investigate this effect more specifically
in our data, a subnetwork of the whole-brain graph comprising re-
gions that are part of the DMN was defined (based on the work of
Buckner et al., 2008), and including the ventral and medial prefrontal
cortex, the posterior cingulate and retrosplenial cortex, inferior pari-
etal lobule, lateral temporal cortex, and hippocampal formation
(details are in Supplementary Table 3). The discriminative weight of
connections within the default mode network was tallied separately
from the discriminative weight of connections to the outside of the
default mode network.

Results are summarized in Fig. 5, clearly showing that discrimina-
tive changes do not only affect connections between DMN regions,
but also connections between DMN regions and the rest of the
brain. In fact, more discriminative information is contained in regions
that are not part of the DMN, highligthing the interest of examining
Fig. 2. Anatomical illustration of discriminative graphs for MS versus control subjects. In the
weight: stronger hues and larger sizes reflect higher discriminative weight. In the bottom r
criminative weight (sum of the discriminative weights of all connections between this regio
red=temporal, clear blue=frontal, yellow=parietal, green=occipital, cyan=limbic struc
clear red=subcortical gray matter). Name labels are given for the regions with the highest
whole-brain networks. Remarkably, however, the region with the
highest discriminative weight, the right middle temporal pole, is
part of the default mode network. Moreover, several DMN regions,
such as the left precuneus, the bilateral superior frontal orbital cortex,
and the right anterior and posterior cingulate cortex, exhibit more
discriminative connections to and from the DMN than to and from
the rest of the brain. This is consistent with the existence of a specific
functional architecture of the DMN that is disrupted by MS pathology.
Discussion

The present study shows that a multivariate approach based on
predictive modeling of brain connectivity at rest allows a reliable dif-
ferentiation of minimally disabled multiple sclerosis patients and
healthy control subjects. Our results do not only confirm that func-
tional changes affecting widespread (cortical and subcortical) net-
works are a prominent feature of MS brain pathology (Miller et al.,
2003) but also show that these alterations can be reliably and sensi-
tively measured using functional MRI of resting state, and further-
more be used to classify disease state in individual subjects. Our
method is based on an established technique of brain decoding
using wavelet decomposition of resting state time courses (Eryilmaz
et al., 2011; Richiardi et al., 2011), previously applied to study cogni-
tive and emotional states in normal conditions, but adapted here to
assess pathological states.
top row, the size and shade of connections between regions reflects their discriminative
ow, the size of each sphere depicting an atlas region is proportional to its regional dis-
n and the rest of the brain). Color indicates the lobe where each region is located (dark
tures (cingulum, hippocampus and parahippocampal formation, amygdala) and insula,
regional discriminative weights (limited to 8 for clarity).
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Fig. 3. (left graph) Summary of discriminative weights of ROIs by lobe, distinguishing connections that link to other regions outside the lobe from connections that stay within the
same lobe. The lobes are ordered from overall most discriminative to overall least discriminative. Limbic structures include cingulum, hippocampus and parahippocampal forma-
tion, and amygdala. (right graph) Further subdivision of within-lobe connections into ipsilateral and contralateral connections.
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Used rigorously, classifiers in a pattern recognition approach pro-
vide very powerful tools to explore high-dimensional data and to cap-
ture consistent but unknown features, without limiting the findings
to specific hypotheses. Our results take into account the full high-
dimensional data consisting of 90×90 connections, but the discrimi-
native graphs showing the distinctive functional connections are
readily interpretable and the results can even be summarized by
two principal measures: the reduced connectivity index (RCI) and
the increased connectivity index (ICI), which reflect the main charac-
teristics of connectivity alterations. Furthermore, by using a leave-
one-subject-out cross-validation technique, the results have shown
Fig. 4. (top) Subnetwork where patients have on average weaker connectivity than controls
controls (C+). The size and shade of connections between regions reflects their discriminativ
spheres for atlas regions is proportional to its regional discriminative weight Color indicate
the applicability of our method to single subjects. With important ca-
veats, the performance obtained with the proposed method can be
compared with the results of Weygandt et al. (2011), based on a
searchlight approach to structural T2-weighted images. In particular,
their larger study population is in generally worse condition (longer
average disease duration, larger EDSS range; maximum: 7) and
their analysis uses the cerebellum as well. While the best perfor-
mance (96% leave-one-out balanced accuracy) is obtained using
hand-segmented lesion masks, the analysis of normal appearing
gray matter yields up to 82% balanced accuracy, and normal appe-
aring white matter yields up to 91% accuracy. Our results, at 84%
(C−). (bottom) Subnetwork where patients have on average stronger connectivity than
e weight: stronger hues and larger sizes reflect higher discriminative weight. The size of
s the lobe each region is part of (see Fig. 2 for the color coding).
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Fig. 5. Regional discriminative weights divided into connections within (blue, close to axis) and outside (red, away from axis) the DMN.
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balanced accuracy, can therefore be considered encouraging since no
cerebellum is used in our study, and the population is minimally dis-
abled. Furthermore, subtle white matter alterations, to which our
technique is sensitive, seem to be in and of themselves discriminative,
which hints at possible future gains in accuracy by refining our meth-
od. However, and despite their statistical significance, our current
sensitivity and specificity figures must still be taken with caution be-
cause of our limited sample size. MS is a heterogeneous disease, and
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our leave-one-out results offer only limited evidence of generaliza-
tion ability to a separate cohort.

Many other analyses of resting state in neurological diseases concen-
trated on the default mode network (DMN) or focused on a small num-
ber of regions, for example, by using univariatemethods to compare the
goodness of fit of patients and controls to a standard DMN template
(Greicius et al., 2004) or by measuring the cross-correlation coefficient
of activity over time for a single region (Li et al., 2002). InMS, some stud-
ies (Lowe et al., 2008) explored functional connectivity only to and from
motor areas and did not find significant whole-group difference be-
tween minimally disabled MS patients and healthy controls. Moreover,
many of the few studies addressing resting state alterations in MS con-
centrated only on the DMN (Bonavita et al., 2011; Rocca et al., 2010).
However MS lesions are not restricted to the DMN. Our results show
that the connections within DMN regions are affected but do not repre-
sent the only nor the most common ones contributing to correct classi-
fication. The major advantages of our multivariate approach, taking into
account connectivity across the entire brain, include a greater versatility
and a higher sensitivity, two crucial features for discriminating different
conditions and studying early stages of pathology. Whole-brain analysis
using ICA inMS has indeed been reported to bring out significant differ-
ences between groups in various brain networks apart from the DMN
Roosendaal et al. (2010). Additionally, the good performance of using
multivariate methods with whole-brain functional data to derive imag-
ingmarkers has also been reported in other pathologies, for example de-
pression (see, e.g., Greicius et al., 2007; Craddock et al., 2009) or
Alzheimer's disease (see, e.g., Buckner et al., 2009; Chen et al., 2011).

Overall, our data indicate that only about 4% of the total possible
connections considered in our study (between the 90 ROIs distribut-
ed over the entire cortex and subcortical nuclei) are discriminative
between minimally disabled MS patients and healthy controls. Thus,
the large majority (i.e., the remaining 96%) of functional connections
have non-significant discriminative weights. However, these 4% still
represent numerous (161) connectivity pairs. Although there is no
single pathognomonic path affected by MS (consistent with widely
distributed lesions (Compston and Coles, 2008; Polman et al., 2011),
these altered connections are not uniformly distributed across the
brain and specific patterns are visible. Below, we discuss the possible
significance of these changes.

Topology of the discriminative connections

The discriminative connections between all ROIs considered were
located throughout the brain, including in particular the temporal
lobes (with a predominance for the right temporal pole), the superior
parietal lobes, as well as the frontal lobes and some limbic structures,
plus several structures among subcortical gray nuclei. Strikingly, in
contrast, the connections concerning the occipital lobe had very low
discriminative weight, although clinically MS often presents with vi-
sual disturbances (Compston and Coles, 2008; Noseworthy et al.,
2000). However, the latter are typically related to an early affection
of optic tracts (Ciccarelli et al., 2005; Dineen et al., 2009; Reich et
al., 2009), which was not specifically investigated here.

The discriminative connections were mostly associated with long-
range pathways presumably grouped around the ventricles for intra-
parietal and intra-temporal pairs or centered on inter-hemispheric
pathways for parieto-parietal and temporo-temporal connections.
Frontal and limbic connections were also affected but to a lesser extent.
This observation converges with the preferential location of MS lesions
in areas of dense venular distributions, i.e., around the lateral ventricles,
and at the cortico-subcortical junction (Compston and Coles, 2008). In
addition, the connectivity of deep gray matter nuclei (thalamus and
basal ganglia) was also markedly affected, which is consistent with
the fact that these subcortical nuclei both receive and project to large
parts of the neocortex and that many of these projections also travel
in periventricular white matter (e.g., thalamic radiations).
Notably, among connections with significant discriminative weight
across the whole brain, we found that inter-hemispheric connections
are more discriminative than intra-hemispheric connections, even
though the latter still make an important contribution to discriminative
power. This finding is compatible with the well-known preferential af-
fection of the corpus callosum inMS (Evangelou, 2000; Gean-Marton et
al., 1991; Mesaros et al., 2009; Rocca et al., 2010; Yaldizli et al., 2011)
and presumably reflects in part the concentration of all inter-
hemispheric connections at a relatively small circumscribed location
in the brain. Our results therefore add to previous studies reporting a
decreased inter-hemispheric functional connectivity at rest in MS pa-
tients (Cover et al., 2006). However, our data also go beyond these stud-
ies by demonstrating that such decreases are not specific to inter-
hemispheric connections, since most of the functional connectivities
with a significant discriminative weight are decreased in patients,
both within and between the two hemispheres. As a particular case,
we found that inter-hemispheric connections in limbic structures (cin-
gulum, hippocampus and parahippocampal formation, and amygdala)
and the insula provide no discriminating information about patients
and controls. Taken together, these findings highlight the importance
of considering intra-hemispheric connectionswhen analyzing function-
al connectivity in MS, even in resting state conditions. We cannot ex-
clude the possibility, however, that the relatively high significance of
intra-hemispheric pathways (compared to inter-hemispheric path-
ways) may reflect the minimal disability in our patients, given the
known association between callosal atrophy and disease progression
(Pelletier et al., 2001).

Several of the relatively most discriminative connections were
centered around the right temporal pole — including left caudate to
right middle temporal pole, right amygdala to right temporal pole,
left inferior frontal orbital to right middle temporal pole, and left su-
perior frontal orbital to right middle temporal pole. However, it must
be kept in mind that these pairs represent only the top of 161 dis-
criminative connections that all together are responsible for multivar-
iate pattern classification and that none of these connections is
significantly discriminative on its own. Looking for a more synthetic
view, a region that is part of several discriminative connection pairs
becomes a discriminative region itself. Under this measure, the most
discriminative regions were located in the anterior right temporal
lobe, but also in the bilateral superior parietal lobes, orbitofrontal cor-
tex (gyrus rectus), left globus pallidus, and right amygdala. An alter-
ation of the underlying structural connectivity (due to white matter
injury) is likely to account for the important impact of MS on a few
specific regions such as the temporal pole or pallidum, as these re-
gions are known to constitute strong hubs in brain connectivity
(Haber and Knutson, 2010; Olson et al., 2007). In particular, the tem-
poral poles are densely connected to orbito-frontal cortex (via the un-
cinate fasciculus), amygdala, temporal and occipital ventral regions
(via the inferior longitudinal fasciculus), as wellas the temporo-
parietal junction, and as such constitute high-level associative cortical
areas integrating deeply processed information from various parts of
the brain (Olson et al., 2007). By being somewhat at the “top of pro-
cessing hierarchy,” these temporal areas might reflect a common im-
pact of disrupted connectivity in widespread pathways throughout
the brain.

We also note that many functional connections highlighted by the
present approach may not necessarily imply the existence (or
damage to) direct structural connections. In fact, coherent activity
between distant areas might be subserved by either direct white
matter pathways or more global synchronization processes involving
other nodes in a common networks and/or diffuse projections from sub-
cortical (e.g., brainstem) structures (see Golanov and Reis, 1996, for an
example in the rat). Thesemore global influences might account for con-
nections found across non-homologous areas between the two hemi-
spheres. While our methodology cannot distinguish between structural
and non-structural sources of functional connectivity, it is likely to gain
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higher sensitivity bymeasuring the impact of diffuse lesions that may af-
fect both types of connections.

Decreased and increased connectivity in MS patients

Most of the significant connectivity changes reflected decreases in
patients compared to controls, consistent with an impaired functional
coupling between distant brain areas due the presence of MS lesions.
However, there were also a few connections showing increased
strength in MS compared to controls. These connections were found
in a specific subnetwork, roughly consisting of bilateral and inter-
hemispheric connections around the thalami, medial temporal areas
(para-hippocampal gyrus, amygdalae), and temporal pole. An increase
in low-frequency activations (not connectivity) in the thalamus, insula,
and superior temporal gyrus has previously been reported inMS (Liu et
al., 2011) and interpreted as compensatory plasticity. Here, however,
we did not find changes in insula connections allowing a reliable
group discrimination, but the insula is also known to be connected to
the temporal pole and amygdala (Augustine, 1996).

Note that our method is sensitive to both reduced and increased
connectivity without any a priori. Increased connectivity (reflected in
the ICI values) by itself is however not a discriminating feature between
patients and controls, because information about increased connectivity
is significant only together with the concomitant reduction in connec-
tivity (reflected in the RCI). Nevertheless, in our data, the strongest dis-
tinction between subjects and controls is provided by the RCI, and
considering only the sum of correlations for reduced connections (pro-
jection on the RCI axis of Fig. 1) still shows a reliable separation between
patients and controls. This may suggest that the phenomena of de-
creased and increased connectivity in distinct subnetworks in MS are
likely to result from concomitant but distinct factors.

The meaning of increased connectivities is not completely clear.
Along with the decreased connectivities, these might reflect functional
reorganization to cope with pathological damage, in keeping with re-
sults from several imaging studies in MS (Cifelli and Matthews, 2002;
Hawellek et al., 2011; Mainero et al., 2004; Morgen et al., 2004, 2007;
Reddy et al., 2000a; Rocca and Filippi, 2007; Trapp et al., 1998). Compen-
satory activation is often considered as a process arising at early stages,
which tends to be lost with disease progression (Bonavita et al., 2011;
Roosendaal et al., 2010). Congruent with this hypothesis, the positive
nRCI correlation found with lesion loads (see Results section) seems to
suggest that connectivity in the C− subnetwork is increased to cope
with lesions. However, our findings of increased connectivity in the C+
subnetwork and increasing connectivity with lesion load in C− might
be specific to minimally disabled MS patients, a possibility that will re-
quire further testing in additional patients with more severe disease.

Note that in our study, this C+ subnetwork predominantly con-
cerns medio-temporal and orbito-frontal regions, normally associated
with emotional processing (Kensinger and Schacter, 2008) and could
therefore possibly reflect latent affective disturbances often associat-
ed with MS (Compston and Coles, 2008; Minden and Schiffer, 1990)
and/or higher stress levels in patients during an MRI session
(Muehlhan et al., 2011). Alternatively, we cannot exclude that the ob-
served increases in connectivity might partly reflect stronger coher-
ence at low frequencies due to an “idling” state of some networks at
rest (Richiardi et al., 2011), subsequent to disconnection lesions in
patients. Again, additional studies in patients with a broader range
of MS severity will be necessary to disentangle these hypotheses.

Discriminative connections inside and outside the default mode network

Our results confirm that the default mode network (DMN) com-
prises many discriminative connections that are affected by MS
(Bonavita et al., 2011; Rocca et al., 2010; Roosendaal et al., 2010),
but they also highlight a large number of additional discriminative
connections outside the DMN. Studies of resting state brain activity
often focus on the default mode network because it forms a well-
defined set of regions that is observed very reproducibly under differ-
ent acquisition paradigms. In fact, the most discriminative ROIs in our
analysis, the right temporal pole, is also part of the DMN and “consis-
tently observed across approaches” (Buckner et al., 2008). We also
found an important role for the precuneus, another core region of
the DMN. In addition, we found weaker connectivity in the anterior
cingulate cortex of MS patients, as reported in a previous study of
resting state in MS (Bonavita et al., 2011), but an opposite effect in
the posterior cingulate cortex (decreased rather than increased con-
nectivity in patients). Nevertheless, as clearly shown in Fig. 5, many
other regions that are not part of the DMN made a crucial contribu-
tion to the discrimination between patients and controls. Therefore,
we conclude that resting state data analysis in MS (and other neuro-
logical conditions) should certainly comprise default mode network
regions, but need not be restricted to them.
Altered connectivity and gray matter changes

The analysis of functional connectivity is based on temporal corre-
lations of activity between gray matter ROIs. In case of decreased con-
nectivity, it is in principle not possible to differentiate between
desynchronization due to loss of white-matter pathways or gray mat-
ter pathology in one or more of the connected ROIs. Thus, functional
connectivity is sensitive to both white matter and gray matter pathol-
ogy and permits the investigation of both aspects of MS.

In general, MS lesions are predominantly located in white matter
and therefore mainly affect axonal conduction. However, damage to
cortical gray matter is also increasingly recognized (Barkhof et al.,
2009; Bö et al., 2006; Prinster et al., 2006). Interestingly, our results
for regional discriminative weights in different lobes show conver-
gent patterns with what is known from anatomical studies on focal
gray matter lesions (Filippi and Agosta, 2010). For instance, we
found that the thalamus is involved in a high number of discrimina-
tive connections at rest. The thalamus is known to be a site of prefer-
ential atrophy in MS (Audoin et al., 2006; Cifelli et al., 2002;
Wylezinska et al., 2003), possibly resulting in decreased perfusion
(Rashid et al., 2004). In addition, the connections to and from several
deep nuclei such as the globus pallidus, caudate, and amygdala were
also discriminating between patients and controls. Early and frequent
lesions in the thalamus and caudate as well as in the putamen, globus
pallidus, or amygdalae have been recently pointed out (Vercellino et
al., 2009), and these regions exhibit a rapid atrophy following the
first clin
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