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A B S T R A C T

Understanding how the anatomy of the human brain constrains and influences the formation of large-scale functional networks remains a fundamental question in
neuroscience. Here, given measured brain activity in gray matter, we interpolate these functional signals into the white matter on a structurally-informed high-
resolution voxel-level brain grid. The interpolated volumes reflect the underlying anatomical information, revealing white matter structures that mediate the
interaction between temporally coherent gray matter regions. Functional connectivity analyses of the interpolated volumes reveal an enriched picture of the default
mode network (DMN) and its subcomponents, including the different white matter bundles that are implicated in their formation, thus extending currently known
spatial patterns that are limited within the gray matter only. These subcomponents have distinct structure-function patterns, each of which are differentially observed
during tasks, demonstrating plausible structural mechanisms for functional switching between task-positive and -negative components. This work opens new avenues
for the integration of brain structure and function, and demonstrates the collective mediation of white matter pathways across short and long-distance functional
connections.
1. Introduction

The coordination of distant neuronal populations gives rise to a
vast repertoire of functional networks that underpin human brain
function. Using functional magnetic resonance imaging (fMRI),
temporally coherent activity can be investigated using measures of
functional connectivity (FC) (Friston, 1994). On the other hand,
inter-regional communication is mediated by the anatomical scaffold
which can be conveniently summarized by structural connectivity (SC)
extracted from diffusion-weighted MRI (DW-MRI) (Bullmore and
Sporns, 2009). Over the past decade, a particular focus has been
dedicated to unraveling how the human brain maintains its vast
repertoire of FC states despite being constrained by a rigid anatomical
substrate. To bridge the gap between SC and FC, several methods have
been proposed. The simplest ones are the seminal works that directly
probed the statistical interdependence (e.g., Pearson correlation) be-
tween separately defined SC and FC measures (Andrews-Hanna et al.,
2007; Hagmann et al., 2008; Honey et al., 2009; Supekar et al., 2010;
Horn et al., 2014). Limited by the bivariate and summarizing nature of
this analysis, the effect is capturing only a general trend of correlation.
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In order to directly capture white matter structures that connect
temporally coherent areas, several studies initially compute FC and
specify implicated regions of interests (ROI) as a seed for estimating
fiber streamlines (Greicius et al., 2009; van den Heuvel et al., 2009;
Chamberland et al., 2015). Most of these works were specifically
directed to the analysis of the default mode network (DMN), a set of
brain regions that are known to be more engaged during rest (Greicius
et al., 2003). In contrast to extracting SC from FC priors, a number of
studies have attempted to reproduce brain activity from predefined
structural connectomes through numerical simulations (Gal�an, 2008;
Honey et al., 2007; Deco et al., 2011, 2012, 2013; Goni et al., 2014).

Studies that extract SC from FC or vice versa are mostly hypothesis-
driven and entail many explicit assumptions (see (Damoiseaux and
Greicius, 2009; Zhu et al., 2014) for early reviews). To understand
how distributed patterns of functional activity arise from a fixed un-
derlying structure, a need for research methodologies that are
observer-independent and data-driven is of utmost importance. A
common approach for data-driven methods is based on
blind-decomposition techniques. By combining diffusion anisotropy
(e.g., fractional anisotropy, axial and radial diffusivities) and classical
de Lausanne, Geneva, 1202, Switzerland.
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FC to build a joint SC-FC measure (Sui et al., 2013, 2015), structural
and functional alterations in healthy and clinical populations are
extracted using multimodal canonical correlation analysis and joint
independent component analysis (ICA) (Amico and Go~ni, 2018). On
the same line, using ICA, concurrent white matter (WM) bundles and
gray matter (GM) networks from a tractography-based data matrix
have been proposed (O’Muircheartaigh and Jbabdi, 2018). Also using
tractography, Calamante and colleagues (Calamante et al., 2017)
introduced the concept of track-weighted dynamic FC (TW-dFC),
where as a first step, WM streamlines from two structurally connected
voxel endpoints are obtained. Then, these streamlines are weighted
according to the FC at their endpoints. To render the approach dy-
namic, FC measures were computed over a sliding-window whose
length is arbitrarily chosen. TW-dFC then produces a set of
four-dimensional volumes showing the averaged FC between corre-
sponding streamline endpoints onto the WM at the temporal resolution
of the window used. While several studies have made considerable
progress in linking structure and function, not only with fMRI but also
with other imaging modalities such as electroencephalography (EEG)
and magnetoencephalography (MEG) (Deslauriers-Gauthier et al.,
2019; Fukushima et al., 2015), none of these methods jointly and
simultaneously integrates functional and diffusion data into a single
integrated framework, which allows the natural emergence of full--
brain spatial patterns that cover both the WM and the GM.

Lately, to further transcend our current understanding of structure-
function relationships, attention has been set on studying SC and FC
through the lens of more technical frameworks borrowed from other
research fields, such as propagator-based methods (Robinson, 2012;
Robinson et al., 2016; Atasoy et al., 2016), and control network theo-
retical tools (Gu et al., 2015). Graph signal processing (GSP) for neuro-
imaging is another emerging field (Huang et al., 2018a), where initially,
a graph is defined by identifying regions in GM as nodes, and the strength
of their SC through WM as edge weights (e.g., number of streamlines
connecting GM regions). Functional data are then defined atop the graph
and are interpreted as time-dependent graph signals, on which
connectome-informed signal processing operations can be performed.
This framework incorporates connectivity through the WM, but only as
SC between pairs of GM regions (i.e., WM regions are not explicitly
defined as nodes).

In this work, we advance the GSP concept by extending the existing
approach from region-wise analysis to a high-resolution (i.e., 850,000
voxels) voxel-level perspective. This translates to modeling the WM
explicitly as nodes of the brain graph for which local connectivity is
known from DW-MRI. We then define the blood–oxygenation level-
dependent (BOLD) time-series from resting-state fMRI as dynamic
signals residing on the nodes of the brain graph. By generalizing
principles of classical signal processing in regular domains (Buades
et al., 2010; Rudin et al., 1992; Chambolle, 2004; Cand�es et al., 2006)
to irregular graphs (Shuman et al., 2013; Chen et al., 2015), we
interpolate functional signals, measured on the GM, into the WM,
using a whole-brain voxel-wise connectome to guide the process. This
allows relating measures of brain activity on the GM with their
mediation through WM; i.e., how particular patterns of brain activity
jointly rely on an ensemble of WM pathways. We then apply the WM
interpolation on all volumes of resting-state data, thereby generating a
set of 4D-volumes on which conventional static and dynamic FC tools
can be applied. Using the posterior cingulate cortex (PCC), a
well-known subcomponent of the DMN, as a seed region, we retrieved
new structure-function networks that extend the well-known GM-li-
mited DMN pattern to include the WM. The functional relevance of
these structure-function networks is further validated through in-
vestigations of their relation to task fMRI. Our results illustrate the
structural mechanism for the dynamic switching between task-positive
and -negative subsystems of the DMN in different phases of working
memory and relational task paradigms.
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2. Materials and methods

2.1. Data

We used a total of 51 subjects obtained from the publicly available
Human Connectome Project dataset (HCP 1200 release), WU-Minn
Consortium. Preprocessed diffusion MRI, original functional MRI, and
anatomical data are downloaded following a random subject selection
scheme while maintaining a uniform demographic distribution (male
and female, ages 22–50). MRI acquisition protocols of the HCP and
preprocessing guidelines for diffusion MRI are fully described and dis-
cussed elsewhere (Glasser et al., 2013). On the other hand, fMRI data
were acquired using Gradient-echo EPI sequence (repetition time
[TR]/echo time [TE]/flip angle ¼ 720 ms/33.1 ms/52 deg). Following
the standard preprocessing protocol (Van Dijk et al., 2010), four sessions
of resting-state fMRI scans (1200 volumes each session, giving a total of
4800 volumes per subject) were realigned to their mean images. The
results were then registered and resampled onto the diffusion data using
rigid-body registration (SPM12, https://www.fil.ion.ucl.ac.uk). The
registered images were de-trended (i.e., constant, linear) and smoothed
using a Gaussian kernel (FWHM ¼ 6 mm). The first 10 frames were
removed to achieve steady-state magnetization of the fMRI data. Mean-
while, the diffusion data were processed using DSI Studio (http://dsi-st
udio.labsolver.org) to estimate the orientation density functions (ODFs)
associated with individual voxels across the brain. T1 images were
downloaded from the HCP in a readily aligned format corresponding to
the diffusion subject space. Individual tissue maps (WM, GM, and cere-
brospinal fluid (CSF)) were then segmented from the T1 image using
SPM12. The GM probability maps outputted from the segmentation al-
gorithm were thresholded at 0.3 and were used to mask GM voxels.

2.2. Building the voxel-wise brain grid

Similar to classical brain graphs, we define our grid as G :¼ ðV ;AÞ,
where V ¼ f1; 2;3;…;Ng is the set of N nodes representing the brain
voxels (i.e., N ¼ 700� 900 thousand), and A 2 N � N is an adjacency
matrix that encodes the likelihood of water molecules to diffuse from
their current position to neighboring voxels. We used an ODF-based
weighting-scheme on a three-dimensional 26-neighborhood mesh. ODF
is an empirical distribution of water diffusion at different orientations
introduced to solve fiber-crossing confounds that are typically observed
in model-dependent reconstruction techniques from DW-MRI (Tuch
et al., 2003). For more details regarding the choice of the signal recon-
struction technique and the design of the brain graph, we refer to the
Supplementary Methods and (Tarun et al., 2019). The topology of the
brain grid is then validated by defining the graph Laplacian matrix in its

symmetric normalized form (L ¼ I� D�1
2AD�1

2), whose eigendecompo-
sition leads to a complete set of orthonormal eigenvectors that span the
graph spectral domain with their corresponding real, non-negative ei-
genvalues. The top 11 eigenfunctions corresponding to the lowest spatial
variation are provided in Supplementary Fig. S2.

2.3. Graph signal recovery formulation

The overall goal of this work is to be able to interpolate signals from
the GM into the WM based on the structural information encoded in the
voxel-wise connectome. To do this, we consider a cost function that in-
cludes a least-squares data-fitting term equal to the residual sum of
squares (RSS), and an L2 regularization term that takes into account
smoothness with respect to the brain grid, given by

~x¼ arg min
x

ky� Bxk2 þ λxTLx; (1)

where y is a vector of length N containing initial BOLD values within GM
nodes and zero elsewhere, B is an indicator matrix that selects the GM
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nodes, and λ is the regularization parameter. L is the symmetric
normalized graph Laplacian, which encodes the voxel-level anatomical
structure. The cost function balances between (1) minimizing the RSS
and retaining the original GM signals, and (2) imposing smoothness with
respect to the structure of the graph. The balance between the two is
dictated by the choice of regularization parameter λ. The parameter λwas
selected by evaluating the cost of the regularization term xTLx across a
sufficiently large range of λs, specifically, λ ¼ f1;2;3;…;60g. This pro-
cedure allowed for a subject-dependent and data-driven choice of the
regularization parameter. Fig. S3 shows the plot of the evaluation for all
51 subjects considered in this study; the optimal λ were 9(10), 10(39),
11(2), where the values in the parentheses indicate their frequency of
occurrence. The solution to Equation (1) gives the interpolated volume
for one time-point in the fMRI. The interpolation is then done repeatedly
at each time instance (i.e., each volume) in the functional data.

2.4. Static functional connectivity analysis

The output of the graph signal recovery problem is a set of 4D whole-
brain functional volumes at a frame-wise resolution. We used the clas-
sical method of static FC analysis (i.e., Pearson correlation) in the inter-
polated volumes, wherein the averaged BOLD time-course of an ROI is
correlated to the activity profiles of all brain voxels to locate temporally
coherent areas. We used the PCC, a core region of the DMN, as a seed to
observe the joint structural-functional patterns associated with it. This is
done to each of the four sessions of resting-state (RS) fMRI sequences per
subject, and the corresponding Fisher Z-transformed correlations were
averaged across the group.

2.5. Temporal decomposition of DMN-related co-activation patterns

Next, we extended the analysis from static to dynamic FC perspective,
using the so-called co-activation pattern (CAP) analysis (Liu and Duyn,
2013). We used the PCC to extract time-varying structural mediation of
functional cross-talks implicated with the DMN. To obtain the CAPs, we
performed a two-step temporal decomposition: (1) subject-level clus-
tering and (2) group-level matching. For the first part, the top 15% sig-
nificant frames corresponding to the PCC are extracted in each of the four
sessions of resting-state scan from the HCP. Significant volumes that
survived the thresholding are concatenated together in each subject. The
choice of the threshold is motivated by finding the optimal level of
similarity between averaged significant PCC volumes at different
thresholds to that of the PCC-seed connectivity outcome (see Supple-
mentary Fig. S4(A)). These significant volumes are then decomposed into
multiple co-activation maps by running the k-means clustering algorithm
which groups and averages together those with spatially similar frames.
The optimal number of clusters was determined using consensus clus-
tering, a resampling based procedure for optimal class discovery (Monti
et al., 2003) (see Supplementary Fig. S4(B)). We used cosine as a distance
metric and performed 10-folds replicates to obtain the final clustering at
the individual level. After obtaining the co-activation maps for each
subject, we performed the group-level matching by first transforming all
individual maps into a common template (MNI), followed by a
one-to-one matching and averaging of the correspondingly similar spatial
patterns across subjects.

When doing the clustering at the subject-level, the assignment of CAP
indices in one subject does not necessarily correspond to the cluster
ordering of another subject. Therefore, when doing the group-level
averaging, it is necessary to perform a one-to-one CAP matching and
index re-labeling. The one-to-one group-level CAP matching is done
using the Hungarian algorithm (Kuhn, 1955), which solves for the
optimal pairing that has the most similar spatial combinations as defined
by their cosine similarity. The first matching is done on the first two
subjects, matching spatially similar CAPs and re-labeling their respective
frame indices. Then, the average of the first two is computed, producing a
temporary group level CAP from which the third subject is paired with.
3

This process continues until we reach the last pair of subjects to match.
The whole process is repeated again, but this time, the first subject is
realigned with the overall average obtained from the first round of
group-level CAP matching. Two rounds of subject-to-subject Hungarian
matching were done to remove bias on the effect of the first subject.

3. Results

3.1. Recovery of activity in white matter that is compatible with structural
connectivity

Signal recovery is a classical task that relates to image denoising
(Buades et al., 2010), signal inpainting (Rudin et al., 1992; Chambolle,
2004), and sensing (Cand�es et al., 2006). Here, we embed the
three-dimensional voxel-level grid into a graph where the nodes are
voxels, and the edges encode the voxel-wise strength of structural con-
nectivity measured by DW-MRI. Each node has maximally 26 edges and
is connected to its closest neighboring voxels. Functional volumes are
preprocessed and upsampled to the same resolution as this structural
grid. The values from the functional volumes are assigned to each node in
the GM, while the remaining nodes, in particular, those in the WM,
remain unassigned. The values of the unassigned nodes are then recov-
ered by solving an optimization problem that relies on two assumptions:
(i) values in the GM nodes should strongly influence the data fitness (and
thus remain reasonably unchanged); (ii) whole-brain signals should
maintain smoothness according to the graph structure. The assumption of
smoothness with respect to the graph ensures that signals are interpo-
lated according to the brain’s structural scaffold. It is important to note,
however, that the term interpolation does not denote newly generated
information, but rather a resulting pattern retrieved by incorporating GM
measures with the WM structure.

The overall pipeline is illustrated in Fig. 1(A). For an illustrative frame
of resting-state fMRI, we show in Fig. 1(B) an example of the original and
the interpolated volumes. Visually, we observe high activity in the PCC
and medial prefrontal cortex (mPFC) in the original BOLD signal. After
performing theWM interpolation, we recovered additional patterns, such
as the cingulum bundle (Lcing) that mediate PCC and mPFC. In addition
to major WM bundles that are captured, we also find short-range WM
connectivity within the cortical foldings of the GM (Koch et al., 2002).
For a quantitative comparison, we used a probabilistic WM atlas provided
by Zhang and Arfanakis (2018) to compute the average signal within the
cingulum bundle (R/Lcing), and plotted its overall trend throughout the
whole timecourse together with the mean signals in the PCC and mPFC.
Fig. 1(C) shows that the original PCC-averaged signal bears close simi-
larity (cosine ¼ 0.95) to its interpolated counterpart, a direct conse-
quence of the first constraint imposed in the signal recovery formulation
(i.e., retaining the signals within the GM nodes fixed). In contrast, we
observe comparatively lower similarities in the mean signals of the
interpolated BOLD within the R/Lcing compared to the original BOLD
(cosine similarity ¼ 0.34). Meanwhile, PCC, mPFC and the recovered
R/Lcing signals all show similar trends (all cosine similarity pairs >0.9),
while the original R/Lcing signal displays incoherent activity (cosine
similarity with PCC ¼ 0.036). These observations demonstrate that the
interpolated functional signals are smooth over the structural brain grid,
reflecting in this particular case the existing anatomical pathway
(R/Lcing) running from the rostral aspect of the PCC towards the mPFC
(Greicius et al., 2009; van den Heuvel et al., 2009).

3.2. PCC-seed connectivity map

In order to capture the joint structural-functional connection of the
DMN, we perform a PCC seed-connectivity analysis (Biswal et al., 1995)
on the interpolated volumes derived from four sessions of resting-state
scans in a population of 51 subjects (244,800 volumes in total). The
superior axial slice (z ¼ 25) in Fig. 2(A) and (B) shows the PCC and the
mPFC, including the bilateral inferior parietal cortex (IPC). In addition to



Fig. 1. Workflow of the graph signal recovery framework. (A) GM BOLD signals are extracted from fMRI volumes, one signal per time instance, through masking
the volume by the thresholded probabilistic GM map (threshold ¼ 0.3). ODFs associated to all voxels are extracted from the diffusion MRI data. The ODFs are then
embedded on a three-dimensional, 26-neighborhood connectivity grid, forming a probabilistic connectome at voxel-level resolution. A signal value can be associated
to each voxel on the grid. To initiate signal recovery at each time instance, the associated GM BOLD signal is mapped to the GM voxels within the grid, and the
remaining voxels are set to zero. The interpolated BOLD volume is obtained through minimizing a cost function that balances between (1) retaining the GM signal
fixed and (2) obtaining a smooth signal over the entire brain grid relative to the underlying structure. (B) Axial, sagittal, and coronal views of a single slice of a BOLD
volume compared to its corresponding interpolated BOLD volume. (C) Original and interpolated BOLD signal time-series of PCC, mPFC and cingulum; the selected
time frame in (B) corresponds to the highlighted time point.
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the expected GM FC pattern, Fig. 2(B) also shows the distinct WM
structures that support the structural connections between these
temporally coherent cortical regions. The most prominent connections
are the R/Lcing that connect the PCC and the mPFC, the forceps minor
(Fminor) that provides intra-connectivity between gyri within the mPFC,
and the left and right superior longitudinal fasciculi (R/Lslf) that support
the long-range connection between the IPC, and the posterior and frontal
regions. Interestingly, we also find the two-sided corticospinal tracts
(R/Lcst) that traverse the brainstem all the way to the motor cortex, the
genu of the corpus callosum connecting the two hemispheres, as well as
the bilateral hippocampal cingulum (R/Lcing2) that exit the caudal
aspect of the PCC and continue towards the medial temporal lobe (MTL).
3.3. Structural mediation of dynamic functional connectivity

The axial, sagittal, and coronal slices shown in Fig. 1(B) come from a
volume corresponding to a time point with significant activity in the PCC
(green shade, Fig. 1(C)). A particular limitation of the PCC-seed con-
nectivity is the inherent static assumption of FC. It has been suggested
that the relevant information about RS FC can be condensed into events
or short periods of time (e.g., where fMRI timecourses exceed a chosen
threshold) (Tagliazucchi et al., 2012). In line with this idea, FC obtained
from the conventional seed-correlation analysis has been shown to be
approximated by averaging all frames for which the seed has high ac-
tivity (Liu and Duyn, 2013). This congregation of significantly active
frames can then be temporally decomposed into several distinct and
meaningful co-activation patterns (CAPs). We applied the CAPs analysis
in all interpolated fMRI volumes on each subject. For each session, we
determined the significant frames corresponding to the top 15% of the
PCC. We then combined all significant volumes on each subject and
decomposed them into eight PCC-related CAPs. Then, a group-level
matching procedure was performed to obtain the final group-level CAPs.

Fig. 3 presents the CAPs obtained from the interpolated volumes,
termed interpolated CAPs (in-CAPs), as well as the CAPs generated from
4

the original BOLD signal, denoted GM CAPs. The resulting spatial pat-
terns reveal a set of WM structures unique to each in-CAP. In-CAP 1 is the
most frequently occurring and is characterized by many negative ventral
regions, in contrast to its highly positive occipital and frontoparietal re-
gions. In-CAP 2 shows similar characteristics, but with much less pro-
nounced activation in the frontal region, as also seen in its weaker Fminor
and R/Lcing. In-CAP 3 exhibits very strong activation in the frontal lobe
and negative signals in motor and sensory areas. In-CAPs 4, 5, 6 and 7 all
bear high resemblance with the PCC-seed connectivity pattern, but vary
in their strength of activity in the occipital and frontoparietal regions;
these variations are consequently also reflected in Fminor, Fmajor, R/
Lcing, R/Lslf, R/Lilf, as well as the bilateral fronto-occipital fasciculus
(R/Lifo). In-CAPs 6 and 7 contain highly negative right and left fronto-
parietal signals, respectively, demonstrating strong hemispherical
asymmetry in their activation patterns. Finally, in-CAP 8 is characterized
by positive activation within the ventral brain, specifically in the MTL,
but highly negative frontoparietal and somatosensory signals—the
implicated WM structures are less pronounced in this in-CAP.
3.4. Spatial and temporal properties of in-CAPs

Whereas GM CAPs reveal instantaneous co-activation of multiple
brain regions, in-CAPs complete the structure-function picture through
the addition of distinct and functionally relevant WM structures that
interpose spatially-distant GM co-activations. To assess the correspon-
dence of the in-CAPs with the DMN subsystems, we computed the
average signal within major WM tracts using the probabilistic WM atlas
(Zhang and Arfanakis, 2018), and compared them to the main compo-
nents of the DMN within the GM, as classified by Andrews-Hannah and
colleagues (Andrews-Hanna et al., 2010). The probabilistic WM atlas was
thresholded to 0.3 to generate the mask (see Supplementary Fig. S4(D)
for details of finding the optimal threshold). The signal averaging within
WM and GM atlases are computed in both the classical GM CAPs and the
inpainted CAPs to be able to compare the two. Fig. 4 reveals good



Fig. 2. PCC-seed correlation for the (A) original BOLD volumes and the (B) interpolated volumes, averaged across all subjects. WM bundles connecting temporally-
coherent GM regions are uncovered from interpolated volumes. (C) 3D view of the observed WM structure. PCC - posterior cingulate cortex, mPFC - medial prefrontal
cortex, Lcst - left cortico-spinal tract, Fminor - forceps minor, Lcing - cingulum, Lslf - left superior longitudinal fasciculus, Lilf - Left inferior longitudinal fasciculus,
Lcing2 - hippocampal cingulum.
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correspondence in the spatial patterns of GM regions and WM tracts in
the inpainted CAPs, especially in terms of activation polarity (with
respect to baseline) from the dorsal (positive-valued) to the ventral
(negative-valued) side. This is in stark contrast to the spatial patterns of
WM tracts in classical GM CAPs showing no accordance with their cor-
responding GM averages.

Moreover, we further validated the observed tracts in the in-CAPs and
PCC seed connectivity based on how much they follow tractography-
based results (Greicius et al., 2009; van den Heuvel et al., 2009; Figley
et al., 2015). Using predefined ROIs associated to the DMN as seeds,
tractography is performed to obtain the WM fiber bundles that connect
these regions. We computed the signal averages within the different WM
tracts obtained from fMRI-based probabilistic tractography correspond-
ing to the DMNROIs (Figley et al., 2015). The plot of the signal average is
displayed in the Supplementary Fig. S5, side by side with the signal av-
erages computed within the associated DMN ROIs. In general, the signal
averages corresponding to the PCC-seed connectivity display positive
values in all DMN-related WM tracts, suggesting that the WM interpo-
lation successfully captured tractography-verified WM bundles. On the
other hand, the in-CAPs display varied signal averages (i.e., some tracts
are positive, some are negative), thereby reflecting the distinct
structural-functional organization of the brain at different time points
when the PCC is active. These DMN-related WM tracts are all physically
connected, but are differentially wired at different time instances.

Next, we assessed the concurrence of the GM CAPs and the in-CAPs by
computing the amount of temporal overlap in each CAP. This is done by
counting the number of times that a single frame is assigned to a
matching in-CAP and GM CAP pair. Fig. 5(A) displays generally matching
5

frame assignments between the GM CAPs and the in-CAPs, reflecting a
strong temporal correspondence between the two CAP types. This finding
demonstrates that the addition of the interpolated signals does not
interfere with the segregation during the clustering, thereby showcasing
the ability of the proposed method in successfully capturing distinct WM
structures connecting temporally varying PCC-related networks without
compromising information from the original data.
3.5. Relevance of WM interpolated patterns during rest and task

Visual inspection of the spatial averages computed within the WM of
all in-CAPs reveals specific patterns that are unique for each in-CAP. In-
CAP 8 for instance, displays positive mean signal across all DMN sub-
components, and in contrast to all other in-CAPs, also shows a positive
bilateral uncinate fasciculus (L/Runc). Previous works have found that
activations in both the hippocampus and ventral mPFC during retrieval-
mediated learning support novel inference (Zeithamova et al., 2012). We
hypothesize that the positive activity of L/Runc in in-CAP 8 reflects its
potential role in mediating the coherent activity between the positive
temporal poles, hippocampus, and ventral mPFC. To verify this associa-
tion and to further explore the functional meaning of the obtained
in-CAPs, we computed their occurrence probability upon working
memory and relational tasks (Fig. 5(B)). To do so, we interpolated signals
into the WM as before, extracted frames with high activation in the PCC,
and assigned them to their closest in-CAP. We found that although
in-CAP 1 is the most recruited at rest, it mostly occurs during task blocks
(as opposed to rest intervals). In contrast, in-CAP 8 occurs the least
during resting-state, but it is vividly recruited during the rest epochs of



Figure 3. PCC-seed co-activation patterns (CAPs). Eight co-activation maps obtained by temporal decomposition of the top 15% significant frames related to the
posterior cingulate cortex (PCC), extracted from (1) the original BOLD volumes (GM CAPs) and (2) interpolated volumes (in-CAPs). The in-CAPs are numbered ac-
cording to their frequency of occurrence, which is computed by counting the number of frame assignments corresponding to the CAP. Visual inspection of the in-CAPs
reveals strong GM similarity with the observed GM CAPs. We found eight distinguishable structure-function networks related to the default mode network (DMN),
each of which varies in terms of the observed WM structures that conjoin distinct PCC-coherent GM regions.

A. Tarun et al. NeuroImage 213 (2020) 116718
the task paradigms. These results are evaluated using a two-factor
ANOVA on the occurrences of the different interpolated CAPs during
rest and tasks. Results showed highly significant main effects of CAP type
and task, as well as the interaction between both, with all corresponding
p-values less than 0.0001.

4. Discussion

4.1. General findings

We modeled the brain grid using local, voxel-to-voxel probabilistic
connections based on DW-MRI as a large graph onto which brain activity
in GM is interpolated into WM. The interpolated brain volumes revealed
WM structures that mediate distributed patterns of activity in GM. We
explored the neuroscientific relevance of the interpolated volumes by
applying conventional static and dynamic FC tools, namely seed-
correlation (Biswal et al., 1995) and CAP analysis (Liu and Duyn,
2013), using the PCC as a seed. The resulting in-CAPs unraveled the
complexity of recruited WM patterns underlying typically observed GM
co-activations (Fig. 3). In-CAPs also showed strong neurophysiological
relevance, as they revealed the segregation of the DMN into task-positive
and task-negative sub-components (Fig. 5(B)).
6

4.2. Structure-function relationships of PCC-related networks

Interpolating functional signals measured on GM into the WM has
revealed new structural-functional relationships that are akin to the
DMN. Fig. 4(D) shows the signal average within WM bundles observed in
our PCC seed-correlation map, consistent with the visually observed
tracts in Fig. 2. Prominent tracts include the cingulum bundle (R/Lcing),
the superior longitudinal fasciculus (R/Lslf), and the forceps minor
(Fminor), which are all in close agreement with previous findings of WM
structures associated with the DMN (Greicius et al., 2009; van den Heuvel
et al., 2009). In addition, the signal averages within DMN-ROI guided
tracts (Supplementary Fig. S5) further reflect the success of the signal
recovery approach in capturing WM structures that mediate temporally
coherent DMN regions. Although seed-correlation analysis is a straight-
forward measure of FC, it is debased by its transitive nature. The con-
nectivity obtained from this static approach, therefore, summarizes all
major WM connections linked to the PCC. On the other hand, CAP
analysis can account for time-dependent behavior; thus, the in-CAPs
reveal different sets of WM bundles that are characteristic of each of
the observed GM CAPs at different time-points.

While it has been established that the DMN anatomically consists of
the anterior and posterior midline, the bilateral parietal cortex, pre-
frontal cortex, and MTL (Buckner et al., 2008), these regions have been
found to functionally dissociate according to the ongoing internal



Fig. 4. Spatial characteristics of in-CAPs compared to classical GM CAPs. The overall spatial patterns of the in-CAPs and GM CAPs are explored through spatial
averaging of signals within the (A & B) GM sub-components of the DMN (Andrews-Hanna et al., 2010) as well as the (C & D) 17 major WM bundles. A similar spatial
trend is observed in the subcomponents of (B) DMN GM in-CAPs and (D) DMN WM in-CAPs, while there is almost no correspondence between the signal averages
within (A) DMN GM regions of GM CAPs and the (D) DMN WM bundles of GM CAPs. The arrangement of WM structures and DMN sub-components based on the
polarity of the inpainted CAPs with respect to the baseline also shows a concordant pattern of positive-to-negative transition from dorsal-to-ventral regions. Full labels
of GM regions and WM bundles are summarized in Supplementary Tables S1 and S2. Figure showing DMN sub-components is adapted with permission from Fig. 1 in
ref (Andrews-Hanna et al., 2010).
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processes (Andrews-Hanna et al., 2010). We surmise that this functional
disintegration is captured by in-CAPs, given that distinct in-CAPs occur in
different phases of working and relational memory tasks (Fig. 5(B)). The
MTL activates when internal decisions involve constructing a mental
scene based on memory (Andrews-Hanna et al., 2010). However, despite
being dominantly positive in this region, in-CAP 8 appears to be more
active during blocks of rest, and instead, in-CAPs 1 and 2 dominate in
periods of task blocks when the stimulus is presented. These findings
suggest that in-CAP 8 is a characteristic task-negative structure-function
network that activates during the maintenance phase (i.e., when sub-
jects are focused on consolidating an observed stimulus). Conversely,
in-CAPs 1 and 2 are task-positive structure-function networks that are
engaged during the encoding and retrieval periods when the external
stimulus is presented. Altogether, our results provide new insights into
the well-established dichotomy of the human brain (Fox et al., 2005;
Greicius et al., 2004), and clearly demonstrate that the DMN and
task-positive networks (e.g., attention network, working memory
network) are not exclusively expressing opposite activity (Piccoli et al.,
2015; Karahanoglu and Van De Ville, 2015).

Arranging the DMN sub-components according to the polarity of their
activity in each of the in-CAPs reveals a general trend of positive dorsal
areas, such as those observed from PCC to temporal-parietal junction in
Fig. 4(B). On the other hand, ventral components (lateral temporal cortex
to temporal pole) are more diverse, showing a subtle divide between
7

more negative (in-CAPs 1–4) versus more positive (in-CAPs 8) ventral
default network. The implicated dorsal and ventral WM bundles also
show the same trend in Fig. 4(D). In addition, we observe the sagittal
slices (Supplementary Fig. S1) of in-CAP 8 to show strong activation in
the ventral PCC together with the R/Lcing2. This bundle runs from the
caudal aspect of the retrosplenial cortex to the ventrally located hippo-
campal formation (HF). The bilateral HF, PCC, R/Lcing2, and temporal
poles also exhibit positive signals and, therefore, more homogeneous
averaged activity. Overall, the above observations highlight the distinc-
tive role of dorsal and ventral parts of the PCC in cognitive control
(Karahanoglu and Van De Ville, 2015; Leech et al., 2011). Furthemore, in
line with our hypothesis about the role of R/Lunc in memory consoli-
dation, we observe that in-CAP 8 displays positive signal in this particular
tract, reflecting its role in mediating coherent activity between the hip-
pocampus and the prefrontal cortex (Squire et al., 2015). Fittingly, it has
been found that the deterioration of R/Lunc lowers working-relational
memory performance (Hanlon et al., 2012).

4.3. Methodological perspectives

The overall aim of the introduced signal recovery framework is to
extract WM structures that mediate the interaction of temporally
coherent cortical regions. Several methods that have attempted to ach-
ieve the same goal have been proposed over the past years. The most



Fig. 5. Temporal characteristics of in-CAPs and their relevance to rest and tasks. (A) Temporal overlap between the interpolated CAPs and the GM CAPs;
disregarding the color-code, the height of each bar represents the number of frames that were identified to belong to either of the eight GM CAPs. The sub-bands
within each bar show the distribution of the frames linked to a particular GM CAP when classified based on in-CAPs. (B) The probability of occurrence of in-CAPs
in resting-state, working memory, and relational tasks. Each bar in the plot corresponds to the probability of that particular in-CAP to appear in the top 15% sig-
nificant volumes of rest and task scans. The stack of colors denotes the proportion of frames that occur during blocks of rest (R) when there is no stimulus presented,
and during blocks of task (T) in which subjects are expected to perform memory or relational tests. Results were verified using two-factor ANOVA (main effects of CAP
type and task, and interaction between both), with all p-values less than 0.0001.
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straightforward approach is fMRI-guided tractography, where cortical
regions corresponding to well-known functional networks are used as
seeds to estimate streamlines coming from one ROI to another (Figley
et al., 2015; Friman et al., 2006). One obvious limitation of this approach
is the need for a two-step procedure, wherein as a first step, ROIs are
extracted from functional data, then tractography is launched to recover
the streamlines that connect pre-selected regions. In our approach, we go
beyond a combined analysis (Zhu et al., 2014) of functional and diffusion
MRI, and instead jointly model the twomodalities into a single integrated
framework that enables the recovery of structure-function patterns which
are fully data-driven and observer-independent. Previous works have
also introduced a fusion of fMRI and diffusion MRI in a data-driven
manner by relying on blind-decomposition techniques (e.g., ICA) and
the use of diffusion anisotropy measures to approximate SC (Sui et al.,
2013, 2015). However, measures of diffusion anisotropy are unable to
resolve crossing fibers as they are extracted from low-order diffusion
tensor models, making their interpretation misleading and prone to
erroneous conclusions (Wheeler-Kingshott and Cercignani, 2009).
Alternatively, a more common approach in defining SC is to count the
number of fibers obtained using tractography algorithms (O’Muirch-
eartaigh and Jbabdi, 2018). SC and FC measures can then be combined
together into a huge data matrix that is decomposed into independent
hybrid structure-function components (Amico and Go~ni, 2018). Never-
theless, ICA’s principal assumption of spatial independence leads to
components that have low spatial similarity. The high susceptibility of
tractography algorithms in generating false positives (Maier-Hein et al.,
2017) also warrants caution in interpreting tractography-based results. In
contrast, our approach does not rely on tractography, thereby not only
bypassing the complicated task of parameter optimization for extracting
WM tracts but also not requiring a parcellation scheme to define ROIs.
Our framework keeps the analysis close to the DW-MRI data by working
directly with local reconstructions of orientation distribution functions,
which are consequently encoded, both in direction and magnitude, to
build the brain graph. Overall, we believe that our method offers a more
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elegant solution to recoverWM structures that mediate FC regions, and at
the same time, reduces the computational load compared to conventional
tractography approaches.

Furthermore, it is worth noting that despite the superficial similarity,
there are fundamental differences between our approach and that of the
TW-dFC (Calamante et al., 2017). Specifically, both approaches attempt
to give a measure of FC into the WM using GM as a constraint. Although
TW-dFC jointly fuses fMRI and diffusion MRI, the approach still relies on
two successive uses of classical methods (i.e., tractography and
sliding-window FC), while our work introduces an entirely new concept
where recovery of mediation by SC is incorporating the FC itself in a
consolidated framework; i.e., the complete pattern of brain activity in GM
is constraining the recovery of WM patterns. In addition, our method
works at the single-frame level and does not require to choose a temporal
window to render the approach dynamic. It is therefore noteworthy to
reiterate that the frame-wise analysis using the CAPs was made possible
by the fact that the mediation of GM activation is done for each frame. As
such, we make use of the maximal temporal resolution of the functional
data, which is a characteristic strength of the introduced method that is
not yet overcome by tractography-based methods for jointly integrating
FC and SC (Amico and Go~ni, 2018; O’Muircheartaigh and Jbabdi, 2018;
Calamante et al., 2017). This advantage also translates to easier stan-
dardization of results across groups, as classical methods of spatial
normalization can be applied in the interpolated volumes in the same
manner that is done in original fMRI.
4.4. New research avenues for structure-function studies

GSP approaches as applied to functional neuroimaging rely on a graph
shift operator (typically the Laplacian or the adjacency matrix) that en-
codes the brain’s anatomical information. Its eigendecomposition pro-
duces an orthogonal set of eigenvectors, termed eigenmodes, some of
which are reminiscent of well-established functional networks (Atasoy
et al., 2016; Abdelnour et al., 2018) and are useful in effectively
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estimating the strength of inter-hemispheric interactions in the brain
(Robinson et al., 2016). Moreover, efficient anatomically-informed de-
compositions of fMRI data using a tractography-based structural con-
nectome (Atasoy et al., 2016), as well as topology encoding GM graphs
(Behjat et al., 2015) have been proposed. Brain eigenmodes can be
viewed as basic building blocks of increasing spatial variation along the
structural brain graph, akin to sinusoids in classical Fourier analysis.
Here, we extend the traditionally region-level eigenmodes (defined on a
limited subset of GM nodes) to a whole-brain (GM and WM), voxel res-
olution setting (see Supplementary Fig. S2), thus enabling to reconstruct
structure-function networks at an unparalleled spatial resolution. As an
increasing number of operations are generalized from classical signal
processing to the graph setting (Huang et al., 2018a; Shuman et al., 2013;
Wang et al., 2017; Becker et al., 2018), promising avenues arise to
explore the many facets of brain structure and function.

We therefore foresee two direct avenues for future research. The first
avenue aims on leveraging the proposed interpolated fMRI data. The
interpolated volumes entail additional informative voxels that extend
beyond the GM, which is in particular interesting in light of the limita-
tions and skepticisms in interpreting WM BOLD data (Logothetis and
Wandell, 2004; Gawryluk et al., 2014). Previous works have demon-
strated the possibility to capture functionally relevant information from
the WM BOLD (Peer et al., 2017; Ding et al., 2018; Huang et al., 2018b),
despite the well-established findings on the differences of hemodynamic
responses in GM and WM (Fraser et al., 2012; Li et al., 2019). At its
current form, we interpolate functional signals into the WM as solely
constrained by the functional signals from the GM. Alternatively, one
may rather consider combining signal interpolation with signal recovery
of weak signals in the WM. In our current application, the goal is to
observe WM pathways that support distributed patterns of FC in GM, and
not on the functional organization of WM itself. The interpolated vol-
umes can then be readily explored using existing tools for dynamic FC
analyses (Preti et al., 2017), such as sliding-window correlation, ICA
(Beckmann et al., 2005) and principal component analysis (Leonardi
et al., 2013), to probe functional brain dynamics at a much larger scale.

The second foreseen research direction is to exploit the proposed
anatomically-informed brain grid to implement novel GSP operations on
fMRI data. High-resolution eigenmodes enable a spectral graph-based
analysis of task-based and resting-state fMRI data at an unprecedented
level of detail, and across the whole brain, in contrast to the conventional
region-wise analysis, which is typically also limited to the cortical layer.
Anatomically-informed spectral graph decomposition of fMRI data using
these high-resolution brain eigenmodes is anticipated to open up new
perspectives on the brain’s functional organization not only within GM
but alsoWM. As a case in point, FC has often been associated to Euclidean
distance (Ercsey-Ravasz et al., 2013; Alexander-Bloch et al., 2013);
thanks to our framework, the notion of distance becomes more mean-
ingfully defined in terms of the spectral representation of functional
signals (Medaglia et al., 2018; Preti and Van De Ville, 2019), enabling a
deepened understanding of the roles of short- and long-range connec-
tivity in improving the efficiency of inter-areal brain communication
(Betzel and Bassett, 2018).

4.5. Technical limitations

While it is true that our approach bypasses the use of tractography
algorithms in visualizing WM tracts that support coherent GM activa-
tions, our framework is still heavily reliant on the estimation of the
orientation density functions. Consequently, our approach is highly
dependent on the quality of the diffusion data, as in any other case of DW-
MRI studies. We also point out that because we interpolate signals into
the WM based on the signals from GM, any discrepancy that is associated
with the GM BOLD will likely influence the results of the interpolation.
Furthermore, we believe that although jointly integrating functional and
diffusion MRI offers several benefits, a potential disadvantage can arise
when there is a need to disentangle the effect of the two. This is
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particularly true when the approach is applied to clinical populations that
are hindered by complex mixes of structural and functional alterations,
such as in Multiple Sclerosis patients (Giorgio et al., 2017). In such cases,
depending on the hypothesis that can be drawn from the initial results of
the inpainting, a detailed case to case analysis is advised. For instance,
one may perform a null comparison test, such as contrasting the WM
interpolation of a healthy control data to a functionally impaired patient,
both of which are interpolated over a structurally deficient brain grid.

5. Conclusion

This study presents a new framework for studying structure-function
relationship that has several key advantages. The interpolation of fMRI
activity into the white matter enables observing key WM structures that
link interacting GM regions at the single-frame resolution. We believe
that the introduction of highly-resolved human brain eigenmodes can (i)
shift the existing trend of constructing region-wise connectomes to that of
voxel-vise connectomes and (ii) expand the use of the GSP repertoire in
the context of functional brain imaging. More importantly, we anticipate
the proposed joint structure-function characterization to offer unprece-
dented benefits for the study of clinical populations, particularly those
born with structural deficits but preserved functional efficiency, such as
in patients with agenesis of the corpus callosum (Tovar-Moll et al., 2014;
Owen et al., 2013).
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