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Abstract—A distinction is usually made between wavelet bases
and wavelet frames. The former are associated with a one-to-one
representation of signals, which is somewhat constrained but most
efficient computationally. The latter are over-complete, but they
offer advantages in terms of flexibility (shape of the basis func-
tions) and shift-invariance. In this paper, we propose a framework
for improved wavelet analysis based on an appropriate pairing of
a wavelet basis with a mildly redundant version of itself (frame).
The processing is accomplished in four steps: 1) redundant wavelet
analysis, 2) wavelet-domain processing, 3) projection of the results
onto the wavelet basis, and 4) reconstruction of the signal from
its nonredundant wavelet expansion. The wavelet analysis is
pyramid-like and is obtained by simple modification of Mallat’s
filterbank algorithm (e.g., suppression of the down-sampling in
the wavelet channels only). The key component of the method is
the subband regression filter (Step 3) which computes a wavelet
expansion that is maximally consistent in the least squares sense
with the redundant wavelet analysis. We demonstrate that this
approach significantly improves the performance of soft-threshold
wavelet denoising with a moderate increase in computational cost.
We also show that the analysis filters in the proposed framework
can be adjusted for improved feature detection; in particular, a
new quincunx Mexican-hat-like wavelet transform that is fully
reversible and essentially behaves the th Laplacian of a
Gaussian.

Index Terms—Denoising, feature detection, fractals, frames,
isotropy, Mexican-hat filter, pyramid, wavelets.

I. INTRODUCTION

D URING the past 15 years, wavelets have had a profound
impact on signal and image processing. They have led

to the development of a variety of new algorithms for signal
compression (JPEG2000) [1], [2], denoising (soft-thresholding
and its multiple variants) [3]–[6], enhancement, and restoration
(e.g., deconvolution) [7], [8], as well as signal analysis (e.g.,
fractals, singularities, texture) [9], [10]. From the practitioner
point of view, there are two categories of wavelet transforms:
nonredundant and redundant ones.

The first type (one-to-one mapping) is necessarily associated
with a wavelet basis that can be defined either in the continuous
domain—i.e., for the space of -dimensional finite en-
ergy signals [11]—, or in the discrete domain by considering the
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space of square summable sequences [12]. Wavelet bases
are elegant mathematically, as well as most efficient computa-
tionally, thanks to Mallat’s fast filterbank algorithm. They can
be designed to be orthogonal, which is advantageous for optimal
bit allocation (thanks to Parseval’s identity), and also for statis-
tical purposes because white noise remains white in the trans-
formed domain. A key property that justifies their success is that
they yield sparse representations of signals that are piecewise
smooth. These features are beneficial for data compression, and
for designing simple, efficient wavelet-domain algorithms such
as soft-threshold denoising. The only downside of wavelet bases
is their lack of shift-invariance because the underlying sampling
is critical.

The second type of redundant transformation is associated
with wavelet frames. The simplest versions are redundant vari-
ants of a decomposition into wavelet bases; they go under the
name of cycle spinning (where one iterates the transform on a
sequence of translated input signals) [13], the “à trous” wavelets
which correspond to the undecimated version of Mallat’s algo-
rithm [14]–[16], or discrete wavelet frames [17]. There are also
other less redundant transforms such as Kingsbury’s complex
dual tree decomposition which combines two wavelet bases that
are in quadrature [18], [19], and Simoncelli’s steerable pyramid
[20]. Presently, the consensus among researchers is that redun-
dant wavelets are better suited for signal and image analysis,
and that they also yield better results for tasks such as denoising.
While it is straightforward to obtained a redundant decomposi-
tion from a basis (using cycle spinning or the undecimated ver-
sion of Mallat’s algorithm), this approach tends to be very heavy
in term of memory usage and computation because the resolu-
tion of the wavelet subband remains the same irrespective of the
scale of the analysis. This can be a serious limitation, especially
in two or higher dimensions. If one analyzes the situation in term
of sampling density, there is an obvious waste in conciseness as
one moves to coarser scales because the bandwidth of wavelet
coefficients gets narrower as a result of the convolution with the
dilated analysis wavelet.

Our purpose in this paper is to present an effective way of get-
ting rid of the less informative part of this redundancy without
compromising perfect reconstruction. Specifically, we are in-
terested in maintaining some controlled level of redundancy
within the wavelet subbands to improve shift-invariance, while
retaining the sub-sampling (pyramid structure) as we move to
coarser resolution to avoid explosion in data size. Yang and Jing
have recently proposed a practical solution for getting closer to
that goal by simply replacing the original sampling matrix by a
more progressive one (e.g., quincunx instead of dyadic) which
can be viewed as an incomplete version of cycle spinning [21].
The present approach is based on a different principle which
does not require any factorization of the dilation matrix. It is also
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more flexible from a wavelet designer point of view. Our pro-
posal is a two-step strategy that tries to make the best use of both
wavelet worlds: 1) frames for a (mildly) redundant analysis and
for data processing, and 2) a wavelet basis for the representation
and efficient reconstruction of the output signal. The conversion
between the two representations is performed by a regression
module that orthogonally projects the redundant wavelet coeffi-
cients onto the corresponding wavelet subspace at a given reso-
lution.

The paper is organized as follows. In Section II, we first de-
velop the concept in 1-D, which leads to a modification of the
standard two-channel filterbank algorithm where the high-pass
analysis branch (wavelet coefficients) is undecimated. We then
generalize the system to multiple bands in Section III for the
processing of higher dimensional signals. We also describe an
extension of the method that allows using modified analysis
wavelets while preserving the perfect reconstruction property.
Finally, in Section IV, we validate the method by showing that
it leads to some performance improvement for image denoising.
We also illustrate the reshaping capabilities of the technique by
presenting a new family of Mexican-hat-like wavelet transforms
with improved isotropy properties.

II. ONE-DIMENSIONAL CASE

Following a brief review of the constituents of a nonredun-
dant wavelet decomposition (basis), we show how the standard
filterbank decomposition algorithm can be modified for a redun-
dant analysis in the high-pass channel only.

A. Wavelet Basis

The cornerstone of Mallat’s multiresolution theory of
the wavelet transform is the existence of a scaling function

. This function is often specified indirectly
through the scaling relation

(1)

where is a given (refinement) filter. The associated approxi-
mation spaces are

(2)

These spaces are embedded and form a valid multiresolution
analysis of under suitable technical conditions (i.e., ex-
istence of lower and upper Riesz bounds, and fulfillment of the
partition of unity). This guarantees the existence of some corre-
sponding wavelet basis of —not necessarily unique.

In the so-called semi-orthogonal design, the wavelet is con-
structed such that it generates a Riesz basis of the orthogonal
complement . In particular, this implies that

and that the wavelet can be written as a
linear combination of functions from the finer approximation
space

(3)

where is the wavelet filter. The corresponding wavelet spaces
are

(4)

Fig. 1. Analysis-synthesis filterbank for the 1-D nonredundant wavelet decom-
position.

The scaling function and wavelet completely determine
the synthesis part of the algorithm (wavelet expansion). They
corresponds to a unique pair of dual (or biorthogonal) functions

and with associated scaling and wavelet filters and ,
respectively. The wavelet expansion of a function
down to resolution is then given by

with the short-hand notation . In prac-
tice, the scaling and wavelet coefficients— , and , re-
spectively—are computed iteratively by repeated application of
Mallat’s algorithm. The corresponding perfect reconstruction
filterbank is shown in Fig. 1. Note that the sampling is critical:
decimation by a factor of two in both lowpass and wavelet chan-
nels.

B. Pyramid-Like Wavelet Decomposition

The idea here is not to decimate the wavelet subband in order
to obtain a finer signal analysis (redundancy factor of two). The
motivation is to improve shift-invariance which is advantageous
for signal processing purposes (better detection and/or suppres-
sion of artifacts).

Fig. 2 shows the modified filterbank. The nondec-
imated wavelet coefficients are denoted as with

. At the synthesis side,
the module “R” contains the algorithm that should estimate the
coefficients that are used for a nonredundant reconstruc-
tion.

Clearly, the reconstruction algorithm in this new configura-
tion is no longer unique. For instance, we could simply pick

which brings us back to the nonredundant
case. This is fine in the absence of processing noise or quanti-
zation artifacts, but does not present any advantage otherwise.

In a practical system, the wavelet coefficients are often
processed (module “P”) to yield some modified or “filtered” co-
efficients . We would, therefore, like to estimate the wavelet
coefficients to be injected into the nonredundant recon-
struction algorithm such that the resulting signal is most con-
sistent with those measurements.

To that end, we propose a “subband regression” that mini-
mizes the quadratic error
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Fig. 2. Analysis-synthesis filterbank for the 1-D pyramid wavelet decomposition. Processing in the wavelet domain is done in the module “P.” The module “R”
contains the subband regression algorithm.

which measures the difference between the (redundant) wavelet
analysis of the reconstructed signal and the current (processed)
wavelet coefficients .

To determine the solution, we first rewrite the criterion as

where we have introduced the composite filters

(5)
(6)

with the notation refering to the time-reversed filter
whose -transform is . Next, we identify the auxiliary
residual signal

(7)

that can be readily computed from the known subband coeffi-
cients. The optimization problem then reads

(8)

which boils down to finding the least-squares approximation of
in . A standard argument (cf. [22])

then yields

(9)

where is the -dual of

(10)

Note that this result can also be obtained as a special case of the
multichannel solution which is derived in the next section. The
solution is equivalent to digital filtering of the auxiliary signal
followed by down-sampling by a factor two. The complete sub-
band regression algorithm is summarized in Fig. 3. This system
will recover the original (nonredundant) wavelet coefficients of
the signal exactly if the (redundant) analysis coefficients are fed
into the algorithm unaltered; e.g.,

. Otherwise, it will lead to the reconstruction of the signal
that is maximally consistent with the desired wavelet coefficient
values.

Fig. 3. Overview of the 1-D subband regression algorithm (module “R” of
Fig. 2), followed by subsampling.

III. MULTIPLE DIMENSIONS AND CHANNELS

We will now extend the above regression scheme to the case
of multichannel wavelets. In doing so, we will adopt a vector
formulation that is also valid for multidimensional signals.

A. Subband Regression: General Case

In the general -dimensional case, the redundancy factor de-
pends upon the subsampling ratio—i.e., where

is the subsampling matrix—and the number of non-
subsampled channels of the filterbank with the constraint that

. It is given by

(11)

We achieve a redundancy factor of by selecting
which is the case that will be treated here.

Let us denote the lowpass filter by , and the
highpass filters on the analysis and synthesis side by

...
... (12)

respectively. Together with , these specify a -channel mul-
tidimensional perfect reconstruction filterbank analogous to the
one displayed in Fig. 1.

We now consider the corresponding modified perfect recon-
struction system whose schematic representation is shown in
Fig. 4. The pooled effect of the wavelet filters is represented
by the two multidimensional transfer matrices
(analysis) and (synthesis), while the undecimated, pro-
cessed, and decimated wavelet coefficients are collected in the
vector signals and , respectively. Our
task is to specify the estimation module “R” such that the crit-
ically-sampled coefficient sequence provides the min-
imum-error appproximation of the undecimated, and possibly
altered, coefficients .
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Fig. 4. Analysis-synthesis filterbank for the -channel pyramid wavelet decomposition. Processing in the wavelet domain is done in the module “P.” The module
“R” contains the subband regression algorithm.

Our consistency measure for this general multidimensional
setup is

where the inner squared vector-norm sums the error contribu-
tions across the wavelet channels, and the outer -norm
performs the summation over the multidimensional signal do-
main (index ). To simplify this expression, we introduce the

-matrix and -vector filters and , respectively,
whose entries are given by

(13)

(14)

with and . We then
restate the error criterion as

(15)

with

(16)

As shown in the appendix, the minimization of this criterion
leads to the set of normal equations

for any . Note that the left-hand side can be interpreted
as the convolution between and the -subsampled
version of the “auto-correlation” matrix filter . This
system of equations can be solved by inverse filtering,

(17)

Fig. 5. Overview of the -channel subband regression algorithm (module “R”
of Fig. 4), followed by subsampling.

which is the direct matrix counterpart of (9); it involves a convo-
lution with a matrix filter followed by a downsam-
pling by . The individual channel components are, therefore,
given by

(18)

where the convolutions are now scalar. The matrix filter is
specified by its transfer function

(19)

where is the -dimensional complex -trans-
form-domain variable with the notational convention

; the ’s are diagonal coset matrices
which are given by where is the
-th coset generated by [23]. For example, in the case of the

dyadic subsampling matrix, we have

In effect, the term in parenthesis corresponds to the -down-
sampling-upsampling of the “auto-correlation” matrix filter

so that this operator matches the finer rate of the
input data, while the matrix-inverse symbol “ ” imple-
ments the inverse filtering operation that is required to solve
the normal equations.

The complete subband regression algorithm can thus be im-
plemented using a block diagram that is the vector/matrix coun-
terpart of the previous one, as shown Figs. 4 and 5. Note that this
formulation lends itself well to an implementation in the Fourier
domain: the (matrix) frequency response of can be com-
puted directly from (19), while the filtering is implemented by
simple matrix multiplication with the -vector Fourier trans-
form of . If one includes the processing of the lowpass
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Fig. 6. Wavelet decomposition of the test image “cameraman” for the orthogonal polyharmonic B-spline wavelet of order and quincunx subsampling
matrix. (a) Original test image. (b) Nonredundant transform (compressed display). (c) Nonredundant transform where the wavelet subbands of odd decomposition
levels are rotated by 45 degrees to maintain the geometrical organization of the quincunx lattice. (d) Pyramid transform as proposed in this paper. The redundancy
factor with respect to (b) and (c) is .

branch, the subband regression can also be viewed as an
channel filterbank. Globally, this means that the cost of

signal reconstruction is of the same order as that of the anal-
ysis part of the algorithm. Thus, one should expect an overall
increase in computation over the nonredundant scheme that is
roughly equivalent to the redundancy factor .

B. General Two-Channel Case

The advantage of the two channel case
is that there is only one wavelet, as opposed to for

the more conventional separable schemes which result from the
application of a 1-D algorithm along the various dimensions of
the data [24]. Specific nonseparable wavelet designs have been
proposed for the quincunx subsampling matrix (2-D) and the
FCC subsampling matrix (3-D) [25]. The most frequently used
quincunx subsampling matrix is

(20)

with the property .
For , we necessarily have in our pyramid

scheme, so that the filters and are scalar. The two cor-
responding coset matrices are and where

is the identity matrix. The least-squares filter (19) then
simplifies to

(21)

which is essentially the same formula as in the 1-D case.
An example of such a wavelet image analysis is illustrated in

Fig. 6, for the quincunx wavelet transform that is associated with

an orthogonal polyharmonic spline of order 4. The nonredun-
dant transform can be depicted in two ways. Either the wavelet
subbands of the odd decomposition levels can be squeezed to-
gether to fit into an image of the same size as the original one,
as shown in Fig. 6(a), or those subbands can be displayed using
a pixel arrangement that preserves relative spatial relationships
(rotation by 45 degrees for odd decomposition levels), as shown
in Fig. 6(b). The pyramid counterpart with a redundancy of two
(no subsampling in the wavelet channels) is shown in Fig. 6(c).
This corresponds to the analysis part of the algorithm. When
the subband regression procedure (module “ ”) is applied to the
unaltered wavelet pyramid, it yields back the original nonredun-
dant wavelet transform (consistent reconstruction). However, if
the wavelet coefficients in the pyramid are modified through
processing (e.g., pointwise nonlinearity), then the output of the
regression module is different from the original nonredundant
wavelet transform. The final image reconstruction is obtained
by (nonredundant) inverse wavelet transformation and it is such
that it is maximally consistent with the redundant wavelet pro-
cessing.

C. Optional Wavelet Reshaping

The basic idea behind wavelet reshaping is that we can take
further advantage of the frame redundancy and the generic struc-
ture of the analysis-synthesis algorithm in Fig. 4 to modify the
analysis functions such that they are better suited for the appli-
cation at hand. For instance, it may be desirable to optimize the
wavelets to improve their space-domain localization or to make
them more isotropic. Alternatively, one may also be interested
in adapting their shape for better feature extraction.
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Fig. 7. Analysis-synthesis filterbank for a wavelet decomposition in the 2-channel quincunx case. The shaping filter allows to take advantage of the redun-
dancy to better match a desired template; for instance, a Mexican-hat wavelet, as discussed in Section IV-B.

We now briefly describe the concept for the general two-
channel case (cf. Subsection III.B) which is simpler to formu-
late because there is a single wavelet involved. In that setting,
the original analysis wavelet space at resolution is

(22)

where is the biorthogonal analysis wavelet associated with the
given wavelet basis. The analysis wavelet is usually expressed
in terms of the analysis scaling function

(23)

where is biorthogonal to and where corresponds to the
wavelet analysis filter in the perfect reconstruct filterbank (cf.
lower branch in Fig. 1).

Similarly, the modified wavelet system described by the block
diagram in Fig. 4 yields a redundant signal description that is
associated with the “augmented” analysis space

(24)

because of the suppression of the down-sampling module in the
highpass wavelet channel. Clearly, we have that , but
one looses the orthogonality with the scaling space because
of the inclusion of the additional “in-between” wavelets. On the
other hand, it still holds that where the latter is the
approximation space (analysis) at the next finer resolution.

When working with a wavelet basis of , the choice of
the filter in (23) is quite constrained and often fixed a priori.
If we now consider the enlarged space , we have many more
degrees of freedom which makes it also possible to choose some
other equivalent wavelet of the form

(25)

The only constraint is that where
is the frequency response of some reversible digital

filter—i.e., where and are some
positive constants—so that is an equivalent generator of .
The wavelet decomposition and subband regression algorithms
can then be readily adapted by simply replacing by
in all relevant filter equations (cf. Fig. 7). The reconstruction
will remain perfect because we are still spanning the same anal-
ysis and synthesis spaces.

While this modification of the wavelet filter seems rather in-
nocuous, we will see that it can have a dramatic effect on the
shape of the wavelet and on its feature extraction capabilities.
In particular, we will illustrate the concept with the design of
wavelets that essentially replicate a Mexican-hat-like analysis.
This wavelet reshaping method is also transposable to the mul-
tichannel case where the degrees of freedom are even more nu-
merous.

IV. APPLICATION EXAMPLES

The motivating idea for performing processing in a redundant
wavelet domain is to ensure better shift-invariance. In practice,
this tends to result in a finer detection of relevant image features,
a better preservation of details, and a reduction of reconstruction
artifacts. We will now investigate this effect for two basic image
processing tasks for which wavelets have been found to be par-
ticularly successful: image denoising and multiscale feature ex-
traction. Ideally, we would like to improve the performance of a
given nonredundant wavelet-domain algorithm by only making
use of a minimum of redundancy such as to keep the computa-
tional cost and memory requirement at a reasonable level.

A. Denoising

To compare the performance of the various transforms, we
added white Gaussian noise to a series of test images and ap-
plied a standard denoising algorithm which consists in applying
a soft-thresholding in the wavelet domain [3]. In order to have
a fair comparison, we used a fixed soft-threshold across all sub-
band that was optimized in each case for maximum signal-to-
noise ratio (Oracle solution). We kept the denoising procedure
simple on purpose to minimize the number of parameters and to
focus on the comparison of transforms with various levels of re-
dundancy: the standard nonredundant orthogonal wavelet trans-
form, its pyramid extension obtained using the proposed sub-
band regression, and a fully redundant scheme without any sub-
sampling in the wavelet channels. We tested a combination of
separable orthogonal dyadic transforms (Haar and cubic-spline
Battle–Lemarié [11]) together with their nonseparable quincunx
counterparts (orthogonal polyharmonic splines of order

) [26]. We applied a comparable number of decomposition
levels in both instances: for the standard dyadic config-
uration and for the quincunx case where the scale in-
creases as a power of . The results are summarized in Table I

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 10, 2009 at 09:17 from IEEE Xplore.  Restrictions apply.



2046 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 11, NOVEMBER 2008

TABLE I
PSNR IMPROVEMENTS FOR DENOISING USING SOFT-THRESHOLDING WITH THE ORACLE SOLUTION.

DECOMPOSITION LEVELS: (DYADIC) AND (QUINCUNX)

using the peak signal-to-noise ratio (in dB) as the measure of
denoising quality.

According to expectations, the higher order most-redundant
decomposition (cubic splines, fully redundant) gives the best re-
sults. The pyramid decomposition is competitive in most cases;
in particular, it is always significantly better than the nonredun-
dant decomposition (orthogonal wavelet basis). In the case of a
quincunx transform where the redundancy is the least, it yields
results that are approximately half-way in between the nonre-
dundant and fully-redundant cases on the
dB scale. The improvement is more striking in the dyadic case
where the performance is very close to the fully redundant trans-
form, despite the substantial reduction in computational and
storage cost ( as compared to ). The most re-
markable results are those obtained in the Haar case where the
denoising performance of the pyramid transform is as good—if
not better—as the fully redundant system. Some representative
examples of restoration are shown in Fig. 8. The results obtained
using the nonredundant transform [cf. Fig. 8(b)] exhibit char-
acteristic artifacts—these are the footprints of the underlying
basis functions which are not shift-invariant. These artifacts are
much attenuated in the more redundant schemes, which also
yield better results in terms of the PSNR—the visual quality in
both cases is quite comparable.

A finding that comes as a surprise is that the quincunx scheme
(including the fully-redundant version) is not all that good; it
is outperformed by both Haar and cubic spline pyramids in all
but one experiment (”Einstein” with ). The observed
findings are quite robust and reproducible; they hold across all
noise conditions and for all test images to which we have applied
the algorithm.

Note that the basic soft-thresholding algorithm that we
have applied here is somewhat primitive when compared to
state-of-the-art in wavelet denoising [6], [27]. Yet, it should
still serve as a valid benchmark for the comparison of wavelet
decompositions since the running conditions are the same in
all cases and the value of the threshold is optimized for best
performance (oracle solution). The main point that we want to
make is that working with a fully redundant wavelet system is
probably overkill, and that one should be able to obtain similar
performance with a less redundant pyramid-like system.

While one could object that the oracle solution is not acces-
sible in a practical situation where the noise-free signal is un-
known, it turns out that the thresholding level can still be ac-
curately optimized from the noisy data when the signal is cor-
rupted by white Gaussian noise of known variance . The sta-
tistical tool that makes this possible is Stein’s unbiased risk esti-
mate (SURE) whose use for wavelet denoising was pioneered by
Donoho in the case of an orthogonal transform [28]. Recently,
it was shown how to extend the SURE technique to more gen-
eral denoising schemes, including the ones considered here [29].
Concretely, this means that we could have obtained virtually
identical denoising results using a purely data-driven approach
which in the present case would require a few Monte-Carlo
testing iterations (i.e., running the whole denoising algorithm
several times on simulated data).

Based on these experiments, one may, therefore, conclude
that the proposed pyramid algorithm stands as an attractive alter-
native to the fully redundant scheme (“à trous” or undecimated
wavelet transform) because of its greater computational effi-
ciency; in the present tests, it was about three to four times more
efficient. While the speed-up increases linearly with the number
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Fig. 8. Wavelet denoising by optimized soft-thresholding with various degrees of redundancy. (a) Input: 256 256 “cameraman” image corrupted by additive
white Gaussian noise . (b) Denoising using the nonredundant Haar transform with levels of decomposition; PSNR improvement 2.98 dB.
(c) Denoising using the proposed Haar pyramid ; PSNR improvement 4.45 dB. (d) Denoising using the fully-redundant Haar transform ; PSNR
improvement 4.40 dB.

of levels, it becomes even more significant when moving to
higher dimensions (e.g., 2-D time, or 3-D) which is often the
rule in biomedical imaging applications. In fact, a fully-redun-
dant denoising is often simply not feasible in higher dimensions
because of the intrinsic limit on memory and computational re-
sources—just think of the task of denoising a 512 512 512
fluorescence micrograph which is a typical size for modern con-
focal microscopes, not to mention time-lapse imaging which
would add another dimension [30].

B. Laplacian-Like Wavelet Analysis With Improved Isotropy

Several authors have applied wavelets to the detection of
spots or blob-like objects in images [31], [32]. Specific ex-

amples of biomedical applications include the detection of
microcalcifications in mammograms [33], [34] and the lo-
calization/tracking of GFP-labelled proteins in fluorescence
micrographs [35], [36].

In essence, a wavelet transform performs a correlation
analysis so that we can expect its output to be maximum
when the input signal most resembles the analysis template

at scale and location . Interestingly, we can show
that the optimal detector for the type of biomedical signals
mentioned above is a Laplacian-like wavelet. To that end, we
consider the measurement model:
where is a known deterministic signal at
scale is the unknown location of the target, and
is additive Gaussian noise. It is well known from detection
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theory that the optimal detector (prewhitened matched filter)
corresponds to a correlation with the template where
L is the whitening operator of the noise and where denotes
its adjoint. We can further show that this detector has the
structure of a wavelet transform if and only if the whitening
operator L commutes with dilations, which narrows down
the possibilities to some fractional iterate of the Laplacian

[37]. The stochastic processes
that are whitened by are the fractional Brownian
fields—also commonly referred to as noises in the engi-
neering literature [38], [39]. These processes are isotropic, but
they have the particularity of not being stationary (their power
spectrum is not defined in the conventional sense). Yet, they are
frequently used to model natural images which tend to exhibit

-like spectral decay. Even more relevant to the present
task is the fact such inverse-power-law spectral behavior (which
is characteristic of fractals) has been observed in a variety of
biomedical modalities including mammography [40] and fluo-
rescence microscopy [41]. This points to an “optimal” wavelet
detector of the form

(26)

where as is an isotropic smoothing function (ideally, a
Gaussian for best space-frequency localization). In practice, the
shape of the smoothing function should be matched to the type
of object to detect (e.g., Gaussian spot or microcalcification) and
the fractional order adjusted such that is essentially whitens
the background signal in the image. Note that one recovers the
classical Mexican hat filter for .

To our knowledge, the only wavelet bases that exhibit a true
Laplacian-like behavior are the polyharmonic spline wavelets
which we have fully characterized for the quincunx subsam-
pling matrix in our earlier work [26]. Note that quincunx sub-
sampling is especially attractive for the present detection sce-
nario because it provides a progressive scale transition—i.e., a
reduction by a factor of as opposed to 2 for a more tradi-
tional dyadic analysis. While the polyharmonic spline wavelets
are compatible with (26) where is even allowed to be
fractional, their downside is that the corresponding smoothing
function is not trully isotropic nor Gaussian. In fact, as in-
creases, the smoothing kernel for the orthogonal case converges
to a sinc function which is clearly nonisotropic.

We will now show how to reshape these wavelets to make
them perform as desired. The relevant functions for our purpose
are the “improved” polyharmonic B-splines of order whose
Fourier-domian definition is (cf. [26])

(27)

with

Note that is the transfer function of a discrete “most
isotropic” version of the 2-D Laplace operator. Its Laplace-like
behavior near the origin (e.g., )

is crucial to neutralize the singularity of the denominator; it is
the key to obtaining a B-spline function that is well localized in
space (in particular, ) and essentially isotropic
[26].

The polyharmonic B-spline is a valid scaling function for any
real ; its refinement and autocorrelation filters are de-
noted by and ,
respectively. It is, therefore, possible to build multidimensional
wavelet bases by suitable linear combination, as in (23) with

. Specifically, the corresponding generic Fourier-do-
main formula for quincunx polyharmonic spline wavelets is (cf.
[26])

(28)

where is the scaling function and where is a filter (bounded
from above and away from zero) that contains the degrees of
freedom for a semi-orthogonal basis design. In the orthogonal
case, is uniquely tied to the other quantities (refinement
and autocorrelation filters and ).

In the case of a redundant analysis, we are less constrained
and we can replace by any filter of our choice, as justi-
fied in Subsection III-C. In the present case, we select the more
convenient wavelet filter

(29)

where is the localization filter in the numerator of
(27). Note that this corresponds to the reshaping factor

(30)

which has the required boundness property. The key observa-
tion here is that and have the exact same

behavior at the origin so that they essentially cancel
each other, while all other terms are bounded from above and
away from zero. The Fourier transform of the new analysis
wavelet then simplifies to

which, in the space domain, is equivalent to

(31)

This last equation is now fully compatible with (26). Specifi-
cally, the new wavelet corresponds to the th Laplacian of
a polyharmonic B-spline of order , where is the order pa-
rameter that is adjustable by the user in a continuous fashion.
The smoothing function is now Gaussian-like and very nearly
isotropic. In fact, we even have the guarantee that it converge
to a 2-D isotropic Gaussian with standard deviation
as increases [26]. Three examples of polyharmonic spline
wavelets are shown in Fig. 9. The first two generate wavelet
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Fig. 9. Polyharmonic spline wavelets for the quincunx subsampling matrix for order . (a) Orthogonal polyharmonic spline wavelet. (b) Semi-orthogonal
B-spline wavelet. (c) Reshaped Mexican-hat analysis wavelet. (d) Gaussian-like smoothing kernel for the wavelet in (c).

bases of : wavelet (a) is orthogonal, while wavelet (b)
is Gabor-like (modulated Gaussian); they are obviously both
less isotropic than the reshaped Laplacian-like wavelet which is
shown in Fig. 9(c). The corresponding smoothing filter is shown
in Fig. 9(d) and is very much Gaussian-like. In principle, one
may improve the isotropy of the third wavelet even further by
matching higher-order Laplacian terms in the numerator of the
Fourier-domain definition of the polyharmonic B-spline (data
not shown, but available from the authors).

A concrete example of a Mexican-hat wavelet analysis of a
fluorescence micrograph is displayed in Fig. 10(b). Note how
the detection of the fluorescent spots is improved when using the
reshaped wavelets instead of the orthogonal ones [cf. Fig. 10(c)].

V. CONCLUSION

We have introduced a general mechanism for improving the
invariance properties and the feature extraction capabilities of
any multidimensional wavelet basis. We believe that such a fix
is essential if one wants to make this type of representation more
attractive for analysis and processing purposes. Wavelet bases
are elegant mathematically, but they are inherently constrained
due to the requirement for a nonredundant representation. In
other words, there is not much hope for coming up with an
“ideal” wavelet basis that would simultaneously fulfill the
following desirable properties for image processing: orthog-
onality (one-to-one representation), symmetry, good spatial
localization, shift-invariance, scale-invariance, rotation-invari-
ance, smoothness, etc. [42]. In fact, designing wavelet bases
is essentially an art in finding the best compromise among the
above conflicting goals. Yet, the invariance properties of the
transform can be improved straightforwardly by adding basis
functions, which then yields a wavelet frame. However, this
needs to accomplished parsimoniously, and this is where the
technique proposed in this paper comes in very handy. Indeed,
one can easily control the redundancy and maintain it within
a reasonable range (2 to 4); this is much more difficult to

achieve with alternative scheme such as cycle spinning which
are much more demanding computationally and storage-wise.
The pyramid-like reduction that is provided by the present
approach is advantageous from that perspective and also quite
compatible with our present knowledge of the organization of
primary visual cortex.

A final aspect that we have explored briefly is the possibility
of changing the wavelet filters to improve the quality of the anal-
ysis. The possibilities there are almost limitless because there is
essentially no constraint on the choice of the reshaping filter

. We have illustrated the concept with the design of
Mexican-hat-like wavelets whose distinguishing property is to
be very nearly isotropic. Also, the fact that these wavelets be-
have like multiscale th order fractional derivative operators
makes them prime candidates for the analysis of fractal pro-
cesses. For instance, one can easily estimate the local (isotropic)
Hurst exponent (or, equivalently, an average Hölder exponent)
of a process based on the decay of the wavelet energy across
scale (fitting of a straight line in a log-log plot). A further ad-
vantage of the present type of analysis is that is offers a progres-
sive scale transition (a reduction by as opposed to the more
traditional factor of 2).

APPENDIX
DERIVATION THE SUBBAND REGRESSION EQUATIONS

Let and be two -vector signals of dimension .
We define the corresponding vector -inner product
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Fig. 10. (a) Original fluorescence micrograph. (b) Its pyramid decomposition using the mexican-hat like wavelet of order . (c) Its pyramid decomposition
using the orthogonal wavelet of order .

where denotes the th component of . A basic signal
processing operation for such signals is the matrix convolution,
which is defined as

The corresponding adjoint relation is

where with is the transposed, space-
reversed version of the matrix impulse response .
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This allows us to write the error criterion (15) as

The least-squares approximation corresponds to the orthogonal
projection of onto the subspace spanned by the vector signals

with , where denotes
the th row vector of . The solution is found by imposing the
orthogonality of the approximation error

for . By expanding and combining these equations for
, we get

where we have introduced the space-reversed version of the
basis function matrix . We then make the
change of variable

Finally, we identify the inner sums as convolution operations,
which yields the canonical form of the normal equations

for any .
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