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Abstract—We present a functional framework for the design of
tight steerable wavelet frames in any number of dimensions. The
2-D version of the method can be viewed as a generalization of Si-
moncelli’s steerable pyramid that gives access to a larger palette of
steerable wavelets via a suitable parametrization. The backbone
of our construction is a primal isotropic wavelet frame that pro-
vides the multiresolution decomposition of the signal. The steer-
able wavelets are obtained by applying a one-to-many mapping
( th-order generalized Riesz transform) to the primal ones. The
shaping of the steerable wavelets is controlled by an uni-
tary matrix (where is the number of wavelet channels) that can
be selected arbitrarily; this allows for a much wider range of so-
lutions than the traditional equiangular configuration (steerable
pyramid). We give a complete functional description of these gen-
eralized wavelet transforms and derive their steering equations.
We describe some concrete examples of transforms, including some
built around aMallat-type multiresolution analysis of , and
provide a fast Fourier transform-based decomposition algorithm.
We also propose a principal-component-based method for signal-
adaptedwavelet design. Finally, we present some illustrative exam-
ples together with a comparison of the denoising performance of
various brands of steerable transforms. The results are in favor of
an optimized wavelet design (equalized principal component anal-
ysis), which consistently performs best.

Index Terms—Directional derivatives, multiresolution decompo-
sition, Riesz transform, steerable filters, steerable pyramid, tight
frames, wavelet transform.

I. INTRODUCTION

T HE steerable pyramid is a multiorientation, multiscale
image decomposition that was developed in the 1990s

by Simoncelli and others [1]–[4]. It is a wavelet-like repre-
sentation, whose analysis functions are dilated and rotated
versions of a single directional wavelet. Steerability refers to
the property that the underlying wavelets can be rotated to
any orientation by forming suitable linear combinations of a
primary set of equiangular directional wavelet components
[5]. This provides a powerful mechanism for adapting the
transform to the local characteristics of the image by steering
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the basis functions in the direction of maximal response. The
concept is very valuable for image analysis; in particular, local
orientation analysis, contour detection, shape from shading [5],
texture retrieval [6], [7], and directional pattern detection [8].
The steerable pyramid is also self-reversible, which translates
into the fact that the corresponding wavelets form a tight frame
of [9]. The combination of these two properties—steer-
ability and self-reversibility—is particularly advantageous for
designing wavelet-based algorithms for image denoising [10],
image enhancement [11], [12], texture synthesis [13], image
extrapolation or “hallucination" [14], image fusion [15], as well
as sparsity-constrained image reconstruction [16]–[18], which
is presently a very active area of research.
In prior work, we introduced a general operator-based frame-

work for the construction of steerable wavelet frames. The foun-
dation of the approach is a higher order version of the Riesz
transform that has the remarkable property of mapping a primal
isotropic wavelet frame of into a directional wavelet,
whose basis functions are steerable [19]. We did apply the con-
cept to the design of the Riesz–Laplace wavelets, which closely
resemble the partial derivatives of a Gaussian. The price to pay
for the good localization of these wavelets, however, is that
the frame is not tight—although the transform is perfectly re-
versible.
In this paper, we take the next step focusing on the con-

struction of tight steerable wavelet frames. Our motivation is to
specify extended families of steerable transforms with a larger
diversity of wavelets than what has been considered so far, and
to propose concrete design solutions in dimensions greater or
equal to two.
Our functional framework is such that it decouples the mul-

tiresolution and steerability aspects of the transform, which sug-
gests a two-step approach to the problem. The desired starting
point for the construction is a tight primal wavelet frame with
the best possible localization and isotropy properties. The de-
sign options that are presently available to meet these primary
requirements are as follows.
1) Nonseparable quincunx wavelet transforms: These are the
most isotropic wavelet bases among the various families
available [20], [21]. The advantage is that there is a single
wavelet per scale that can also be specified to be orthog-
onal. The limitation is that the approach does not gener-
alize well to dimension greater than 2 [22].

2) Laplacian-like pyramid decompositions in the spirit of
Burt and Adelson [23]: Such pyramids can be designed to
have good isotropy and energy compaction properties [24],
[25]; they can also be specified using orthogonal scaling
functions, which automatically yields a tight frame [26].

1057-7149/$26.00 © 2011 IEEE
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The major difficulty there is that imposing orthogonality is
often detrimental to isotropy, especially at higher orders.

3) Bandlimited wavelet frames: Several authors have found
that perfect wavelet isotropy is achievable by imposing
a radial bandlimiting constraint [13], [27]–[29]. Interest-
ingly, this is also the solution that leads to an equivalence
between the present Riesz-based formulation and Simon-
celli’s steerable pyramid. The fundamental limitation there
is that the basis functions cannot be compactly supported.
In fact, Romero et al. have proven that it is impossible to
construct isotropic refinable functions that are compactly
supported [28].

While each of these options imposes some level of compromise,
we have chosen to concentrate on the two latter ones, which are
better matched to our objectives.
The second aspect of the construction of steerable wavelet

frames is the specification of the directional components of the
transform. The key observation is that our canonical wavelets,
which are given by the th-order Riesz transform of the primal
isotropic one, actually define a whole subspace of steerable
functions. The idea is to exploit these degrees of freedom to
develop alternatives to Simoncelli’s classical equiangular solu-
tion. In particular, we will apply principal component analysis
(PCA) to optimize the basis functions for image denoising and
feature extraction.
The paper is organized as follows. We start with a short

introduction to the multiinteger notation and a review of the
key properties of the higher order Riesz transform. We then
proceed in Section III with the definition of a generalized Riesz
transform and the explicit derivation of the corresponding
steering relations. The main point is that we can use these
generalized transforms to specify a whole family of steerable
wavelet frames that are associated to some primal wavelet de-
composition. The bottom line is that the sought-after properties
of the transform—exactness of the steerability and self-re-
versibility—are in direct relation with the degree of isotropy
of the primal wavelets and the tightness of the initial frame
bounds. In Section IV, we introduce a common multiresolution
framework for the specification of the primal (orientation-free)
wavelet decomposition in accordance with the strategies 2)
and 3) outlined earlier. We provide explicit Fourier-domain
formulas for isotropic bandlimited wavelets as well as a novel
functional characterization of pyramid-based decompositions.
The implementation details and quantitative assessment of var-
ious brands of steerable wavelet transforms (equiangular, Riesz,
and different types of PCA wavelets) are given in Section V
together with illustrative examples of image processing.

II. MATHEMATICAL PRELIMINARIES

A. Multiindex Notation: Factorials and Derivatives

We will consider -dimensional multiindex vectors of the
form , whose entries are nonnegative in-
tegers. We then define the following multiindex operations and
operators:
1) Sum of components: .
2) Factorial: .

3) Exponentiation of a vector :
.

4) Higher order partial derivative of a function ,

.
The notation allows for a concise description of the multinomial
theorem

which involves a summation over distinct monomials
of the form with . It also
yields a compact formula for the th-order Taylor series ex-
pansion of a multidimensional function with well-defined
derivatives up to order

(1)

By setting and , this is equivalent to the
univariate th-order Taylor series of along the direction

where

is the th-order directional derivative of along the unit vector
. The Fourier domain counterpart of the latter formula is as
follows:

where is the Fourier
transform of the input signal .

B. Riesz Transform and Its Higher Order Extension

The Riesz transform of a finite-energy function ,
is the scalar-to-vector signal transformation :

... (2)

where the Riesz component operators are linear, space-in-
variant and characterized by the frequency responses

. Hence, in the frequency domain, we have that

(3)
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The higher order versions of the transform are obtained by
iteration. While there are possible ways of forming terms
of form with ,
there are actually much fewer distinct th-order Riesz com-
ponents due to the commutativity and factorization properties
of the underlying convolution operators. Specifically, we de-
fine the higher order Riesz component operator with multiindex

as follows:

(4)

which is normalized such that the global transform preserves
energy. These are then used to specify the full th-order Riesz
transform of a signal

...

...

(5)

which involves distinct higher order Riesz com-
ponents indexed by with . The corre-
sponding Fourier-domain description of the -component of the
transform is as follows:

(6)

A fundamental property is that the higher order Riesz trans-
form preserves inner products in , which also implies
that it is self-invertible:

(7)

where the symbol denotes the adjoint operator. In particular,
we have that . Note that the Fourier-do-
main version of this perfect reconstruction property is a direct
consequence of the multinomial theorem

which, thanks to (6), is equivalent to (7).

We can also establish a connection between the Riesz trans-
form and partial derivatives by multiplying (6) by with

and explicitly writing the corresponding
Fourier-transform pair

where is the (fractional) Laplace operator of order ,
whose frequency response is . This yields the relation

which holds in the sense of distributions. Since the inverse of
is an isotropic low-pass-filtering operator, the net ef-

fect of the higher order Riesz transform is to extract smoothed
versions of the derivatives of order of the signal of interest.
Based on the aforementioned relation, we also provide a Riesz
version of the Taylor series (1)

with the weighting factors .
Similar to derivatives, the Riesz transform commutes with

translation and scaling operators. What is more remarkable for
image processing is that this feature extraction process com-
mutes with spatial rotations, as discussed in the next section.

III. GENERALIZED RIESZ TRANSFORMS AND STEERABLE
WAVELET FRAMES

A. Generalized Riesz Transforms

Definition 1: Let be a (possibly complex-valued)
nonsingular matrix with . The generalized Riesz
transform of order and coefficient matrix is the scalar to
-vector signal transformation given by

For notational convenience, we will represent the matrix entries
of using themultiindex notation ; specifically,

, where and are the multiindices corresponding the
and components of the th-order Riesz transform (5),

respectively.
The adjoint transformation maps a -vector signal

back into the scalar signal domain; it is given by

(8)

where is the hermitian transpose of .
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While the multiplication of the transform with an arbitrary
matrix adds an interesting level of generalization, it does
not fundamentally affect the invariance properties of the Riesz
transform.
Property 1: The generalized Riesz transforms are translation-

and scale-invariant

The translation and dilation invariance properties of the primary
Riesz components are preserved, since the matrix multiplication
part of the transform can be simply factored out,
Property 2 (Norm Equivalence and Invertibility): The gener-

alized Riesz transform satisfies the following norm equivalence
relation for all

where and are the maximum and minimum eigen-
values of , respectively. Its (left) inverse is given by the
adjoint mapping and is well defined iff . In
particular, when is a unitary matrix (i.e., ), we
have exact energy and inner-product preservation, which also
implies self-reversibility; i.e., .

Proof: The result follows from the energy preserva-
tion [19, Property 7] of the th-order Riesz transform:

. Indeed, we have that

and we obtain the corresponding lower bound in exactly the
same fashion.
The fact that the operator is bounded for above and below

implies that is invertible. To identify the inverse, we simply
observe that

, as a consequence of (7) and (8).
The generalized th-order Riesz transform is intrinsically

rotation-invariant, as expressed by the following theorem.
Theorem 1 (Steerability): The generalized Riesz transform is

steerable in the sense that its component impulse responses can
be simultaneously rotated to any spatial orientation by forming
suitable linear combinations. Specifically, let
be a spatial rotation matrix, such that . Then,

, where is the Dirac impulse
and where is a steering matrix, whose entries
(in multiindex notation) are th-order polynomials of the en-
tries of the rotation matrix given by

(9)

where we are using the Kronecker symbol to exclude the sum-
mation terms with .

Proof: We start by writing the frequency response of the
-component filter of the generalized Riesz transform:

(10)

Due to the rotation property of the Fourier transform, spatially
rotating this filter by corresponds to the same rotation in the
frequency domain

(11)

Next, we expand the right-hand side multimonomial

Regrouping the terms corresponding to the same power
of with the constraint that
, we express the aforementioned expansion in

standard polynomial form

where are the steering coefficients defined by (9). We then
plug the aforementioned polynomial in (11) and obtain

which has the form of a generalized Riesz transform with coef-
ficients corresponding to the matrix product .
Remarkably, the steering matrices are orthogonal and en-

dowed with the same group structure as the rotation matrices
from which they are derived: .
Theorem 2: If is a spatial rotation matrix, then the

steering matrix with components given by (9) is or-
thogonal and its inverse is .
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Proof: To show that , we write the frequency
response of the -component Riesz filter in the rotated coordi-
nate system :

with . Next, we apply the result of Theorem 1 to the
right hand-side of this expression, which yields

(12)

where the coefficients are the entries of the steering matrix
, in accordance with (9). Applying Theorem 1 one

more time to the rotated version of the frequency response in
(12), we end up with an expression that is the composition (ma-
trix multiplication) of the steering matrices and , from
which we deduce that , or equivalently, that

.
To prove that with is the trans-

pose of , we consider the form of given by (9),
where we have explicitly written the sums

for each multiindex
with

(13)

Further, since , we
rewrite in terms of multimono-
mials of the vector components of using the new multiindex
vectors with . Using the fact
that , we then factorize the Kronecker
products in (13) with respect to the index vectors , which
yields

By comparing this last equation with (9) and observing that
, we conclude that for

any and , such that and , which proves
that .

B. Tight Wavelet Frames

The pleasing consequence of Property 2 is that the gener-
alized Riesz transform will automatically map any frame of

into another one. In this paper, we are especially in-
terested in tight (or Parseval) wavelet frames of , which
have the important property of providing self-reversible signal

transformations. These wavelet frames are families of functions
that are indexed by a pair of location and

scale (or resolution) indices. The wavelet property is that the
basis functions at resolution are rescaled and dilated versions
of the ones at resolution 0: ,
where is an admissible dilation matrix (i.e.,
must be a positive integer). The standard dyadic configuration
corresponds to the choice . A wavelet frame is also
endowed with a shift-invariant structure in the sense that the
wavelets at any given scale are generated by taking equidistant
translates of mother wavelets with the property
that . The mother wavelets
are often distinct, but this is not a strict necessity, e.g., our prior
construction of polyharmonic spline wavelets in which
involves a single mother wavelet [30], [31].
Definition 2: A family of wavelets is called

a Parseval wavelet frame of iff it preserves energy

Note that a Parseval frame is the normalized version of a tight
frame and that its frame bounds are [32], [33]. The
remarkable aspect of a Parseval wavelet frame is that it satisfies
the decomposition/reconstruction formula

(14)

which has the same flavor as that associated with an orthonormal
basis. The distinguishing feature of the frame generalization is
that the wavelet family may be redundant.
Based on the fact that the generalized Riesz transform has the

same invariance properties as the th-order Riesz transform
considered in our previous work [19], we have the following
result, which provides a simple, practical recipe for constructing
steerable wavelet frames.
Proposition 1: The generalized th-order Riesz transform
maps a primal wavelet frame of

into another wavelet frame of
with

(15)

In particular, if the primal transform is a Parseval frame and the
generalized Riesz transform is energy preserving (e.g.,
), then the generalized Rieszmapping yields a Parseval wavelet
frame that satisfies the decomposition/reconstruction formula

The result is a straightforward extension of [19, Proposition
2]. The fundamental ingredient that makes this possible is the
fact that the generalized Riesz transform globally preserves
the norm of the signal (cf., Property 2). The other impor-
tant aspect is the shift and scale invariance of the transform
(Property 1), which ensures that the resulting functions are
bona-fide wavelets; i.e., the generalized Riesz wavelets are
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shifted and dilated versions of a fixed number of generators
(mother wavelets). Also note that the redundancy is increased in
proportion to the number of Riesz components .
If, in addition, the mother wavelets in (14) are isotropic, then

we end up with a decomposition that is steerable, and therefore,
rotation-covariant, due to Theorem 1.Wemay also consider ori-
entation-free wavelets—i.e., wavelets that do not exhibit any
preferential orientation—as an acceptable compromise. We can
then rotate the whole set of generalized Riesz wavelets to
any desired orientation by using the steering relation

(16)

where the is the desired rotation matrix and is
the steering matrix given by (9). The quality of the right-hand
side approximation will depend on the degree of isotropy of the
primal wavelet ; it will be a strict equality iff is such that

. The practical interest of this scheme is that it
can yield a rich variety of steerable wavelet frames that are pa-
rametrized by the matrix and associated with a single primal
wavelet transform. The remarkable aspect is that the design is
essentially constraint-free; the only requirement for a Parseval
frame is that be unitary.

IV. CONSTRUCTION OF PRIMAL, ORIENTATION-FREE
WAVELET FRAMES

The present formulation allows for a wavelet design, where
the directional andmultiscale aspects are completely decoupled.
To obtain a primal wavelet representation with good localization
and/or isotropy properties, we consider two options: 1) the radial
bandlimited design [13], [27], and 2) a multiresolution-based
approach in the spirit of Burt and Adelson that generalizes the
-spline pyramids that we had introduced in early work [25].

To the best of our knowledge, the first approach is the only one
that yields wavelets that are perfectly isotropic; the price to pay
for this property is a slower decay in space. The second option
yields orientation-free wavelets that retain all the desirable fea-
tures of conventional wavelet bases (good spatial localization,
stability, approximation theoretic properties, fast implementa-
tion, etc.)—the less favorable aspect there is that the wavelets
are only approximately isotropic.

A. Preliminaries: From Multiresolution Riesz Bases to Wavelet
Frames

We like to present the two approaches from the common per-
spective of the transformation of a Riesz basis1 into a frame
spanning a “smaller” wavelet subspace.We also rely onMallat’s
multiresolution analysis of to extend the representation
to the entire space of finite-energy functions. While the con-
cept is similar to Mallat’s construction of wavelet bases [34],
the fundamental difference is that the present multiresolution
decompositions, which are slightly redundant, have a simpler,

1ARiesz basis, which is the nonredundant version of a frame, is a fundamental
concept in functional analysis that was introduced by the Hungarian mathemati-
cian Frigyes Riesz; it is unrelated to the Riesz transform that is due to Marcel
Riesz (Frigyes’ younger brother).

shift-invariant structure with a single-wavelet channel per reso-
lution level. Each level of decomposition is qualitatively equiv-
alent to a bandpass filtering of the input signal.
The first ingredient of our formulation is the following projec-

tion mechanism, which converts a Riesz basis of some “larger”
space into a frame of .
Theorem 3: Let and be two closed subspaces of some

generic Hilbert space such that . Furthermore, let
be a Riesz basis of that is characterized by the decomposition/
reconstruction formula

(17)

where is the dual basis of ; i.e., with
. Then, the functions

where is the orthogonal projector operator into , de-
fine a dual set of frames of with the following dual decom-
position/reconstruction formulas:

Moreover, the Riesz bounds of are mapped into the frame
bounds of and likewise for their duals.
The proof is given in Appendix A.
The second ingredient is the specification of a multiresolu-

tion sequence of spaces and their corresponding Riesz
bases to be used in Proposition 2. This is done by selecting a
valid scaling (e.g., , if we want the de-
composition to be bandlimited). For simplicity, we restrict the
discussion to the case of a dyadic dilation matrix . To
generate a valid multiresolution of , must satisfy the
three admissibility conditions, which are necessary and suffi-
cient [35]:
1) it generates a shift-invariant Riesz basis ,
which is equivalent to the condition (cf., [36])

2) it satisfies the two-scale relation

(18)

3) it yields a partition of unity .
By denoting , we specify the
multiresolution ladder of approximation spaces

(19)

that are indexed by the scale parameter ; the step size
at resolution is and the nesting is such that

. Note that the third assumption (partition
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of unity) guarantees that is dense in ; it is
essential for the -completeness of the wavelet decomposition.
We now proceed with the construction of orienta-

tion-free wavelets by projecting the multiresolution Riesz
basis onto some appropriate wavelet subspace

.

B. Isotropic Bandlimited Wavelet Frames

There are a number of constructions in the literature that
fall into this category [13], [27]–[29]. Before reviewing them,
we apply the aforementioned projection strategy to obtain a
straightforward design that is in direct correspondence with
Shannon’s sampling theorem, and that is the starting point for
the specification of Meyer-type wavelets.
1) Construction of Isotropic, Shannon-Type Wavelets: By

selecting in (19),
we specify the so-called Shannon multiresolution analysis of

, which consists of a sequence of embedded subspaces
that are bandlimited to

We then define some corresponding wavelet subspaces of radi-
ally bandpass functions

(20)

Since is a closed subspace of , we can apply Proposition
3 to its orthogonal sinc basis to obtain the tight wavelet frame

of with

(21)

where is the impulse response of the
ideal radial bandpass filter, whose frequency response is

, i.e., the indicator function
corresponding to the spectral support of . Based on the
fact that is dense in , the design procedure
yields a tight wavelet frame of . The energy-preserving
condition that ensures that the latter is true is as follows:

(22)

It is automatically fulfilled, since the sequence of ideal radial
bandpass filters constitutes a tilling of the frequency domain ,
as illustrated in Fig. 1. For a complete characterization of these
wavelets, we refer to the work of Papadakis et al. [27].
2) Specification of Meyer-Type Wavelets: While the afore-

mentioned construction yields a tight isotropic wavelet frame
of , it has the drawback of producing wavelets with
poor spatial decay (e.g., ), due to the
sharp cutoff in frequency domain. A remarkable observation,
which can be traced back to the early work of Daubechies and
Meyer on frames [37], [38], is that this can corrected via an
appropriate adjustment of the radial bandpass filtering functions

, which need not be indicator functions, as long as they

Fig. 1. Tiling of the 2-D frequency domain using radial-bandpass filters. The
shaded area corresponds to the spectral support of the wavelet subspace ;
it is included in the spectral support of (enclosing square).

satisfy (22). This leads to the following extended definition of
the wavelet subspaces

which is equivalent to (20) if is the impulse response of
the ideal radial bandpass filter. Since can be written as

, there exists a sequence such that

where the wavelet functions are still given by (21). This
indicates that is a frame of , albeit not neces-
sarily a tight one. Yet, if Condition (22) is satisfied, then one
recovers the tight frame property over which is the
union of the wavelet subspaces , . The condition for
the wavelet frame to be isotropic is that the restriction of the fil-
tering function over be isotropic, i.e.,

.
The aforementioned functional framework accounts for all

known constructions of isotropic wavelet frames of
which are summarized in Table I. The common feature of the
wavelet profile functions in Table I is that they are compactly
supported within the frequency interval (bandlimited
property) and that they satisfy a rescaled version of the partition
of unity condition

which is the key to ensuring the tight frame property [38]. Two
remarks are in order with respect to Simoncelli’s pioneering
design which is, by far, the solution most widely used in ap-
plications. First, the response of the filter is a warped version
of a bump [cf., Fig. 2(a)] and the furthest away from an ideal
bandpass filter; this simply reflects the fact that a design objec-
tive for the steerable pyramid was to approximate the behavior
of a log-Gabor filterbank, which is a well-accepted model of
the response properties of cortical cells in the mammalian vi-
sual system [39]. Second, Simoncelli and coworkers put a lot of
emphasis on finite-impulse response filter design in their initial
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TABLE I
RADIAL FREQUENCY RESPONSES OF ISOTROPIC BANDMITED WAVELETS

work [1], [4]; later on they adopted the Fourier-based construc-
tion described here, which is implemented in the current soft-
ware release of the steerable pyramid, as documented in [10]
and [13]. The other constructions in Table I are more math-
ematically oriented and motivated by the desire to soften the
cutoff transition of the Shannon-type wavelet to improve the
spatial decay of the wavelets. The constraint there is to produce
an ideal-filter-like frequency response with the highest possible
order of differentiation [38]. For the Meyer wavelet of order ,
the auxiliary function is a polynomial of degree ,
which is chosen such that: if , if ,
and , while . For instance, the
auxiliary function that achieves a frequency response with
continuous derivatives is
[cf., Fig. 2(b)]. For the Held wavelet of order [29], the func-
tion is a polynomial of degree . For instance, the poly-
nomial leads to .
One can also push the scheme up to by choosing

, with
if , and otherwise, which

yields a primal isotropic wavelet with exponential decay.
Each of these wavelets specifies a tight isotropic wavelet

frame that is especially convenient to implement in the
frequency domain using the fast Fourier transform (FFT) algo-
rithm. The analysis part of the algorithm involves the creation
of a bandlimited pyramid by successive low-pass filtering and
downsampling by a factor of two. The signal at each level of the
pyramid is then processed with an isotropic high-pass filter (cf.,
wavelet profile in Table I) to yield the corresponding wavelet
coefficients. Note that the filtering and downsampling opera-
tions are implemented in the Fourier domain, while the wavelet

Fig. 2. Radial frequency responses of two sequences of bandpass wavelet fil-
ters. (a) Simoncelli wavelets. (b) Meyer-type wavelets.

coefficients at a given scale are recovered by performing an
inverse FFT of the appropriate size. The main difference with
a standard multidimensional wavelet transform is that there
is a single mother wavelet at each scale and that there is no
downsampling in the high-pass branches of the algorithm.

C. Pyramid-Like Wavelet Frames

The next method is generic and applicable to any multidi-
mensional scaling function without any requirement for sep-
arability. The multiresolution subspaces are specified by (19)
and the corresponding wavelet subspaces are the ones consid-
ered in conventional wavelet theory: is the orthogonal
complement of with respect to , so that

with .
The principle of our wavelet construction is then straightfor-

ward: we take with as its
Riesz basis, which we then project onto to obtain
a corresponding wavelet frame according to the procedure out-
lined in Proposition 2. Specifically, we select our analysis/syn-
thesis wavelets as follows:

(23)

(24)

where is the dual basis of . The corresponding
primary decomposition/reconstruction formula is as follows:
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Fig. 3. Two basic building blocks of the wavelet pyramid algorithm. (a) Reduce
module. (b) Expand module.

Fig. 4. Schematic description of the (a) analysis and (b) synthesis procedures
for the decomposition and reconstruction of a signal in a pyramid-based wavelet
frame.

Moreover, because , we can write the or-
thogonal projection of any function into
as . Finally, by
summing up these orthogonal wavelet components, we obtain
a wavelet frame decomposition that has the same form as (14),
and whose frame bounds are the Riesz bounds of the generating
function . In particular, the procedure yields a Parseval wavelet
frame whenever is orthogonal, i.e., when , which
is equivalent to almost everywhere.
While the scheme is reminiscent of a standard decomposi-

tion into a wavelet basis, it is not quite equivalent because the
wavelet functions at each scale are slightly redundant [by a
factor ].
The design part of the process is to select a scaling function
—for instance, a B-spline or an orthonormalized version of
it—such that the wavelets have good space-domain localiza-
tion and isotropy properties. Alternatively, one may also specify
the basis functions implicitly via the choice of the refinement
filter .
The remarkable aspect of the proposed wavelet pyramid

decomposition is that the wavelet coefficients
are identical to the expansion coefficients of

in the dual
basis that also spans the finer scale approximation
space . In Appendix B, we exploit this property to derive
the filterbank implementation of the transform and to make the
connection with the approach of Do and Vetterli [26], which is
computationally equivalent. The final algorithm involves the
dual pair of refinement filters and and is summarized in
Figs. 3 and 4. While the latter constitutes a well-known exten-
sion of Burt and Adelson’s algorithm [23], [26], the functional

characterization of the underlying wavelet functions given by
(23) and (24) is new to the best of our knowledge—it is concise
and “filterbank-free”.

V. EXPERIMENTAL RESULTS

In the sequel, we discuss some practical issues and present
experimental results that illustrate the potential of the proposed
steerable wavelet transforms for basic image processing tasks,
such as denoising and feature extraction.

A. Steering the Wavelet Transform

Since the proposed wavelet transforms are steerable, it makes
good sense for best feature extraction to reorient the generalized
Riesz wavelets at index (as defined by Proposition
1) in a data-adaptive fashion by applying some spatial rotation
matrix . The result of this process is an adaptive general-
ized Riesz wavelet frame with

, where is the steering matrix at wavelet location
(cf., Theorem 1). The remarkable feature is that can

vary locally without affecting the frame bounds and the perfect
reconstruction properties of the underlying generalized Riesz
wavelet transform, as a direct consequence of Theorem 2.
We did experiment with different performance criteria for

steering the wavelet transform, such as the maximization of the
norm of the wavelet coefficients at location to favor

strong wavelet responses (Max steering), or the minimization of
their -normwith the aim of producing a sparse decomposition.
While both approaches gave adequate results, we finally settled
for a first-order tensor-based orientation determination, which
proved to be more robust and also cheaper computationally.
The proposed solution is to select the local orientation that

maximizes the directional Hilbert transform of the primal
wavelet decomposition within a neighborhood specified by a
Gaussian-like window . We recall that the directional Hilbert
transform of a signal along some unit vector is
given by (cf., [19])

where is the -component Riesz transform of , the
aforementioned is actually the Riesz counterpart of the direc-
tional derivative . Then, for a given
primal isotropic analysis wavelet at reso-
lution , we search for the orientation such that the energy of

is maximized within a local neighborhood of
. We can readily show (cf., [31, Sec. III-B]) that the

corresponding rotation matrix is , where
the are the eigenvectors of the local wavelet structure
matrix

(25)

where is a nonnegative, symmetric, and compactly
supported weighting window centered at and where

are the (first-order) Riesz wavelet coefficient
of at index location . In our experiments, we used a fixed
Gaussian window of standard deviation 2.
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B. Signal-Adapted Wavelets and PCA

Having at our disposal a robust mechanism for locally ori-
enting the wavelets in the direction of the predominant image
patterns, we can take advantage of the degrees of freedom of-
fered by the generalized Riesz transform to construct wavelet
templates that are best matched to a particular class of images.
To design such optimized wavelets, we developed an al-

gorithm that is based on PCA in a rotated wavelet frame.
Given an th-order generalized Riesz transform , the
training phase consists in computing and steering the wavelet
coefficients at every location
and in building up some corresponding scatter matrices

at each scale using the test images at
our disposal. The corresponding scale-adaptive PCA wavelet
transform is then specified by the series of generalized Riesz
transforms with , where the transformation
matrices are given by the eigenvectors of the scatter matrices
(without subtraction of the mean). This also means that the

PCA wavelet transform can be implemented straightforwardly
by performing the primary generalized Riesz wavelet analysis,
steering the wavelet coefficients according to the procedure
outlined in Section IV-A, and applying the linear transformation
matrices on a scale-by-scale basis. The reconstruction part
of the algorithm follows the reverse path: matrix multiplication
with , inverse of the steering matrix , and
signal recomposition using the synthesis branch of the initial
generalized Riesz transform.
Since the PCA is applied at each wavelet location ,

we found it beneficial to perform our training on an equalized
version of the Riesz transform, which involves modified Riesz
wavelets that are transformed to be locally orthonormal. These
equalized wavelets are defined by considering the generalized
Riesz transform , where is the square root
inverse of the componentwise Gram matrix of the Riesz
wavelets, whose multiindex entries are given by

with and is the Fourier transform of the
primary isotropic wavelet . The Gram matrix may be com-
puted analytically by switching to polar coordinates—it does
actually not depend on the wavelet if the latter is normalized
and truly isotropic. A comparative display of nonequalized and
equalized Riesz wavelets is given in Fig. 5.
In the sequel, we will refer to the rotation-covariant PCA

wavelet analysis performed on the equalized Riesz wavelet
coefficients as “equalized PCA” to differentiate it from “Riesz
PCA,” which corresponds to PCA applied to the canonical
th-order Riesz transform, i.e., where is the

identity matrix. The former is advantageous for denoising be-
cause it ensures that the noise contribution is independent and
identically distributed across wavelet channels. This justifies
componentwise processing with a common thresholding func-
tion. Some examples of equalized PCA wavelets are shown in
Fig. 6. In all cases, the first wavelet, which is typically the most

Fig. 5. Examples of steerable wavelets (image-domain representation). (a)
Riesz wavelets of order 4. (b) Equalized Riesz wavelets of order 4.

directional one within its set, accounts for a large proportion
of the total energy. This is consistent with the chosen steering
mechanism. Despite the fact that the overall diversity of the
wavelets in the upper two lower order examples is
limited, there are some notable differences in energy distribu-
tion and shape. For instance, it is interesting to observe that
the second and third wavelets in Fig. 6(b) exhibit a central
wave-like blob that is reminiscent of patterns present in the tex-
ture fragment displayed on the right. The PCA wavelet shapes
are much more elongated in the higher order example (Bar-
bara). While the first wavelet is clearly a vertical line detector,
there is a tendency in the next functions to oscillate more and
to become less directional; this probably helps encoding slight
deviations from the reference in straightness and thickness.
Interestingly, the first basis function of “equalized PCA”

is the steerable wavelet that achieves the maximum possible
signal-to-noise ratio for the class of signals under considera-
tion. We should note, however, that the “equalized PCA” Riesz
wavelet transform looses the tight frame property because
it involves a transformation that is the composition of an
orthogonal matrix and a diagonal scaling matrix. In practice,
this is not a problem; indeed, any generalized Riesz wavelet
transform can be inverted straightforwardly by the application
of the appropriate matrix inverse: .

C. Simoncelli’s Equiangular Wavelets

As pointed out in our previous work, equiangular wavelet
filter configurations are only feasible in two dimensions. A re-
markable property is that the choice of any (normalized) filter
that is in the span of the Riesz wavelets will automatically yield
a tight wavelet frame (cf., [19, Theorem 2]). The standard im-
plementation of Simoncelli’s steerable pyramid, which is docu-
mented in [13], corresponds to choosing the primary directional
wavelet , where is the isotropic ban-
dlimited wavelet, whose radial frequency response is specified
by the second equation in Table I. The corresponding polar-sep-
arable frequency response is , where
and are the radial and angular frequency variable, respec-

tively. The directional pyramid decomposition at level is im-
plemented via an -channel filterbank, where the indi-
vidual wavelet filters are rotated versions of the primary one
along the directions with

. This equiangular configuration happens to be
a special instance of the generalized th-order Riesz wavelet
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Fig. 6. Examples of steerable signal-adapted wavelets (equalized PCA) at the finer scale of resolution. (a) Complete set of wavelets for noise-free Lena with
. (b) Complete set of wavelets for noise-free Brodatz texture D104 with . (c) Seven most significant wavelets for noise-free Barbara with .

The percentage below the pictures represents the signal energy contribution as measured by the corresponding eigenvalue.

transform specified in Proposition 1. The underlying transfor-
mation matrix can be determined by considering the
first component [i.e., ] of the general steering rela-
tion (9) with . Specifically, the entries of the

matrix that defines Simoncelli’s steerable
pyramid of order are given by

with (standard row-column
matrix indexing).

D. Generic Implementation of Steerable Wavelet Transforms

The steerable wavelet transforms described earlier are all spe-
cial instances of the generalized Riesz wavelet transform in
Proposition 1. This motivated us to develop a generic steer-
able wavelet decomposition algorithm via the suitable compo-
sition of three basic modules: 1) th-order Riesz transform;
2) primal wavelet decomposition; and 3) linear transformation
and steering in the wavelet domain. The key idea here is that
the Riesz transform can be factored out of the wavelet decom-
position because it commutes with translation and dilation (cf.,
Property 1). Specifically, we have that

where is the adjoint of the Riesz component operator
defined by (4) and where are the primal, orientation-free
wavelets. This means that performing the th-order Riesz
wavelet transform of the signal is equivalent to applying a
sequence of primal wavelet transforms to the (adjoint) Riesz
components of : with . In practice, we are
assuming that the input signal is bandlimited and we are per-
forming all the filtering operation (Riesz transform and wavelet

TABLE II
ASSESSMENT OF THE EFFECT OF STEERING: SIMONCELLI’S EQUIANGULAR

DESIGN VERSUS RIESZ WAVELETS

Experimental conditions: cameraman image corrupted by white Gaussian
noise . Initial .

decomposition) in the frequency domain for convenience and
greater efficiency. The sequence of operations for the decom-
position part of the algorithm is therefore to take the FFT
of the input signal, to evaluate its (adjoint) Riesz transform
by multiplication in the frequency domain, to compute the
wavelet decomposition (by filtering and downsampling) of
each component and to get back the wavelet coefficients at each
scale by performing a series of inverse FFTs of the appropriate
size. The final step is to steer the transform and compute the
generalized Riesz wavelet transform by suitable matrix mul-
tiplication according to the procedure outlined in Theorem 1.
The reconstruction part follows the same steps but in reverse
order (flow graph transpose of the decomposition algorithm).
We note that the Riesz part of the algorithm and the steering
is completely generic, so that the leading part of the effort is
the implementation of the primal wavelet decomposition. The
reader is referred to Appendix B and Figs. 3 and 4 for the
computational aspects of pyramid-based wavelets.
While the description of the isotropic bandlimited wavelets in

Section IV-B is self-contained, there is a practical modification
that needs to be introduced in the frequency response of the finer
scale wavelet filter to ensure exact reconstruction from sampled
data. Instead of falling off after , the response needs to
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TABLE III
COMPARISON OF THE DENOISING PERFORMANCE OF DIFFERENT TYPES OF STEERABLE WAVELET TRANSFORMS

be maintained to one in order to retain the full information in the
upper diagonal parts of the Nyquist region. In essence, this cor-
responds to a truncation of the frequency tilling in Fig. 1, where
the outer frontier of the bandpass region of the signal, which cor-
responds to , is a square rather than a circle. Alternatively, one
could have chosen to radially bandlimit the input signal prior to
wavelet decomposition, which has the disadvantage of throwing
part of the information away. We have opted for the first so-
lution, which is in the spirit of the pyramid-based wavelets.
The Matlab implementation of the present family of steerable
wavelets is available at: http://bigwww.epfl.ch/demo/steerable-
wavelets.

E. Comparisons of Steerable Transforms

To assess the performance of the various brands of steerable
wavelet transforms, we used a basic denoising benchmark with
standard test images corrupted by additive white Gaussian noise
of variance . To highlight the influence of the wavelet trans-
form, we implemented the simplest possible algorithm, which
consists in applying a pointwise nonlinearity (soft-threshold)
in the steered-wavelet domain prior to reconstruction. In each
experiment, the noisy image was decomposed with a fixed
number of scales and a common optimized threshold
was applied in all wavelet channels, while the low-pass compo-
nents (scaling coefficients) were left unchanged. Unless stated
otherwise (cf., Table II), the wavelets were steered according
to the procedure described in Section V-A, the idea being to
select the 2-D rotation matrix that maximizes the directional
Hilbert transform over a local wavelet-domain neighborhood
(tensor steering). To account for the fact that the noise does
not get distributed evenly across Riesz components, we set
the threshold proportional to the theoretical standard deviation

, where is the
analysis wavelet in channel and scale . Note that the weights
are constant by design in the equiangular and equalized Riesz
configurations. The proportionality factor (threshold value)
was kept fixed across all wavelet channels and optimized for
best performance using the noise-free image (oracle) as our
reference.
We conducted a series of experiments using a wide range

of images, noise levels, and combination of steerable wavelet
transforms. Our performance index is the signal-to-noise ratio
in decibel with respect to the reference image. By default, the
choice of primal wavelet decomposition is the one associated
with Simoncelli’s steerable pyramid, unless stated otherwise
(see Table IV).
1) Effect of Steering: We found that wavelet steering sys-

tematically improves performance, as documented in Table II.
The “Max steering” option refers to the standard procedure,
which is to maximize the intensity in the first channel of
the filterbank at each wavelet location [1]. In the case of the
equiangular filterbank (Simoncelli’s steerable pyramid), the
gain becomes less as the order increases, which is understand-
able because the wavelet filters span more and more directions
making steering less advantageous. This is not so for the Riesz
wavelets, which need to be oriented properly because of their
greater shape diversity. The proposed tensor-based steering
mechanism based on the eigenvalue decomposition of
in (25) is consistently superior to the standard strategy (Max
steering). This is an interesting finding that also gives a simple
way of boosting the performance of Simoncelli's steerable
pyramid. It is the steering method that is applied by default for
the remainder of the experiments.
2) Effect of Wavelet Shaping: The relevant experiments

are summarized in Table III. Barbara and Lena are standard
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Fig. 7. Evolution of the denoising performance as the order increases. Experi-
mental conditions: 512 512 Barbara image corrupted by white Gaussian noise

. Initial .

“natural” images, while “zoneplate” is synthetic; it is a cir-
cular chirp-like wave, whose frequency increases linearly as
a function of the distance to the center of the image (cf. [31,
Fig 7]). The performance of the canonical Riesz wavelets and
the equiangular ones (Simoncelli) are more or less compa-
rable with a slight advantage to the former, especially when
the underlying patterns are directional (Barbara, zoneplate).
Yet, getting there was not immediate and required use of
norm-adapted thresholds, as documented earlier. The worst
results are obtained using equalized Riesz wavelets; we suspect
that the primary reason is their lack of angular selectivity, as
is apparent in Fig. 5. To allow for a fair comparison, the PCA
wavelets were trained on the noisy image to which they were
applied. The straight (unequalized) Riesz PCA wavelets did
not offer any significant advantage over the basic ones. This
is not so in the case of the equalized Riesz transform, where
the situation is reversed dramatically. Here, the gain of PCA
is always quite substantial (a boost of several decibels over
equalized Riesz) and the denoising results are consistently the
best, both visually and quantitatively, over the complete set of
experiments. One can also observe that learning is most ben-
eficial when the number of channels increases (more degrees
of freedom) and/or when the noise decreases, in which case
the training is more accurate. The case of “equiangular Max
SNR” is interesting because it demonstrates that it is possible
to outperform Simoncelli's classical design (as well as Riesz
wavelets) by sticking to an equiangular configuration using a
basis filter that is optimized for maximum signal-to-noise ratio
(i.e., the first component filter of equalized PCA). The ranking
of the various transforms does not appear to be affected by the
actual noise level; it could also be replicated with the many
other images on which we tested the algorithms. We observed
that the extent of performance improvement of signal-adapted
wavelets (equalized PCA) was dependent upon the type of
image and generally better in the presence of texture or pat-
terned areas (e.g., the pants of Barbara or zoneplate). It is less
significant with Lena for which Simoncelli's steerable pyramid
performs remarkably well, especially at higher noise levels.
3) Influence of Order: For this series of experiments as

well as the last one, we restricted our comparison to our most
promising solution (“equalized PCA”) and the classical one (Si-
moncelli's equiangular design). The general trend is that the per-
formance improves in both cases as the order increases with a
tendency to saturation above (cf., Fig. 7). Also, the

benefit of PCA is most significant at intermediate orders [gain
of 0.5 dB for Barbara, and 0.25 dB for Lena (data not show)],
most likely because there are enough degrees of freedom to ex-
ploit.
4) Influence of Primal Multiresolution Decomposi-

tion: Among the category of pyramid-based wavelets (cf.,
Section IV-C), we investigated the class of tight frames
associated with the polynomial spline of degree . The un-
derlying scaling functions are the orthogonalized version of
the B-splines (Battle-Lemarié functions), which have played
a significant role in the construction of the very first wavelet
basis of , as well as using tensor products [34].
To quantify the degree of isotropy of these functions in 2-D,
we used the performance index

where is the 2 2 spatial rotation matrix with angle .
Clearly, for all if and only if is perfectly
isotropic, which corresponds to a value of ; otherwise,

as a consequence of the Cauchy–Schwartz inequality.
Note that the criterion may also be evaluated in the frequency
domain (using Parseval’s formula), which turns out to be es-
pecially advantageous for splines because of the availability of
closed-form formulas in the Fourier domain. This allowed us to
identify the case (piecewise-linear splines) with
as the most isotropic one in this category. For reference, we are
providing the Fourier-domain formula of the corresponding or-
thogonal scaling function: with

In addition to this, we undertook a systematic evaluation of the
bandlimitited wavelets that are specified in Table I and which
have the advantage over the former to be truly isotropic .
The results of these comparisons are summarized in Table IV.
The key observation is that the performance of the various

transforms are quite comparable with a slight preference to
linear splines and Papadakis. The good performance of the
Papadakis and Simoncelli radial filters did subsist over a wide
variety of images, while this was not always the case for linear
splines, probably due to the fact that they are not perfectly
isotropic. On the other hand, we found the Shannon wavelets,
which also have the poorest spatial decay, to be consistently the
worst. While the slight superiority of Papadakis is suggestive
of the fact that there may still be room for improvement in this
area, it is probably not significant enough to justify replacing
the Simoncelli filters, which are very popular in applications.

F. Discussion

For our performance assessment, we have intentionally
kept the processing simple and reproducible (oracle-based
soft-thresholding) to really focus on the effect of the wavelet
transform and to separate out other factors. The clear message
that emerges is that not all wavelets spanning the same steer-
able subspace are equal: the equalized Riesz wavelets, which
essentially have no directionality, are by far the worst, while the
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TABLE IV
ASSESSMENT OF THE EFFECT OF THE PRIMAL DECOMPOSITION

Experimental conditions: 512 512 Barbara image corrupted by white Gaussian noise . Initial .

equalized PCA ones are systematically the best. Simoncelli’s
equiangular design, which has good angular selectivity, gen-
erally performs well, especially on piecewise-smooth images,
such as Lena. Yet, it is not necessarily the best solution, even
for an equiangular configuration (e.g., max SNR solution).
While these findings are very promising, more work is re-

quired to demonstrate the ability of these transforms to improve
upon the state-of-the-art in wavelet-based image processing.
There is also good hope that the proposed methodology can be
pushed further by addressing the following issues.
1) Refinement of the denoising algorithm: Here, it is rela-
tively easy to improve upon soft-thresholding by applying
more sophisticated methods, such as BLS-GSM [10] or
SURELET [40], which presently constitute the state-of-
the-art in wavelet-based denoising.

2) Improved angular wavelet design/learning algorithms:
While the results obtained using PCA are encouraging,
one can easily conceive of applying more sophisticated
algorithms, such as independent component analysis [41]
or sparse PCA [42]. The challenges there are twofold:
1) defining suitable task-dependent performance criteria;
and (2) introducing a two-way coupling between learning
and steering, since the latter greatly influences the former
while good learning could probably improve steering.

3) Optimization of radial frequency profile: The search for a
better primal decomposition is still an open research issue.
The difficulty is that it not yet clear what the important
design parameters are: spectral shaping, space-frequency
localization, or asymptotic rate of decay of the wavelet in
space.

VI. CONCLUSION

We have presented a general framework for the design of tight
steerable wavelets frames in multiple dimensions. The approach
allows for a separate handling of the multiresolution and rota-
tional aspects of the transform. The main extension over Simon-
celli’s steerable pyramid is that the mother wavelets are not nec-
essarily rotated versions of one another, which provides greater
design flexibility. The convenient feature of the proposed de-
composition is that the shape of the steerable wavelets at a
given scale is parametrized by an unitary matrix

that can be freely selected, without impacting upon the perfect
reconstruction (tight frame) properties.
The practical interest is that these generalized steerable

transforms admit a fast decomposition algorithm and that their
multiresolution basis functions can be optimized using standard
learning algorithms, such as PCA. Our results suggest that the
combination of steerability and signal-adaptivity holds good
promises for improving wavelet-based image processing. In
particular, we have introduced a novel family of steerable
“equalized PCA” wavelets that systematically outperforms the
traditional steerable pyramid in a basic denoising benchmark.
Due to their tunability and intrinsic rotation-covariance, these
new wavelet transforms may be useful for developing better
algorithms for denoising, image filtering/enhancement, texture
analysis/synthesis, and solving inverse problems under sparsity
constraints.

APPENDIX A
PROOF OF THEOREM 3

To prove the result, we first write the dual counterpart of (17)
for any function , and more specifically for

where we are using the property that the dual basis is nec-
essarily a Riesz basis of as well. The next observation is that

, where is the orthogonal comple-
ment of with respect to . This implies that

(26)

because . Moreover, we obviously have that

which proves the first decomposition/reconstruction part of the
theorem; the dual version is obtained simply by interchanging
the role of and . As for the bounds, we recall that a Riesz
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basis and its dual are characterized by the following norm equiv-
alences:

with in accordance with (17) and
its dual equivalent. The constants and are the
so-called Riesz bound of . By making the substitutions

and , we derive the two frame inequalities

(27)

which reflect the property that a Riesz basis is a particular case
of a frame. Finally, by writing the specialized version of (27) for

and using (26), we obtain

APPENDIX B
IMPLEMENTATION OF PYRAMID-BASED TRANSFORMS

To derive the corresponding digital-filtering algorithm, we
first specify the dual function , whose Fourier-domain
expression is as follows:

where the denominator represents to the so-called autocorrela-
tion filter

which is bounded away from zero as a consequence of the Riesz
basis condition 1). More generally, the fact that is a valid
scaling function implies that the same must be true for . In
particular, satisfies the two-scale relation

(28)

where the dual refinement filter is conveniently described by
its -dimensional -transform

this is easily established using (18) and (28). By considering
the dual basis functions , we can

now explicitly specify the orthogonal projection of a function
into

where . By exploiting the property that the
multiresolution spaces are nested (i.e., ), one can
compute the expansion coefficients iteratively by filtering
and downsampling by a factor of two [cf., reduce module in
Fig. 3(a)]

This algorithm needs to be initialized by specifying the finer
scale coefficients . In practice, these are obtained by
interpolating the discrete input samples using some
appropriate interpolation kernel [e.g., ]
and by projecting the resulting continuous-space signal

onto . This process is im-
plemented efficiently by prefiltering the input data with a digital
filter, whose impulse response is .
The next step is the expansion part of the algorithm that uses

the two-scale relation (28) to compute the representation of
at the finer scale

where

which amounts to an upsampling by 2 followed by a postfil-
tering with the refinement filter [cf., Fig. 3(b)].
Finally, we obtain the residual (or wavelet) signals
by subtracting the two representations

(29)
from which we conclude that

which corresponds to the block diagram in Fig. 4(a).
The reconstruction procedure, which is based on the right-

hand side of (29), follows a dual path and corresponds to the
flow graph transpose of the decomposition algorithm. We skip
the derivation and refer the reader to the full algorithm descrip-
tion in Fig. 4.
Although the wavelet component representations

and
are mathematically equivalent, it is interesting to note that they
do not necessarily lead to the same reconstruction algorithm.
In the first case, we may apply the original method of Burt and
Adelson [23], and reconstruct by adding up
the residual progressively from coarse-to-fine and expanding
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the intermediate results to the next-finer scale using the ex-
pand module. In effect, this amounts for removing the reduce
block in the synthesis procedure in Fig. 4(b). While this is
more efficient algorithmically, it is less favorable when the
wavelet coefficients are altered through processing. The
fundamental difference between the two representations is that

, where are arbitrary coefficients is
always included in , while it is not necessarily so when
the wavelets are substituted by the basis functions . In other
words, using the wavelet reconstruction functions implicitly
reprojects the subband component onto , leading to a
reconstruction that is more robust to noise. Mathematically, this
corresponds to using the dual frame reconstruction operator.
This is an idea that was first proposed by Do and Vetterli and
analyzed by taking a perfect-reconstruction-filterbank point
of view, which offers some further insights; in particular, the
polyphase-domain analysis [26].
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