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Abstract

Resampling is a common operation in digital image processing systems. The standard procedure involves the

(conceptual) reconstruction of a continuous image succeeded by sampling on the new lattice sites. When the

reconstruction is done by classical interpolation functions, results might be sub-optimal because the information loss is

not minimized. In the particular case of subsampling (i.e., resampling to a coarser lattice), aliasing artifacts might arise

and produce disturbing moire patterns. This paper first introduces a spline model for different orders, both for

orthogonal and hexagonal lattices. Next, an expression for a least-squares approximation is derived which can be

applied to convolution-based resampling. Experimental results for a printing application demonstrate the feasibility of

the proposed method and are compared against the standard approach. Our technique can be applied to general least-

squares resampling between regular lattices. r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Digital image processing handles images by
means of a discrete representation. In particular,
the image is sampled at the spatial positions
indicated by a regular lattice. The conversion of
a discrete image representation on a given lattice
to another, is called image resampling. This
operation is indispensable for many applications
(e.g., desktop-publishing, printing applications,
medical applications,y). This paper concentrates
on the particular case of resampling to a coarser

grid than the original one. Also, the target lattice is
not orthogonal, but hexagonal.
The standard procedure for resampling consists

of two conceptual steps: first, the ‘‘continuous
image’’ is reconstructed by interpolation; second,
this function is resampled on the target lattice
[1–4]. Shannon’s sampling theorem assumes
images are band-limited, and proposes to choose
the interpolation filter to the ideal low-pass filter.
However, real-world signals are not band-limited
and the image and the interpolation function have
a finite support. Due to the slow decay of the ideal
interpolation functions (which are sinc-like), it is
also quite difficult to approximate them on a finite
support. Additionally, ideal interpolators tend to
generate the Gibb’s phenomenon, which becomes
visually apparent in images as ringing along the
edges.
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Instead of holding on to the band-limited
hypothesis, many authors, such as Unser [5–8], set
up a family of basis functions based on splines.
These splines have a limited size of support, which
expands as the order increases. (Ultimately, a spline
representation of infinite order approaches the ideal
filter.) For example, first-order spline interpolation
is better known as ‘‘nearest neighbour’’ interpola-
tion; second-order spline interpolation as bilinear
interpolation. Higher orders, such as bicubic spline
interpolation yield even smoother results.
The standard approach does not minimize the

information loss, in particular when subsampling
images. Annoying artifacts due to aliasing (such as
moire-patterns) might arise. Applying sufficient
lowpass filtering prior to resampling can avoid
problems. In practice, e.g., it is a non-trivial task to
determine the right amount of filtering prior to
resampling. Unser et al. [5,9] derived an algorithm
based on the principle of convolution-based least-
squares spline approximation. In particular, the
samples on the target lattice are chosen such that the
mean squared error between the continuous spline
representation on the source lattice and a similar
one on the target lattice is minimized. This theory
was developed for a 1D spline representation, and
extended to 2D orthogonal lattices by means of
tensor-product splines (i.e., the 2D spline is the
product of two 1D splines). Theoretical considera-
tions showed that the approximation power of least-
squares approaches is superior to interpolative ones.
This paper discusses the case of resampling to a

hexagonal lattice, therefore requiring a spline
definition suitable for hexagonal lattices. Common
extensions of B-splines to 2D, such as tensor-
product splines, cannot be used on this type of
lattice. Other spline definitions, such as box splines
[10–12], are typically defined on triangular patches
and used for geometric modelling (e.g. [13,14]).
This paper uses the same underlying principle of
box splines (i.e., construction by successive con-
volutions), but applied to a hexagonal basic shape.
This proposition leads to a logical, but non-
separable, 2D spline definition suitable for hex-
agonal lattices. The convolution property will be
very useful in the derivation of the reconstruction
function corresponding to least-squares resampling
from an orthogonal to a hexagonal lattice. We also

derive the approximation order of the hexagonal
spline. To demonstrate the feasibility of the
proposed approach, we implemented our approach
for the practical case of gravure printing, a printing
technique which is very susceptible to aliasing
artifacts when using standard resampling proce-
dures. The results of this paper can be extended for
resampling from any regular lattice to another.

2. The 2D spline basis

This section introduces the necessary mathema-
tical background. First we show how to represent
a regular 2D lattice. Second, we derive a set of 2D
shift-invariant basis functions, both for an ortho-
gonal and a hexagonal lattice.
A continuous 2D function is denoted as gðxÞ;

where xAR2: The L2-norm of gðxÞ is derived from
the inner product

/g1; g2S ¼
Z

g1ðxÞg2ðxÞ dx; ð1Þ

jjgjj2 ¼
Z

jgðxÞj2 dx; ð2Þ

where the integrations are over the complete
plane R2: Analogously, we denote a discrete 2D
array as cðkÞ; where kAZ2: The l2-norm of cðkÞ is
defined as

jjcjj2l2 ¼
X
kAZ2

jcðkÞj2: ð3Þ

A 2D lattice can be characterized by two linearly
independent vectors r1 and r2: Each lattice site is
represented by the vector [15,16]

rk1;k2 ¼ k1r1 þ k2r2; where k1; k2AZ

¼ ½r1jr2�
k1

k2

" #

¼Rk; where kAZ2: ð4Þ

Thus the lattice is described by the matrix R: It is
convenient to define an array of impulses on the
lattice sites,

dRðxÞ ¼
X

k

dðx � RkÞ; ð5Þ

where dðxÞ represents a Dirac function.
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Related to a lattice is a Voronoi cell, which is
defined as the set of all points that are closer to the
origin 0 than to any other site of the lattice. The
Voronoi cell is represented by its indicator-
function wRðxÞ:

wRðxÞ ¼

1; xAVoronoi cell;

1=m; x on edge Voronoi cell;

0; xeVoronoi cell;

8><
>: ð6Þ

where m equals the number of lattice sites to which
x is equidistant. Note that this function, when
periodically copied onto all the lattice sites, covers
the complete plane:

ðdR%wRÞðxÞ ¼ 1; ð7Þ

where the %-operator denotes the 2D continuous
convolution. It is said that the Voronoi cell tiles
the plane. More properties and definitions can be
found in [15].
Consider a function, which is sampled on each

lattice site of a lattice R:Using a shift-invariant 2D
generating function fðxÞ; we define the approx-
imation space S as follows [17]:

SðfÞ ¼ sðxÞ sðxÞ ¼
X
kAZ2

cðkÞfðx � RkÞ; cðkÞAR

					
)
;

(

ð8Þ

where the coefficients cðkÞ need to be chosen
properly. As such, any function sðxÞASðfÞ is
characterized by a sequence of coefficients cðkÞ:
Notice that these coefficients are not necessarily
samples sðRkÞ at the lattice points.
In order to have a sensible continuous/discrete

model, three conditions are required [17]. First, the
coefficients must be square-summable. Second, the
family of functions ffðx � kÞgkAZ2 should form a
Riesz basis of SðfÞ: there must exist two strictly
positive constants 0oA and BoþN such that

Ajjcjj2l2p
X

k

cðkÞfðx � RkÞ

					
					

					
					
2

pBjjcjj2l2 : ð9Þ

The Riesz basis ensures that the continuous/
discrete model is stable (i.e., a small change of
the coefficients produces a small change of the
spline representation) and non-ambiguous (i.e., the
coefficients are unique for each spline representa-

tion). Finally, and most stringent, the partition of
unity condition must be fulfilled:

ðdR%fÞðxÞ ¼ 1: ð10Þ

2.1. A spline basis on the orthogonal lattice

A regular orthogonal lattice is described by the
matrix

R ¼
1 0

0 1

" #
: ð11Þ

To form 2D splines on this lattice, we can easily
use the tensor-product of two one-dimensional
B-splines,

bnðxÞ ¼ bnðx1Þb
nðx2Þ: ð12Þ

The first-order 1D B-spline is defined by

b0ðxÞ ¼

1; jxjo1
2
;

1=2; jxj ¼ 1
2
;

0; jxj > 1
2
;

8><
>: ð13Þ

which corresponds to a piecewise polynomial of
zeroth degree. The term ‘‘order’’ refers to the order
of approximation as the sampling density increases
[18]. Successive convolutions of b0ðxÞ with itself
define the higher order B-splines,

bnðxÞ ¼ ðbn�1%b0ÞðxÞ; nX1: ð14Þ

B-splines are piecewise polynomial functions
which are symmetric and of limited support. They
are not orthogonal, but they form a Riesz basis
and satisfy the partition of unity condition [17].
Many other interesting properties of these func-
tions fall outside the scope of this paper.

2.2. A spline basis on the hexagonal lattice

Consider a regular hexagonal lattice described
by the matrix

*R ¼

ffiffiffi
3

p
=2 0

�1=2 1

" #
: ð15Þ

We define the surface area of the Voronoi cell
as O ¼ jdetð *RÞj ¼

ffiffiffi
3

p
=2: Matrices and functions
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related to the hexagonal lattice are denoted by the
*-superscript.
To construct a spline basis on the hexagonal

lattice, we are especially interested in preserving
the convolution property because it plays an
important role in the derivation of the least-
squares approximation later on. Therefore, we first
define the first-order hexagonal spline as the
indicator function of the Voronoi cell,

*b0ðxÞ ¼ w *RðxÞ: ð16Þ

Note that this spline is normalized to the surface
area of the basic cell:

R
*b0 dx ¼ O: By convolving

this function with itself repeatedly, we construct

hexagonal splines of higher orders,

*bnðxÞ ¼
ð *b0% *bn�1ÞðxÞ

O
; nX1: ð17Þ

Fig. 1 shows the hexagonal splines from first to
fourth order. The successive convolutions imply
that the splines become smoother as the order
increases. The above approach also ensures
properties such as positivity and convexity [19].
The primary focus of this paper is not the analytic
form of these splines, but Appendix A derives an
analytic form for the second-order hexagonal
spline and Appendix B shows a useful approxima-
tion for higher splines. Finally, Appendix C shows

Fig. 1. Splines derived on a hexagonal lattice: (a) first order, (b) second order, (c) third order, (d) fourth order.
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that the hexagonal spline order corresponds to the
approximation order.
Without a formal proof that the hexagonal

splines form a Riesz basis, we indicate that this
requirement is satisfied. First, it is easy to show
that Eq. (9) holds for the first-order hexagonal
spline with A ¼ B ¼ O: For higher orders, the
upper limit remains the same. If we take into
account the proper normalization and positivity of
*bnðxÞ; we can conclude that a lower limit must exist
for noþN:
Using the recursive construction of Eq. (17) and

the basic property of Eq. (16), it is very easy to
show that the splines obtained in this way also
satisfy the partition of unity, i.e., they meet the
requirement

ðd *R%
*bnÞðxÞ ¼ 1: ð18Þ

2.3. The spline transform

For both regular lattices considered in this
paper, we now have a suitable spline definition.
Our spline signal representation can be described
as follows:

gnðxÞ ¼
X

k

cðkÞbnðx � RkÞ; ð19Þ

according to Eq. (8). Note that this and following
equations of this section apply also to the
hexagonal lattice. Consider now a function gðxÞ;
which is represented in the spline space Sn as gnðxÞ;
and constructed as the weighted sum of shifted
splines. As such, gnðxÞ is uniquely characterized by
its spline coefficients cðkÞ: To obtain the spline
coefficients, we need to introduce the ‘‘sampled
spline’’,

bnðxÞ ¼ bnðxÞdRðxÞ: ð20Þ

Let us now consider the spline representation at its
lattice site, where we require the spline to
interpolate the original sample values: gðxÞ ¼
gnðxÞ at x ¼ Rk: We make use of Eq. (19) to write

dRðxÞgðxÞ ¼ dRgnðxÞ

¼ dRðxÞ
X

k

dðx � RkÞcðkÞ

" #
%bn

 !
ðxÞ; ð21Þ

such that

cðkÞ ¼ ððbnÞ�1%gÞðRkÞ: ð22Þ

Substituting this into Eq. (19) enables us to write
the ‘‘cardinal spline form’’,

gnðxÞ ¼
X

k

ðððbnÞ�1%bnÞðxÞÞgðRkÞ: ð23Þ

Solving Eq. (22) is referred to as the direct spline
transform. The computation of the inverse filter
ðbnÞ�1 will be covered in Section 4. Note that for
n ¼ 0; 1; the inverse filters ðb0Þ�1 and ðb1Þ�1 are
trivial, i.e., the spline coefficients cðkÞ are identical
to gðRkÞ:

3. The 2D least-squares approximation

In this section, we formally derive the least-
squares approximation for a resampling procedure
from the signal space Sn to *Sn: Consider two spline
representations, one on the source lattice and one
on the target lattice,

gnðxÞ ¼
X

k

cðkÞbnðx � RkÞ;

*gnðxÞ ¼
X

k

*cðkÞ *bnðx � *RkÞ:

We want to obtain those new sample values *gnð *RkÞ
such that the squared error between gnðxÞ en *gnðxÞ
is minimized. For that purpose, we derive a proper
reconstruction function FnðxÞ which obtains

*gnð *RkÞ ¼ sð *RkÞ;

with sðxÞ ¼
X

k

Fnðx � RkÞgðRkÞ: ð24Þ

Fig. 2 illustrates the principle of least-squares
resampling.
The minimum L2-norm approximation of a

function gðxÞ in the signal space *Sn can be found
by projection on *Sn: As such, the error gðxÞ � *gnðxÞ
is orthogonal to *Sn: Since the original function g is
only known at the lattice sites Rk; we assume g can
be adequately modelled by its spline representation
gn; part of Sn: This enables us to write

/gnðxÞ � *gnðxÞ; *bnðx � *RkÞS ¼ 0; ð25Þ

where gnðxÞ and *gnðxÞ are the spline repre-
sentations, respectively, on the orthogonal and
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hexagonal lattice. Using Eq. (19), we can rewrite
the expression as

/gnðxÞ; *bnðx � *RkÞS

¼
X

k

*cðkÞ *bnðx � *RkÞ; *bnðx � *RkÞ

* +

¼
X

k

*cðkÞ/ *bnðx � *RkÞ; *bnðx � *RkÞS; ð26Þ

where *cðkÞ are the spline coefficients on the
hexagonal lattice. We now use the founding
property of the hexagonal splines ð *bn% *bnÞðxÞ=O ¼
*b2nþ1ðxÞ:

ðgn% *bnðxÞÞ

¼ O
X

k

dðx � *RkÞ*cðkÞ

" #
% *b2nþ1

 !
ðxÞ: ð27Þ

The solution of Eq. (26) can be written as

*cðkÞ ¼
gn% *bn%ð *b2nþ1Þ�1

O
ðRkÞ: ð28Þ

This enables us to write the least-squares recon-
struction function for resampling from the lattice
R to *R as

FnðxÞ ¼

ðbnÞ�1%bn|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
1

% *bn%ð *b2nþ1Þ�1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
2

% *bn|{z}
3

0
@

1
AðxÞ=O;

ð29Þ

where the underbraced expressions indicate:

(1) the direct spline transform to compute the
spline coefficients on the source lattice;

(2) the least-squares approximation filter;
(3) the final convolution to reconstruct the values

at the target lattice sites in the signal space *Sn

using the new spline coefficients.

Once the reconstruction function FnðxÞ is known,
it can be used by Eq. (24) to compute directly the
least-squares sample values on the target lattice.

4. Computational issues

The direct spline transform and the least-
squares approximation filter require the computa-
tion of inverse filters. The Z-transform represen-
tation is well suited to represent these filters. The
1D Z-transform is given by

BðzÞ ¼
X
kAZ

bðkÞzk: ð30Þ

Similarly, we define the 2D Z-transform, asso-
ciated to a given lattice R; as

Bðz1; z2Þ ¼
X

k

bðRkÞzk1
1 zk2

2 ; ð31Þ

The 1D direct B-spline transform of Eq. (22) has
been studied extensively (and therefore also the 2D
orthogonal transform due to separability). Many
publications (e.g. [20]) are devoted to efficient
techniques for inverting the matrix corresponding
to the set of linear equations of Eq. (22). A fast
inversion scheme by means of two recursive filters
is described in [6,21].
Table 1 shows the Z-transform of the spline

filters. Starting from n ¼ 2; the inverse hexagonal
spline filters are complicated and also require an
infinite support. Due to non-separability, matrix

Fig. 2. Least-squares resampling computes the new sample values *gnð *RkÞ on the target lattice such that the squared error jjgn � *gnjj2

between the spline representation on the source lattice and the target lattice is minimized.

D. Van De Ville et al. / Signal Processing: Image Communication 17 (2002) 393–408398



inversion requires much memory. Also, an im-
plementation using recursive filters based on the
decomposition of the inverse 2D hexagonal spline
filter is difficult because factorization is not trivial
(e.g., of 1=B3ðz1; z2Þ). Based on the observation
that the cardinal splines have a fast decay, we will
approximate the least-squares reconstruction func-
tion on a limited support. We now present the
results for different n more closely.
In the case of n ¼ 0; the reconstruction function

of Eq. (29) becomes

F0ðxÞ ¼ ðb0% *b0ÞðxÞ=O: ð32Þ

No inverse filters are needed. Also, the support is
limited. This case is sometimes referred to as
‘‘surface projection’’, which is illustrated in Fig. 3.
In order to obtain a new sample value for the
central lattice site *p0; neighbouring samples on
the source lattice are taken and weighted by the
relative overlap of their cell surface area. Note the
difference with first-order interpolation, which
would simply assign the value of the nearest
source cell (i.e., p2) to the origin (Fig. 4).
For the second-order least-squares approxima-

tion, the reconstruction function is given by

F1ðxÞ ¼ ðb1%ð *b3Þ�1% *b1ðxÞÞ=O: ð33Þ

The presence of the inverse filter ð *b3Þ�1 implicates
that the theoretical support of F1ðxÞ is the whole
plane. However, the fast decay shows that an
approximation on a limited support is appropri-
ate. In particular, the filter *b1%ð *b3Þ�1 is computed

by solving the following equation for f ðxÞ:

*b1ðxÞ ¼ ð *b3%f ÞðxÞ: ð34Þ

An iterative procedure updates an estimate f ðxÞ in
each iteration [22],

f0ðxÞ ¼ l *b1ðxÞ;

fkþ1ðxÞ ¼ fkðxÞ þ lð *b1ðx � fk% *b3ðxÞÞ:

Note that the convolution at the righthand side of
the iteration is very simple to evaluate because the
hexagonal spline *b3ðxÞ is of limited support,

fk% *b3ðxÞ ¼
X

k

*b3ðRkÞfkðx � RkÞ: ð35Þ

Here l is a parameter which is positive and can be
used to control the convergence behavior of the

Table 1

Z-transforms of the basic spline kernels for the 1D B-splines and the 2D hexagonal splines

n B-spline filter Hexagonal spline filter

0 B0ðzÞ ¼ 1 B0ðz1; z2Þ ¼ 1

1 B1ðzÞ ¼ 1 B1ðz1; z2Þ ¼ 1

2 B2ðzÞ ¼
6

8
þ
1

8
ðz þ z�1Þ B2ðz1; z2Þ ¼

42

72
þ

5

72
ðz1 þ z2 þ z�11 þ z�12 þ z1z2 þ z�11 z�12 Þ

3 B3ðzÞ ¼
4

6
þ
1

6
ðz þ z�1Þ B3ðz1; z2Þ ¼

37

81
þ

29

324
ðz1 þ z2 þ z�11 þ z�12 þ z1z2 þ z�11 z�12 Þþ

1

972
ðz�11 z2 þ z1z�12 þ z1z22 þ z�11 z�22 þ z21z22 þ z�21 z�22 Þ

Fig. 3. The first-order least-squares approximation corre-

sponds to ‘‘surface projection’’. For example, the contribution

of the sample value at p1 to the resampled value at *p0 on the

target lattice is proportional to the shared surface area

(indicated in gray).
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iterative procedure. As a matter of fact, conver-
gence is guaranteed if l satisfies

j1� lB3ðe�j2pf1 ; e�j2pf2 Þjo1; 8f1; f2AR; ð36Þ

where B3ðz1; z2Þ is the Z-transform of the filter *b3:
Therefore, B3ðe�j2pf1 ; e�j2pf2 Þ is the frequency re-
sponse of the filter and the vector f ¼ ð f1; f2Þ
points to a frequency component #Rf ; where #R is
the dual lattice [16,23] of R; i.e. ðR�1ÞT: Note that
due to symmetry, the frequency response of the
filters of Table 1 are real-valued. The normal-
ization of the splines also implies that

maxðB3ðe�j2pf1 ; e�j2pf2ÞÞ ¼ 1: ð37Þ

To converge, minðB3ðe�j2pf1 ; e�j2pf2ÞÞ must be posi-
tive. This requirement can be easily verified.
Higher orders can be computed similarly, but

require the computation of two inverse filters (e.g.,
we can compute separately the inverse filters of
parts 1 and 2 in Eq. (29)). Note that it is also
possible to use different orders on the source and
the target lattice.

5. Results

To demonstrate the feasibility of the proposed
approach, we consider the practical setting on a
more general hexagonal target lattice, i.e., the case

of gravure printing. Like most printing processes,
gravure printing requires the use of halftoning
techniques to create the illusion of continuous-
tone images. Gravure printing uses classical half-
toning, i.e., a diamond engraves little notches into
the printing plate that correspond to dots of
varying sizes according to the notch’s depth. These
dots are placed upon a regular hexagonal lattice,
and thus a resampling procedure is required to
obtain the sample values on this hexagonal lattice.
Typical gravure printing is well suited for huge
volumes, but uses rather a coarse halftone lattice.
In our particular case, the source lattice is an
orthogonal 300� 300 dpi normalized lattice (i.e.
Eq. (11)). The target lattice is given by

*R ¼
1:42 0

�1:18 2:36

" #
: ð38Þ

Fig. 5 shows the Voronoi cells of the source lattice
and the target lattice. The low resolution of the
target lattice renders gravure printing very suscep-
tible to moire formation: interaction of the
periodic screen lattice with the contents of the
original image may lead to sampling-moire due to
aliasing [24]. In practice, preparing the printing
plates is a costly operation.
We compare our technique against classical

interpolation techniques. The acronyms IRn and
LSRn refer to respectively interpolative resampling

Fig. 4. Least-squares reconstruction function: (a) ‘‘surface projection’’ F0ðxÞ; (b) F1ðxÞ:
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and the proposed least-squares resampling, where
n þ 1 denotes the order of the spline.
The least-squares resampling reconstruction

function is numerically approximated on a size of
support of 8� 8; which results in a ratio of 1% of
the largest values inside and outside this support.2

Figs. 8(a) and (b) show the first-order and second-
order resampling filters. Their corresponding
amplitude frequency response is depicted in
Figs. 8(c) and (d). While the ‘‘surface projection’’
frequency response is still rather low-pass, the
second-order response ‘‘resembles’’ already the
indicator function of the natural Nyquist area (i.e.,
the Voronoi cell of the dual target lattice [25,26]).
Note the difference with a least-squares approx-
imation for digital filter design, where the squared
error between the magnitude frequency response
and a prescribed frequency response is minimized
[27].
Fig. 6 shows the well-known test image

‘‘barbara’’, which contains high frequency features
such as the stripes in the clothes. Fig. 7 shows
another test image ‘‘text’’ to investigate the effect
on sharp edges.
Fig. 9 shows results after resampling the ‘‘bar-

bara’’ test image ð512� 512Þ: The halftoning
process of the gravure printing was simulated

and the results need to be observed at a double
normal viewing distance (about 60 cm). Note
the blockiness and disturbing moire patterns of
the ‘‘nearest neighbour’’ interpolation (IR0). The
result using bilinear interpolation (IR1) has less
manifest moire patterns but is slightly more
blurred. The ‘‘surface projection’’ (LSR0) already
suppresses the aliasing artifacts well, but gives too
much blurring. Finally, first-order least-squares
resampling (LSR1) is clearly the best resampling
technique: good moire-suppression, and sharp
edges (e.g., the face and the scarf). Fig. 10 shows
the results for n ¼ 3: The interpolative result (IR3)
becomes sharper again, but also the moire patterns
are more apparent. The difference between LSR3
and LSR1 is almost unnoticeable.
Fig. 11 shows the results after resampling the

test image ‘‘text’’ (again, the viewing distance
should be doubled). Clearly, IR0 produces jaggy
and blocky edges. Both IR1 and LSR1 have
smoother results. Finally, LSR1 gives natural

Fig. 6. Original test image ‘‘barbara’’.

Fig. 7. Original test image ‘‘text’’.

Fig. 5. The Voronoi cell of the source lattice wR and the gravure

printing lattice w *R:

2This can be verified by computing the reconstruction

function for a larger support first.

D. Van De Ville et al. / Signal Processing: Image Communication 17 (2002) 393–408 401



and sharp edges, but already introduces some
ringing (although acceptable at normal viewing
distance). These artifacts increase with larger
order.
A final interesting test image is ‘‘zoneplate’’,

shown in Fig. 12. A ‘‘zoneplate’’ is a synthetic test
image ð256� 256Þ with increasing frequencies in
both horizontal and vertical directions. The top
left corner corresponds to the zero spatial fre-
quency, the right and bottom border correspond
to the frequencies at the border of the Nyquist
area. Clearly, the results using interpolative
resampling in Figs. 13(a)–(c) do not suppress
frequency components too high for the gravure

lattice, giving rise to disturbing moire artifacts.
The results in Figs. 13(d)–(f) use the proposed
least-squares approach and are well adapted to the
gravure lattice. Notice the rather small difference
between LSR1 and LSR3.

6. Conclusion

The standard procedure to resample images is to
reconstruct a continuous image followed by
sampling on the new lattice sites. Typical inter-
polation functions are not adapted to the char-
acteristics of the target lattice. This paper explains

Fig. 8. Least-squares reconstruction function for the gravure printing case study. (a) ‘‘Surface projection’’ F0ðxÞ: (b) F1ðxÞ: Frequency
amplitude response of the least-squares reconstruction function of (c) F0ðxÞ and (d) F1ðxÞ; respectively.

D. Van De Ville et al. / Signal Processing: Image Communication 17 (2002) 393–408402



a least-squares approach which minimizes the
information loss when resampling to a hexagonal
lattice. In particular, resampling to a coarser
lattice without proper precautions can introduce
annoying moire patterns due to aliasing.
The article presents a spline basis suited for a

hexagonal lattice. Splines of different orders are

constructed by successive convolutions, which
ensures useful properties such as positivity and
convexity. The convolution property is important
to derive an expression for the least-squares based
reconstruction function. The practical importance
of this technique is shown by a printing example.
The results show that the quality of least-squares

Fig. 9. Results after resampling the test image ‘‘barbara’’ to the gravure lattice: (a) IR0, (b) IR1, (c) LSR0, (d) LSR1.
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resampling is better than interpolative resampling,
even for a low order. The approach can be
extended for resampling between regular lattices.

Appendix A. Second-order hexagonal spline

This appendix shows the analytical solution of
the second-order hexagonal spline corresponding
to the regular hexagonal lattice of Eq. (15).
Fig. 14(a) shows the central Voronoi cell and its
neighbour at ð

ffiffiffi
3

p
=2; 1=2Þ: The first-order spline is

given by the (normalized) convolution of the
Voronoi cell with itself. Therefore, the outer

dashed line is the support of the spline. If we
‘‘shift’’ the adjacent Voronoi cell along the inner
dashed lines, the increments of shared surface area
with the central cell vary linearly with the shifted
distance. The value at the origin is 1; while the

Fig. 10. Results after resampling the test image ‘‘barbara’’ to the gravure lattice: (a) IR3, (b) LSR3.

Fig. 11. Results after resampling the test image ‘‘text’’ to the

gravure lattice: (a) IR0, (b) IR1, (c) LSR0, (d) LSR1.

Fig. 12. Original test image ‘‘zoneplate’’.

D. Van De Ville et al. / Signal Processing: Image Communication 17 (2002) 393–408404



values at the corners of the central cell are 1=3:
Inside the rhombs indicated by dashed lines, there
is a ‘‘linear patch’’. For example, Fig. 14(b) shows
the rhomb ð0; 0Þ; ð

ffiffiffi
3

p
=3; 0Þ; ð

ffiffiffi
3

p
=2; 1=2Þ; ð

ffiffiffi
3

p
=6;

1=2Þ: The surface inside a rhomb can be easily
described by two parameter variables t1 and t2
(which can be obtained using an isoparametric
transformation). If we define the parameters t1 and

t2; we address every location in the rhomb as
½0; 1� � ½0; 1�: The value inside the rhomb is given
by

f ðt1; t2Þ ¼ ð1� t1Þð1� t2Þ þ
t1ð1� t2Þ

3

þ
ð1� t1Þt2

3
: ðA:1Þ

Fig. 13. Results after resampling the ‘‘zoneplate’’ test image to gravure lattice: (a) IR0, (b) IR1, (c) IR3, (d) LSR0, (e) LSR1, (f) LSR3.

Fig. 14. (a) The second-order hexagonal spline can be divided in regular rhombs. (b) The surface inside each rhomb can be described

by using two parameter variables ðt1; t2Þ:
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The analytical form of the third-order hexagonal
spline is much more cumbersome and we will not
engage into this.

Appendix B. Approximating the higher order

hexagonal splines

Using the bivariate central limit theorem (CLT),
it is fairly easy to show that the hexagonal spline
converges to a bivariate normal distribution. In
particular, if we consider the first-order hexagonal
spline *b0ðxÞ as a probability density function
(normalized to O), then the mean vector m and
covariance matrix S are given respectively by

m ¼
0

0

" #
; ðB:1Þ

S ¼
5
ffiffi
3

p
144

0

0
5
ffiffi
3

p
144

2
64

3
75: ðB:2Þ

As a consequence, the limit

*bnðxÞ-O N2ðm; ðn þ 1ÞS=OÞ ðB:3Þ

applies. The probability density function of a
bivariate normal distribution N2ðm;SÞ is given by

1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðSÞj

p expð�ðx � mÞTS�1ðx � mÞÞ: ðB:4Þ

For the fourth-order hexagonal spline of Fig. 1(d),
the relative mean squared error between the real
spline and the approximation is only 0:43%:

Appendix C. Approximation order of the hexagonal

spline basis

Let us consider an arbitrary function gðxÞ; which
is only known at its sampling sites gð *RhkÞ on a
hexagonal lattice. The lattice *Rh stands for *Rh ¼
h *R; where h is a positive real number. The
representation of this function in our hexagonal
spline space is given by

gnðxÞ ¼
X

k

cðkÞ *bnðx � *RhkÞ: ðC:1Þ

As we make h smaller, we obtain a denser lattice
and could reasonably expect gnðxÞ to approach

gðxÞ: The approximation error in the Fourier
domain is given by [28]

Z2ðhÞ ¼
1

2p

Z
j #gnðf Þj2Eintðf hÞ df ; ðC:2Þ

where Eintðf Þ is called the interpolation error
kernel depending on the basis function only, and
#gnðf Þ is the Fourier transform of gnðf Þ: It is
straightforward to extend the kernel of [28] for a
general regular lattice,

Eintðf Þ ¼
j
P

kW0
#*bnðf þ #*RkÞj2 þ

P
kW0 j

#*bnðf þ #*RkÞj2

j
P

k
#*bnðf þ #*RkÞj2

;

where #*R is the reciprocal lattice of *R: To compute
this kernel, we can use the analytical knowledge of
the Fourier transform of the hexagonal spline
basis functions. In particular, the Fourier trans-
formed first-order hexagonal spline

#*b0ðxÞ is given
by [29]

#*b0ðf Þ

¼
1

p2f1

cosðpf1=
ffiffiffi
3

p
þ pf2Þ � cosð2pf2=

ffiffiffi
3

p
Þ

f1 �
ffiffiffi
3

p
f2

 

þ
cosð�pf1=

ffiffiffi
3

p
þ pf2Þ � cosð2pf2=

ffiffiffi
3

p
Þ

f1 þ
ffiffiffi
3

p
f2

!
:

Due to the convolution theorem, the Fourier
transform of the higher order splines is given by

#*bnðf Þ ¼ ð #*b0ðf ÞÞnþ1=On: ðC:3Þ

Fig. 15 shows the interpolation error kernel Eint

for the first to fourth order hexagonal spline. Low
frequency components give rise to a low approx-
imation error. Frequency components too high for
the lattice contribute twice to the approximation
error: once because they cannot be reproduced in
*Sn; and once because they give rise to aliasing. For
a higher order, a clear boundary arises at the
border of the Nyquist area [26].
Since decreasing h in Eq. (C.2) makes the

argument of Eint smaller, the error kernel must
vanish at the origin. The approximation order
relates to the vanishing rate of the error, i.e.,
ZðhÞphL: To determine the approximation order
L; we can also verify the equivalent first Strang-

Fix condition [18], i.e.,
#*bð0Þ ¼ 1 and all the

partial derivatives @2=@f m1

1 @f m2

2 of
#*bð #*RkÞ where
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m1 þ m2pL are zero. This condition was
verified using a software package for symbolic
manipulation.
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