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Complex Wavelet Bases, Steerability,
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Abstract—Our aim in this paper is to tighten the link between
wavelets, some classical image-processing operators, and David
Marr’s theory of early vision. The cornerstone of our approach
is a new complex wavelet basis that behaves like a smoothed
version of the Gradient-Laplace operator. Starting from first
principles, we show that a single-generator wavelet can be defined
analytically and that it yields a semi-orthogonal complex basis of

, irrespective of the dilation matrix used. We also provide
an efficient FFT-based filterbank implementation. We then pro-
pose a slightly redundant version of the transform that is nearly
translation-invariant and that is optimized for better steerability
(Gaussian-like smoothing kernel). We call it the Marr-like wavelet
pyramid because it essentially replicates the processing steps in
Marr’s theory of early vision. We use it to derive a primal wavelet
sketch which is a compact description of the image by a multiscale,
subsampled edge map. Finally, we provide an efficient iterative
algorithm for the reconstruction of an image from its primal
wavelet sketch.

Index Terms—Feature extraction, primal sketch, steerable fil-
ters, wavelet design.

M ULTISCALE transforms are powerful tools for signal
and image processing, computer vision, and for mod-

eling biological vision. A prominent example is the 1-D wavelet
transform, which acts as a multiscale version of an th-order
derivative operator, where is the number of vanishing mo-
ments of the wavelet [1]. Its extension to multiple dimensions
and to 2-D, in particular, is typically achieved by forming tensor-
product basis functions. However, such separable wavelets are
not well matched to the singularities occuring in images such
as lines and edges which can be arbitrarily oriented and even
curved. Consequently, there has been a considerable research
effort in developing alternative multiscale transforms that are
better tuned to the geometry of natural images. Notable ex-
amples of these “geometrical x-lets” include biologically-in-
spired 2-D Gabor transforms [2], wedgelets [3], ridgelets [4],
[5], curvelets [6], [7], contourlets [8], bandelets [9], [10], di-
rectional wavelet frames [11], and directionlets [12]. A second
category of methods takes advantage of the spectral separation
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into positive and negative frequency bands that can be achieved
via a 1-D complex wavelet transform whose real and imagi-
nary parts are in quadrature [13], [14], or, equivalently, via the
Hilbert transform [15]. Proper combinations of positive and neg-
ative frequency bands in multiple dimensions then allow one to
separate various orientations (e.g., six for the dual-tree wavelet
transform [13], [16] or even more, using its -band extension
[17]). The last important class of multiscale transforms are 2-D
directional filterbanks [18] and, most notably, steerable pyra-
mids [19]–[21], which combine the structure of the Laplacian
pyramid [22] with steerable filters [23], [24]. The derivation of
the filters is not based on wavelets, but rather obtained through a
numerical optimization process. Special constraints are imposed
to ensure that the frequency response of the filters is essentially
polar-separable and that the decomposition is simple to invert
numerically (approximate tight-frame property).

In this paper, we present an alternative approach based on
an explicit analytical and spline-based formulation of complex
wavelet bases of . Special care is given to design basis
functions that best match the properties of the visual system,
in accordance with Marr’s theory of early vision [25]. To mo-
tivate our construction, we specify a number of properties that
are highly desirable and that are fulfilled, sometimes implicitly,
by a number of classical image-processing algorithms.

• Invariance. We aim at invariance with respect to elemen-
tary geometric operations such as translation, scaling, and
rotation. Traditional wavelet transforms only satisfy these
properties to some extent, since a trade-off needs to be
found between the conciseness of the representation—its
(non)redundancy—and the degree of scale and translation
invariance. Rotation invariance is probably the most chal-
lenging property for wavelets, especially if one insists on
having basis functions (nonredundant representation).

• Feature detection. Image differentials are valuable clues
for feature detection. Most classical edge-detection algo-
rithms are gradient- or Laplacian-based, and, sometimes, a
combination of both. A wavelet transform that behaves like
a multiscale version of these fundamental operators could,
therefore, be of great use for image analysis.

• Steerability (a.k.a. rotation covariance). This property is
satisfied when all rotated versions of a basis function re-
main in the span of the wavelet at that particular scale
[23]. It is one of the keys for efficient directional analysis
and, more importantly, for designing image-processing al-
gorithms that are truly rotation-invariant.

• Localization. A wavelet can always be expressed as a
multiple-order derivative of some smoothing function.
The smoothing function should be isotropic, for good
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steerability, and achieve a good trade-off between space
and frequency localization. Clearly, the Gaussian would
be an ideal choice, but it is incompatible with the wavelets
being orthogonal between different scales. Accordingly,
one should consider biorthogonal or even mildly-redun-
dant designs to alleviate this limitation.

• Simplicity. Multidimensional wavelet transforms typically
lead to multichannel data structures because the informa-
tion at a particular scale is encoded using several basis
functions. From a practical point of view, it would be
advantageous if there was a unique analysis wavelet so
that the coefficients at a given scale could be stored into
an image array, similar to what is done in the quincunx
case. This would reinforce the (joint) interpretation of the
wavelet coefficients and facilitate to the development of
in-band processing algorithms.

Design Method for Complex Wavelet Basis: Unlike most tra-
ditional wavelet designs, our starting point is not filterbanks,
but rather the selection of an appropriate differential operator.
We shall see that imposing three fundamental properties (trans-
lation and scale invariance, rotation covariance) narrows down
the choice to a family of complex operators which involve some
fractional iterate of the Laplacian as well as the complex-gra-
dient operator . Clearly, this operator gives
access to derivatives in any direction by suitable multiplication
with a complex number of unit modulus.

We then adopt a spline-like construction where the approxi-
mation space is spanned by the integer-shifts of the Green func-
tion of the operator. Since these Green’s functions are not in

, we need to search for a localized basis function. For a pure
Laplacian operator (associated to the rotation-invariance prop-
erty), we can select the polyharmonic B-splines that are de-
scribed in [26]–[28]. Incorporating the complex gradient leads
to complex polyharmonic B-splines, which have first been ex-
plored in [29].

The next step is to specify wavelet functions that span the
orthogonal complement between approximation spaces at two
subsequent scales. Remarkably, the interscale orthogonality
constraint automatically enforces the operator-like behavior
of the wavelet, a mechanism that is well understood for the
1-D case [30] and for (real-valued) polyharmonic B-spline
wavelets [28]. While the present construction heavily relies on
the theoretical results of Forster et al. [29], it goes an important
step further by providing a solution to the wavelet-design
problem for arbitrary subsampling lattices. Remarkably, our
new operator-like wavelet is independent upon the choice of
the dilation matrix and it always generates a semi-orthogonal
basis of through simple shifts and dilations.

If the input signal is real, then the fact of expanding it on
complex-valued wavelets results into a redundancy factor of 2.

Marr-Like Wavelet Pyramid and Primal Sketch: The con-
ceptual motivation for the present construction was to provide
a mathematical interpretation of Marr’s theory for the early
stage of vision [31]. Based on similarities with the primate’s
visual system, Marr proposed to analyze the zero-crossings
of the image filtered with a Laplacian-of-Gaussian (LoG). He
then determined the orientation of the zero-crossing segments
and used these to define a “raw primal sketch,” which, he

argued, could serve as input to higher-level visual processing.
We can transpose those ideas to the present setup by combining
both operations (LoG and orientation of zero-crossings) into
a composite complex gradient-Laplace operator, for which
our wavelets provide a multiscale version. The corresponding
wavelet-domain local maxima give the intensity (by their
magnitude) and the orientation (by their phase) of an edge at a
particular scale. We coin the term “Marr-like wavelet pyramid”
for this decomposition, and we introduce the “wavelet primal
sketch” as a compact multiscale version of the raw primal
sketch [see Fig. 15(a)]. Specifically, we propose a scheme to
obtain a contour-based description of images and complement
it with an algorithm that reconstructs a high-quality approxi-
mation of the original image.

Organization of the Paper: We present our design method
in Section I, which starts with the identification of a class of
rotation-covariant differential operator; this yields a complex
wavelet basis of . The main technical contributions there
are the specification of the operator-like wavelets and the proof
that they generate Riesz bases for arbitrary subsampling config-
urations. Next, we introduce the Marr-like wavelet pyramid and
the wavelet primal sketch representation in Section II. In Sec-
tion III, we illustrate essential features of the Marr-like wavelet
pyramid such as the angular selectivity and the importance of
phase and magnitude. We also propose an algorithm to effi-
ciently reconstruct an image from its wavelet primal sketch. Fi-
nally, in Section IV, we conclude the paper with a discussion
and comparison of the Marr-like wavelet pyramid against other
state-of-the-art multiscale decompositions.

I. OPERATOR-LIKE WAVELETS

A. Operator Design Principle

Our design starts with the specification of a suitable differ-
ential operator L that satisfies some desirable invariance prop-
erties. This operator admits a Green function
such that . The integer shifts of can be used to define
a sequence of embedded approximation spaces

(1)

For most differentiation operators, the Green’s functions are
not in , which makes the representation (1) not practical for
implementation purposes. Yet, it is quite useful conceptually
because it focuses on the essentials (see [32] for a discussion
of the 1-D case which brings out an interesting connection with
fractals). We defer to Section I-C the specification of a valid
scaling function of .

Let us now consider the function , where is
the adjoint operator of L and is a smoothing function. The or-
thogonality condition between at position and the function
space can then be expressed as

(2)
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and can be enforced by a judicious choice of and . Using
this fundamental property together with the fact that is in the
finer approximation space , we want to specify the wavelet
subspace

(3)

which is spanned by a single wavelet function at all positions
. We are going to show that this is possible; in other

words, that can be selected such that is a Riesz-basis gener-
ator of , while maintaining the orthogonality condition with
respect to . The wavelet spaces can then be embedded as

(4)

where the wavelet function behaves as a multiscale
version of L.

This strategy was used implicitly in one of the earliest con-
structions of 1-D polynomial spline wavelets [33]. In that case,
the operator L was chosen to be , for which the causal
Green’s function is the one-sided monomial .
The smoothing function corresponded to the spline interpolant
of order dilated by a factor 1/2. It can be readily verified that
(2) holds in that case for .

The above derivation provides us with an important insight
on how the approximation space and wavelet space are tightly
linked together through the operator and its Green’s function.
In the sequel, we clarify the different ingredients—operator,
scaling function, and smoothing function—that lead to the
Marr-like wavelet pyramid, the wavelet primal sketch, and its
corresponding reconstruction algorithm.

B. A Suitable Operator for Image Processing

In classical (separable) wavelet theory, the underlying oper-
ator L is necessarily an th order derivative, where corre-
sponds to the number of vanishing moments. Here, we are inter-
ested in selecting a true 2-D operator that has invariance proper-
ties that are better suited for image processing. Specifically, we
have identified the following three desirable properties.

Definition 1 (Translation Invariance): The operator L is said
to be translation-invariant when it commutes with the shift op-
erator: .

Definition 2 (Scale Invariance): The operator L is said to be
scale-invariant when it commutes (up to a constant) with the di-
lation operator; that is, when
where is an appropriate real-valued constant.

Definition 3 (Rotation Covariance): The operator L is said
to be rotation-covariant when it commutes with the rotation op-
erator up to a rotation-encoding constant with unit magnitude;
specifically, when where

with .
Since we assume L to be a convolution operator, which re-

quires linearity and translation invariance, we can characterize
it by its Fourier transform in the distri-
butional sense. We have that , where

is the Fourier transform of .
Here, we want to further restrict ourselves to the class of scale-
invariant and rotation-covariant operators. This imposes strong
constraints on the form of as specified by Lemma 1, and,
ultimately, leads to the identification of the class of complex op-
erators in Theorem 1, which are a combination of the Laplace
operator and complex gradient or Wirtinger-type operators [34].
The proofs are given in Appendices A and B, respectively.

Lemma 1: A scale-invariant and rotation-covariant convo-
lution operator L is necessarily th-order scale invariant and

th-order rotation-covariant. Its frequency response is such that
for any and , where

and .
Theorem 1 (Wirtinger-Laplace Operator): The convolution

operator L is th-order scale invariant and th-order rotation
covariant if and only if its Fourier transform can be written (up
to some complex multiplicative factor) as

(5)

where is an arbitrary positive integer and is real-
valued.

In the spatial domain, the Wirtinger-Laplace operator from
(5) corresponds to

(6)

for which the Green’s function is known to be

where are some appropriate constants [29]. The novel
contribution here is to show that this class of operators is com-
plete with respect to the desired invariance properties. Notice
that, for , we obtain the complex gradient-Laplace
operator.

C. Complex Polyharmonic B-Splines

Definition 1 is not useful computationally because the
Green’s function is not in . Therefore, we need to find a
localized basis function that is a
Riesz-basis generator of , the space spanned by the integer
shifts of . Our solution is somewhat different from the one
initially proposed in [29].

Definition 4 (Complex Polyharmonic B-Spline): The polyhar-
monic B-spline associated with the complex gradient-Laplace
operator , where the order is real-valued with and

, is defined via its Fourier transform

(7)
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The numerator is the localization filter with polar representation
, where the modulus and phase

are given by

and where stands for the unique in such that
for some integer .

The amplitude term makes the Fourier transform
well-behaved at , where it “cancels” the zero of the de-
nominator exactly at the order . The pure phase term ,
on the other hand, is a -periodic all-pass filter that is speci-
fied to provide a zero-phase behavior in the whole Nyquist band

.
The space-domain counterpart of (7) is the so-called Green’s

function localization formula, which yields the equivalent
B-spline definition

(8)

This construction is such that coincides with the
isotropic polyharmonic B-splines that were earlier introduced
by us and that are associated with the Laplacian operator alone
[28]. Moreover, our complex extension has the desirable feature
that , so that our new B-splines share the same
autocorrelation filter as the polyharmonic ones, with

(9)

Another important function, also independent of , is the
unique interpolant within the polyharmonic-spline space of
augmented order spanned by or equivalently by

. It is such that and its Fourier transform is
given by

(10)

Based on our earlier results [29], we can deduce that the com-
plex polyharmonic B-splines satisfy all the requirements for
generating a valid multiscale analysis of (see [1]).

• Their integer shifts form a Riesz basis of the signal space

• They satisfy the partition-of-unity property
.

• They satisfy a scaling relation for any admissible subsam-
pling matrix that consists of a rotation combined with a
dilation and . The scaling relation is given in
the frequency domain by

(11)

where is the scaling filter.

These complex polyharmonic B-splines can, therefore, be
used to construct wavelets that span the orthogonal comple-
ments between the sequence of embedded
spaces .

D. Operator-Like Wavelets

Real-valued polyharmonic wavelets (i.e., ) have been
proposed both for the quincunx subsampling matrix [28], which
corresponds to a two-channel design in 2-D, and for the dyadic
subsampling matrix [35], [36]. So far, complex polyharmonic
spline wavelets have only been specified explicitly for the sim-
pler quincunx case [29], which corresponds to a classical two-
channel design with a single wavelet generator.

In this work, we propose a more general construction that
yields operator-like wavelets for any admissible subsampling
matrix . Another remarkable feature of our approach is that the
wavelet spaces are generated using a single wavelet instead of

distinct ones as in classical designs (e.g., separable
constructions). It is also important to mention that our wavelets
are uniquely defined in the sense that they do not depend on
the specific choice of the generator of the approximation space,
but only on the approximation space itself. We define

as the canonical number of wavelets.
Definition 5 (Operator-Like Wavelets): The operator-like

wavelets that span the detail space are defined as

(12)

where is specified by (10) and is in the cosets of
the subsampling matrix , with .

Our wavelet space is generated by a single function
that is spatially shifted on all coset positions . There-

fore, we compactly denote the wavelet space as

(13)

where the factor ensures a proper -
normalization.

Theorem 2 (Riesz-Basis Property): For , the operator-
like wavelet generates a semi-orthogonal basis of
for any admissible subsampling matrix . Their construction is
such that:

1) the space is contained in the finer approximation space
;

2) the space is orthogonal to the approximation space
at the same scale;

3) the basis generates a Riesz basis of , and, by
rescaling, of all the spaces .
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Proof: To establish the first property, we rewrite the Fourier
counterpart of (12) as

(14)

which shows that can be expressed as a
linear combination of integer shifts of . This also
identifies the wavelet filter that needs to be used
with the scaling function .

To prove the second property, we rewrite the inner product
between a wavelet and the scaling function at scale as

(15)

Applying the operator to cancels the denominator of
(7) so that the only remaining term is the filter . The
corresponding space-domain expression is

(16)

where is the inverse Fourier transform of .
Therefore, the inner product further simplifies to

(17)

which is zero since the interpolating function is sampled at
nonzero integer positions only.

For the third property, we first introduce the elements of the
Gram matrix as

(18)

which has the discrete Fourier transform . We
need to prove that the determinant of the corresponding
Fourier matrix is bounded by
two positive constants . The entries of this
matrix are expressed as (using )

(19)

As is -period, we can restrict our analysis to
. It is easy to see that (19) is upper-bounded because

the denominator and the numerator are trivially lower- and
upper-bounded, respectively. Consequently, the determinant of

is upper-bounded too. For the lower bound, we can use
the fact that if the “fiber” vectors [37]

(20)

are linearly independent for any fixed . This can be verified by
checking that

(21)

requires . Component-wise, we can rewrite (21) as

which really reduces to conditions to be fulfilled. We
get the same equation for all , and

different ones can be identified for
, so that

(22)

where and , except for . It is
convenient to rewrite the system of linear equations as

. . . ...
. . .

...
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Fig. 1. Semi-orthogonal operator-like wavelets . (a) Real part. (b) Imaginary part. (c) Steered at .

. . .
...

We identify the aliasing offsets with respect to as
. In the case , we have that , which

removes the first equation, leaving us with the system

. . .
...

. . .
...

. . .
...

The null solution is the only one if is full-rank, which is true in
general as the matrix is a submatrix of the
generalized discrete Fourier-transform matrix with respect to
[38]. Specifically, in the quincunx case, we have

(23)

leading to , which is clearly full rank. In the dyadic
case, we have

(24)

leading to

(25)

which has full rank again , as well.
For the case , we need to add the first equation again

[(22) for ], which makes the system overdetermined. Due
to the previous result, has still rank , and, thus, the only
solution is still .

We use the term semi-orthogonality to indicate that the
wavelet is orthogonal to its dilations, but not to its translations.
The fact that we have a Riesz basis does also imply the exis-
tence of an equivalent orthogonal basis but it is unlikely to have
a single generator, except, of course, for the quincunx case
where . It is also important to note that the operator-like
wavelet generator at scale is essentially independent
upon (up to a geometrical transformation) and that it is not
tied to any particular choice of scaling function. In fact, it is
completely determined by the operator alone, which is a clear
indication of its fundamental nature. The same can also be said
for the higher-order interpolant appearing in the formula
which is uniquely tied to the function space and, hence, to the
operator.

Let us now review a few more properties.
Property 1 (Relationship Between Real and Imaginary Part):

The operator-like wavelets have the following -rotation
property between their real and imaginary parts

(26)

Property 2 (Multiscale Operator Signal Analysis): Ana-
lyzing a function with operator-like wavelets results into
complex coefficients for which we have that

where is a max-flat lowpass function such that

(27)

Moreover, as , we have that (see
[28]).

For the choice , we obtain the behavior of the
“pure” complex gradient-Laplace operator as

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on February 10, 2009 at 09:39 from IEEE Xplore.  Restrictions apply.



VAN DE VILLE AND UNSER: COMPLEX WAVELET BASES, STEERABILITY, AND THE MARR-LIKE PYRAMID 2069

Fig. 2. Filterbank implementation of the complex wavelet decomposition.

In Fig. 1, we show the real and imaginary parts of the operator
wavelet in (a) and (b), respectively. In (c), we display the linear
combination , which
is the wavelet steered at . However, the steerability is not
perfect since the smoothing function is interpolating and,
thus, not isotropic. We show in Section III how this can be fixed.

Property 3 (Analysis-Synthesis): The operator-like wavelet
signal analysis of a function can be inverted using
the dual synthesis wavelets; specifically

(28)

with
(29)

where the , are the unique functions in
such that

E. Implementation

We show in Fig. 2 the filterbank implementation of the com-
plex-wavelet decomposition. The derived filters

(30)

are placed on the analysis side, while their duals are used for the
reconstruction; these can be found by imposing the perfect-re-
construction condition and solving a linear system of equations.
Since the filters are known explicitly in the Fourier domain, the
transform is evaluated efficiently using the FFT (implicit peri-
odic boundary conditions).

In our implementation, we use a prefiltering step to obtain the
initial approximation coefficient at scale 0. We assume that
the sampled input signal is bandlimited, and we represent it by
its cardinal series

(31)

The orthogonal projection onto is then obtained as

(32)

where is the unique dual function in . In the Fourier
domain, this translates into

(33)

where is the component-wise extension of , and where
and are the discrete Fourier transforms of

and , respectively.

II. MARR-LIKE PYRAMID

In the previous section, we exhibited semi-orthogonal
wavelets that we derived from the complex gradient-Laplace
operator. We now want to relate these to a wavelet-pyramid
decomposition inspired by Marr’s theory of early vision [25],
[31].

A. Marr’s Theory of Vision and the Raw Primal Sketch

In his seminal work on vision [25], David Marr proposed
an influential model for the primate’s visual system. The first
(early) stage of the vision process leads to the “raw primal
sketch” [31]. It consists of three essential steps. First, the image
is smoothed by a Gaussian which is a low-pass filter with
optimal joint spatial-spectral localization. Next, the Laplacian
operator is applied and edges are detected as zero-crossings.
Last, zero-crossing segments are identified and their orientation
determined. The characterization of the image by zero-crossing
segments is called the “raw primal sketch,” which is then
processed by higher-level vision mechanisms.

The Laplacian-of-Gaussian (LoG) operation is performed at
several scales simultaneously [39]. Mathematically, the theory
of linear scale space elegantly deals with the continuous stack of
images blurred by a Gaussian kernel with increasing width [40],
[41]. Applying the Laplacian operator to the scale-space repre-
sentation and detecting the zero-crossings leads to the “scale-
space primal sketch” [42].

An outstanding theoretical question is whether or not the mul-
tiscale primal sketch carries all the information of the original
image. Therefore, one is interested in reconstructing an image
from its primal sketch representation. To be practical, the repre-
sentation also needs to be stable, so that a small perturbation of
the primal sketch does only slightly modify the image.

Several researchers have investigated the inversion problem
from zero-crossings of band-limited signals (or, equivalently,
using an ideal band-pass wavelet function) in the 1-D case
[43]. These results rely on the band-limitedness of the signal
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to compute its analytic extension [44]–[46], which is a non-
stable characterization. The properties of zero-crossings of
functions convolved with a LoG have also been studied, more
specifically its multiscale version [47], [48]. The completeness
of the representation is guaranteed for polynomial signals,
but not its stability [49]. To alleviate this problem, additional
information of the function is retained, such as the gradient
values at the zero-crossings [50]. Yet, one should note that the
scale-space primal sketch has a continuous scale, which makes
this approach unpractical. As an alternative, Mallat proposed
a stabilized zero-crossing representation using the redundant
wavelet transform at a sequence of dyadic scales
[49]. In addition to the zero-crossing positions, he records
the integral between two zero-crossings. The proposed recon-
struction algorithm, which is based on iterative projections, is
able to recover a close approximation of the original signal.
Unfortunately, the proposed representation is not guaranteed
to be complete [51], [52]. In [51], Mallat and Zhong propose
another representation that stores the positions and the values
of the modulus maxima of the wavelet coefficients. In this
case, the wavelet is chosen to be a derivative of a B-spline.
The scheme extends for images using a separable wavelet
transform. In that case, local modulus maxima are extracted by
a Canny edge-detector-like procedure [53]. The reconstruction
algorithm is similar to the 1-D case and applied row-by-row
and column-by-column. The modulus maxima representation
uses dyadic scales, but is fully redundant inside each scale.
Moreover, two separate (redundant) wavelet transforms are
required to obtain horizontal and vertical derivatives.

What we are after here is a decomposition/reconstruction
procedure that has the flavor of the one proposed by Mallat
and Zhong, but that uses a much lesser degree of redundancy
in the construction of the edge map. In other words, we seek
a pyramidal representation as opposed to a fully redundant
decomposition.

B. Marr-Like Wavelet Pyramid

The operator-like wavelet basis constitutes our starting point
for specifying a wavelet decomposition that mimicks the first
stage of vision processing proposed by Marr. The innovation of
this paper is 1) a pyramid structure with mild redundancy for
better translation invariance; 2) the adaptation of the smoothing
function to make it more Gaussian-like.

1) Pyramid Structure and Dyadic Subsampling Scheme: The
wavelet spaces are spanned by appropriate shifts and dila-
tions of the prototype wavelet. They are compactly written as

(34)

In Fig. 3(a), we show an equivalent polyphase representation
of the filterbank structure corresponding to a wavelet analysis
into . It suggests that one can filter once and keep all but one
out of coefficients. It is then very tempting to consider
a true pyramid structure where the “missing” wavelet would be
included as well, as shown in Fig. 3(b). The corresponding “aug-
mented” wavelet space is

(35)

Clearly, we now have that , but we loose the semi-or-
thogonality property as the additional wavelet is not orthogonal
to the scaling function of . Yet, since every wavelet is in the
span of the scaling function at the finer resolution, it still holds
that .

In this slightly redundant scheme, the reconstruction of
the pyramid decomposition is performed using the subband
regression algorithm, which we illustrate in Fig. 3(c). Then, the
pyramid data is reprojected onto the (nonredundant) wavelet
basis such as to minimize a quadratic consistency error crite-
rion. More details and explicit filter expressions can be found
in [54].

From now on, we focus on the dyadic subsampling scheme
that corresponds to the matrix , where is the identity
matrix. As illustrated in Fig. 3(d), the three wavelets and the ad-
ditional one can be rearranged in a single subband on a Cartesian
grid of high (nonsubsampled) resolution. The pyramid structure
brings along two important advantages: 1) only the approxima-
tion subband is subsampled, and, thus, the translation invariance
of the wavelets is improved, 2) in-band processing can be done
using conventional image-processing algorithms designed for
the Cartesian grid.

2) Smoothing Function: An important feature of the Marr
framework is smoothing with a Gaussian filter. It is, therefore,
tempting to replace the smoothing function in (12) by an-
other one that is closer to a Gaussian. While the possibility of
doing so in is somewhat restricted [i.e., the zeros of the
smoothing function must be guaranteed according to (2)], it is
much easier to achieve within our enlarged wavelet space .
Our proposal is to consider appropriate linear combinations of
functions within , which corresponds to a filter
at scale 0. Here, we pick the Marr smoothing function to be the
polyharmonic B-spline

(36)

This smoothing function closely resembles a Gaussian due to
the properties of the polyharmonic B-spline. In fact, it quickly
converges to a Gaussian with standard deviation as
increases [28]. In Fig. 4, we show the smoothing functions of
both the operator-like wavelet and the new proposed one for

.
3) Pure Complex Gradient-Laplace Behavior: For our pur-

pose, the natural choice of the parameters of the operator
is and , which corresponds to the pure complex
gradient-Laplacian behavior. The Laplacian part has, combined
with the smoothing function, a LoG behavior. By adding the
gradient, we can easily map the zero-crossings of the Laplacian
onto the local extrema of the complex gradient-Laplace. Addi-
tionally, the phase and magnitude of the complex wavelet coef-
ficient contain important information on the edges.

Definition 6 (Marr-Like Wavelet Pyramid): The Marr-like
wavelet pyramid is specified by a sequence of analysis wavelets

where

(37)
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Fig. 3. (a) Filterbank at the analysis side of the nonredundant wavelet decomposition where the same filter can be applied to the data and
shifted afterwards. (b) The pyramid extension of (a) can be obtained by adding the nonshifted wavelet subband and regrouping all coefficients in a single
subband. (c) Marr-like wavelet pyramid with subband regression (module “SR”) reconstruction. (d) Pyramid organization for the dyadic subsampling scheme.

Fig. 4. Smoothing functions of order for (a) the quasi-steerable wavelets
and (b) the Marr-like wavelets. Note that (a) is an interpolator while (b) is an
isotropic polyharmonic B-spline of order 6.

with . In the sequel, we select and .
Note that the Marr-like wavelets span our augmented wavelet

spaces

which follows directly from (36).

In Fig. 5, we show the real and imaginary parts of the Marr-
like wavelet in (a) and (b), respectively. The wavelet steered at

is shown in (c). Note the improved steerability with respect
to the complex operator-like wavelets. The total redundancy of
the Marr-like wavelet pyramid is 8/3, which corresponds to a
factor of 4/3 from the pyramid structure, and a factor of 2 due
to the complex nature of the wavelet coefficients.

The coefficients for the Marr-like wavelet pyramid with
decomposition levels at scales are given by

(38)

These are complemented with the coarser-scale approximation
coefficients

(39)

Any function is thereby uniquely specified by
its Marr-like wavelet pyramid ,
which constitutes a frame represented by the operator . The
reconstruction (operator ) is performed according to the
algorithm described in Fig. 3(d) which reprojects the data onto
the complex wavelet basis.

In Fig. 6, we visualize the Marr-like wavelet pyramid (b) for
a synthetic test image “disc” (a). The left side of the pyramid
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Fig. 5. Marr-like wavelets from (37). (a) Real part. (b) Imaginary part. (c) Steered at .

Fig. 6. (a) Disc test image (size 256 256; central disc of radius 50; Gaussian smoothing with pixels). (b) Marr-like pyramid ( decomposition
levels) of the disc image. (c) Vector plot of the lower-left corner of the wavelet subband at scale .

corresponds to the real part, while the right side to the imagi-
nary one. The scale gets coarser from top to bottom. The small
thumbnail image at the bottom row represents the approxima-
tion coefficients from the last decomposition level. In (c), we
show a zoom using a vector plot of the lower-left corner of the
subband at scale . Finally, we show the Marr-like wavelet
pyramid of the well-known “Einstein” image in Fig. 7.

C. Wavelet Primal Sketch

We now have all the tools at hand to extract the wavelet
primal sketch, as illustrated by the flowchart in Fig. 8. First,
the image is decomposed into its Marr-like wavelet pyramid.
The resulting images are interpreted as multiscale gradients
and fed into a Canny-like edge detector (Fig. 9). Specifically,

the gradient phase and magnitude are computed and the coeffi-
cients that are not local maxima are suppressed. The remaining
magnitude values are subjected to a hysteresis threshold within
each subband [53]. This yields a multiscale edge map of the
image. Note that we retain the positions of the edges, as well as
the phase and magnitude of the detected wavelet coefficients.

Our wavelet primal sketch is compact when compared to
other state-of-the-art primal sketch representations. Indeed,
the complete Marr-like wavelet pyramid has a small redun-
dancy (factor of 8/3), and there is only a small portion of
coefficients that is retained after hysteresis thresholding. These
“primal-sketch” wavelet coefficients carry essential informa-
tion that can be used to reconstruct the image, as we show in
the next section.
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Fig. 7. Marr-like pyramid ( decomposition levels) of the “Einstein” image.

Fig. 8. Flowchart of how to extract the “wavelet primal sketch” from the Marr-like wavelet pyramid. The Canny edge-detection procedure is applied to every
subband. Real and imaginary parts of the wavelet coefficients are interpreted as vertical and horizontal derivatives, respectively.

Fig. 9. Flowchart of how the “Canny edge detector” is applied to a subband of the Marr-like pyramid decomposition. First, the gradient is extracted by considering
real and imaginary parts of the wavelet coefficients. Then, nonmaximum suppression is applied along the gradient direction, followed by hysteresis thresholding.
Finally, a complex coefficient is restored for the coefficients that are detected.

Mathematically, we denote the wavelet primal sketch
of with Marr-like wavelet pyramid coefficients

, where is the index domain at scale indicating
the edge positions. The masks corresponding to the wavelet
primal sketches of the images “disc” and “Einstein” are shown
in Figs. 14(b) and 15(a), respectively.

III. EXPERIMENTAL RESULTS

We now present a series of experiments to illustrate the
properties and possible applications of the complex Marr-like
wavelets. In particular, we describe a reconstruction algorithm
that is able of re-synthesizing a close approximation of the
original image from this reduced primal wavelet sketch.

A. Angular Selectivity

Due to the rotation covariance of the complex gra-
dient-Laplace operator, the wavelet coefficients of the Marr-like
pyramid have angular selectivity. The “zoneplate” test image,
shown in Fig. 10(a), forms an ideal test case. The Marr-like
wavelet pyramid is shown in Fig. 10(c). Note the different
vertical/horizontal sensitivity between real and imaginary parts,
and the varying frequency selectivity according to the scale.
In Fig. 10(b), we show the reconstruction corresponding to the
coefficients whose phase is within a wedge of ; the
other coefficients are set to zero. Note that we have a complete
directional control of the transform thanks to the steerability
of the basis functions; in other words, we could as well have
extracted an angular wedge in any other direction.
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Fig. 10. (a) Test image “zoneplate” (256 256). (b) Marr-like wavelet pyramid . (c) Phase selectivity: only coefficients with phase within a wedge
are retained for the reconstruction. The phase of the coefficients is interpreted modulo .

B. Significance of Phase and Modulus

It is a well-known property of the Fourier transform that the
main perceptual information of the image is carried by the phase
of the Fourier coefficients rather than their magnitude. As a con-
sequence, interchanging phase and magnitude between two im-
ages reveals the image from which the phase was selected. An
example is shown in Fig. 11(b), using the “cameraman” (magni-
tude) and “Einstein” (phase) images. It is informative to perform
the equivalent experiment with our complex-valued wavelet co-
efficients. In Fig. 11(a), we interchanged the phases and magni-
tudes of the Marr-like wavelet pyramid of the same images. As
with the Fourier transform, the reconstruction mainly reveals the
image from which the phase was selected. However, since the
wavelet basis functions are more localized, the magnitude re-
tains some “diffuse” spatial content from; i.e., the halo from the
“cameraman” can be recognized, as well.

C. Translation Invariance and Rotation Covariance

Due to the rotation covariance of the operator , we know that

(40)

Since the Marr-like wavelet pyramid is a multiscale version of
the operator, it should approximately maintain this property.
We demonstrate this feature by geometrically transforming an

Fig. 11. Effect of interchanging phase and magnitude between two images.
The phase is recovered from the “Einstein” image, and the magnitude from the
“cameraman” image. (a) Marr-like wavelet pyramid, full decomposition

. (b) Discrete Fourier transform.

image by individually rotating each subband. Ideally, we would
like to set the rotated wavelet coefficients to

(41)

In practice, we approximate this step by a bicubic interpolation
step of the original subband (Matlab implementation imro-
tate). As shown in Fig. 12 for the “Einstein” image, the recon-
struction of the rotated pyramid closely resembles the original
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Fig. 12. Reconstruction of the “Einstein” image after rotating each subband
in the Marr-like wavelet pyramid by . The wavelet coefficients are also
multiplied by a phase factor .

(but rotated) image. This would not work at all if we were ro-
tating the coefficients of a conventional separable wavelet trans-
form, because the wavelets cannot be steered.

D. Image Reconstruction From Wavelet Primal Sketch

We now present a practical algorithm for reconstructing an
image that is consistent with the primal wavelet sketch. First,
we define the space of all Marr-like pyramid transforms of
real-valued functions in . Any such Marr-like pyramid
transform is invariant under the projector

(42)

which consists of three operations: the inverse wavelet trans-
form is an orthogonal projector onto the image with re-
spect to the norm that is minimized by the subband regression
algorithm; the pointwise transform Re is an orthogonal projector
onto the space of real-valued images; and the wavelet transform

provides the Marr-like wavelet pyramid of the new image.
Second, we are interested in those Marr-like pyramids that

have the same values on the domain of the wavelet primal
sketch. In order to restrict the range of solutions and to impose
some unicity, we search for a solution that is consistent with the
wavelet primal sketch (i.e., the desired values on ) and
that minimizes some ad-hoc wavelet-domain energy. Specifi-
cally, we would like the coefficients to be small and essentially
nonoscillating. Therefore, we propose to minimize the regular-
izing norm

(43)

where and are the unit horizontal and vertical vectors,
respectively. Let us define as the space of pyramids with a
consistent primal sketch; i.e., such that match. A
critical component of our algorithm is the projector onto ,
which is orthogonal with respect to the norm (43), and which is
made explicit in Appendix C.

We are now able to precisely formalize the objective of the
reconstruction algorithm: We are searching for an image corre-
sponding to an admissible Marr-like wavelet pyramid such that

(44)

where is the given wavelet primal sketch. This objec-
tive can be reached by alternating between the projectors
and , a procedure that is proven to converge to the orthog-
onal projection on [55]. If we start from the zero
element of , we are eventually going to converge to the ele-
ment of whose norm (43) is minimum. We give the flowchart
of the algorithm in Fig. 13. Our procedure has similarities with
the approach of Mallat and Zhong [51] who consider a more
redundant representation. However, in our case, the method is
adapted for the Marr-like wavelet pyramid, which is a compact
representation and has an efficient projection (simple in-
verse transform). In other words, we directly take into account
the discrete nature of the subbands. In practice, the algorithm is
applied for a limited number of decomposition levels , while
retaining the unaltered coarsest-approximation subband.

The projector can be further refined to suppress spu-
rious edges. Let us denote as the domain at scale of the
wavelet primal sketch of the current estimate. We extend the
boundary conditions by imposing on that the magnitude
should be reduced at the low threshold value of the Canny
edge detector. Note that this associated space with the refined
projector changes at each iteration, meaning that convergence
is no longer guaranteed. Yet, we have observed experimentally
that this strategy converges; it has the advantage of somewhat
reducing ringing artifacts.

In Fig. 14, we show the results of the reconstruction algorithm
for the disc image. The mask of the wavelet primal sketch for

is shown in (b), while a partial vector representation of
the subband at is given in (c). Since the image is noise-
less, all local maxima were retained by the Canny edge detector
(about 2% of the coefficient at each scale). The reconstruction
reaches more than 40 dB PSNR after 5 iterations, and 50 dB at
full convergence (50 iterations).

In Fig. 15, we show the results for the test image “Einstein.”
The high threshold value of Canny’s hysteresis threshold is
chosen in an empirical way as a factor of median-abso-
lute-deviation (MAD) at each scale. The low threshold value
is then adapted such that the number of wavelet coefficients
for the primal sketch at scale remains limited at 15%. The
evolution through the iterations is shown in (b). In Fig. 16,
we plot the PSNR performances for a couple of popular test
images. Convergence at 32–35 dB can be observed after about
ten iterations only.

IV. DISCUSSION AND CONCLUSION

We summarize in Table I the essential features of the com-
plex wavelet basis, the Marr-like wavelet pyramid, and com-
parable state-of-the-art transforms. The steerable pyramid [20]
is an orientation-sensitive extension of the well-known Lapla-
cian pyramid [22]. The filters are obtained by a constrained
numerical optimization and can be implemented either in the
spatial or the Fourier domain (using the FFT). The complex
dual-tree wavelet transform [16] relies on the 1-D Hilbert trans-
form to separate negative from positive frequency components.
This aim is pursued by designing two 1-D wavelet transforms
with a half-sample shift difference between them. Making suit-
able combinations in 2-D yields 6 distinct orientations.
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Fig. 13. Flowchart of the algorithm to recover the image from the “wavelet primal sketch.” The consistency of the sketch of the intermediate image is verified:
Wavelet coefficients of the known sketch are imposed with respect to a regularizing norm. The consistency in the image domain removes the imaginary part of the
reconstructed image.

Fig. 14. (a) Disc test image recovered from the wavelet primal sketch after 50 iterations, dB. (b) Mask indicating the wavelet coefficients selected
for the wavelet primal sketch . (c) Vector plot of the lower-left corner of the wavelet subband at scale .

The steerable pyramid is most similar to our construction
when the number of orientations is selected as . In that
case, the redundancy is , which is slightly higher
than in our case due to the special treatment at the first decom-
position level. The constraints imposed on the filterbank design
lead to a tight “sinc-like” frame. A remarkable feature is that the
construction generalizes to a larger number of channels with im-
proved angular selectivity, which can be very useful for appli-
cations in computer vision [20], [21]. We should note, however,
that the price to pay for higher-order steerability is a comparable
increase in redundancy, which suggests a fundamental incom-
patibility with the specification of basis functions with that type
of property.

The dual-tree and Marr-like wavelet transforms are both com-
plex, but they differ in the kind of information that is encoded

in the phase. In the former, the phase of a wavelet coefficient
gives an indication of relative displacement within the direction
of analysis (similar to the correlation with a complex sinusoid),
while in the latter it corresponds to the orientation of the un-
derlying pattern. This is consistent with the interpretation of the
modulus as the maximal correlation along the dimension en-
coded by the phase.

While all methods have their strength and niche of applica-
tions, the complex wavelet basis and Marr-like wavelet pyramid
bring together some interesting analytical properties. First, these
wavelets are, by design, multiscale versions of the gradient-
Laplace operator which plays such an essential role in image
processing (e.g., contour detection). The corresponding wavelet
transforms are nonseparable and they share all the good theoret-
ical properties of earlier spline transforms.
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Fig. 15. “Einstein” image reconstruction from its wavelet primal sketch. (a) The edge map as detected by the Canny procedure (limited at 15% for each scale).
(b) Iterative reconstruction. First 4 iterations left to right, top to bottom. The larger image is obtained after 50 iterations, corresponding to dB.

TABLE I
OVERVIEW OF THE ESSENTIAL FEATURES OF THE NEW WAVELET DECOMPOSITIONS AND SOME POPULAR COUNTERPARTS

• They have an order of approximation , which means that
the approximation error of a scale-truncated expansion de-
cays like the th power of that scale.

• They have moments, which implies that the wavelet
coefficients are essentially zero in smooth image areas
where the image is well represented by its lower-order
Taylor series.

• The basis functions have a maximal degree of smoothness
for the given order ( derivatives in the -sense).

• The wavelets have explicit analytical formulas in both
space and frequency domains.

The last two properties are direct consequences of the functional
construction approach (specification of the Green’s function of
the underlying operator); they are specific to splines. The final
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Fig. 16. PSNR as a function of the iteration index for the recovery of various
test images from their wavelet primal sketch ( decomposition levels). The
maximum number of coefficients in each subband of the wavelet primal sketch
is limited at 15%.

crucial ingredient, which is much less standard with regard to
classical wavelet theory, is that the decomposition works for any
2-D subsampling matrix with a straightforward characterization
of the corresponding wavelet basis of . More precisely,
the subsampling matrix determines a single (universal) wavelet
generator that is appropriately dilated and shifted to the coset
positions. As far as we know, there is no counterpart for any
of these continuous-domain properties in the case of the other
directional wavelet decompositions because the corresponding
formulations are strictly discrete.

An important feature of the present construction is that the
complex wavelet basis is associated with a frame (consisting
of Marr-like wavelets) with a redundancy factor that is com-
petitive in comparison to the other decompositions. Thanks to
the true pyramid structure, one gains in terms of translation-
invariance and ease of in-band processing. In particular, this
opens the door to the application of standard image-processing
operations in the wavelet domain (such as Canny’s edge de-
tector). Our design also takes advantage of the redundancy to
improve upon the steerability of the wavelets so that the re-
sulting smoothing kernel closely resembles a Gaussian. These
modifications considerably improve the feature-extraction ca-
pabilities of the transform, as illustrated by our examples. The
Marr-like wavelet analysis is coupled with an effective recon-
struction algorithm which consists of re-projecting the pyramid
data onto the wavelet basis. In this way, we end up with a hybrid
basis-frame approach that combines the best of both worlds. It
results in improved properties for signal analysis (good transla-
tion invariance, rotation covariance, and steerability) and com-
putationally-efficient reconstruction.

We coined the term “Marr-like wavelet pyramid” for the new
decomposition, due to its resemblance with David Marr’s theory
[25] for early-stage processing in the primate’s visual system
[56]. In particular, the complex gradient-Laplace operator can
be seen as a combination of Laplacian-like processing in the
ganglion cells of the retina and directional selectivity in the pri-
mary visual cortex. Multiscale is also available, such as indi-
cated by the presence of ganglion cells with small (P-type) and
large (M-type) receptive fields. The fact that there are many

more P- than M-type cells also suggests a compact organiza-
tion to represent in coarser way the information coming from
large basis functions. The localization of the wavelet by the
Gaussian(-like) smoothing function is also similar to Marr’s
framework.

Finally, we have proposed a way to obtain a compact primal
wavelet sketch in the form of a multiscale edge map, which
is much less redundant than Mallat’s wavelet-modulus-maxima
representation [51]. This compact representation opens up in-
teresting perspectives, not only for image analysis, but also for
image processing because of the existence of a reverse syn-
thesis procedure. Specifically, we have proposed an iterative
scheme that reconstructs a high-quality approximation of the
original image from its primal wavelet sketch. The algorithm
could probably be improved even further by introducing more
sophisticated regularization constraints. The implementation of
our wavelet transform is available as a Matlab toolbox at http://
bigwww.epfl.ch/Marr/.

APPENDIX A
PROOF OF LEMMA 1

Let us consider a scale-invariant and rotation-covariant con-
volution operator L. Note that the effect of the dilation and ro-
tation operators can be combined into a single multiplication
with a complex-valued function , where is
real-valued and a pure phase term. As is a distribution,
it acts as a linear functional on the test functions in Schwartz’
class and satisfies the continuity condition
when as . This implies continuity at

of the function , for any .
• By making a change of variables , we have

(45)

Using scale invariance and rotation covariance, this proves
that

(46)

• The limit of as is ob-
viously . Therefore, the right-hand side of (46) tends
to . This proves that the left-hand side is con-
vergent as well when , and, finally, that

.
Next, we verify that has to satisfy the chain rule

Using complex analysis, we show that functions that satisfy the
chain rule and are con-
tinuous at with , are neces-
sarily of the form , where and .
In this way, we identify and .
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APPENDIX B
PROOF OF PROPOSITION 1

From Lemma 1, the frequency response of L satisfies
. We make use of complex analysis

and identify with using complex-valued
variable . We further introduce the complex
constant such that we can rephrase the condition
as . We can now
make use of Gelfand’s theory for homogeneous distributions of
degree [57, A-6, p. 501]. We find
that is unique and proportional, up to some complex
constant, to , which can be reinterpreted as

(47)

APPENDIX C
PROJECTION OPERATOR

We consider the projector that transforms a pyramid
into the closest sequence with

respect to the regularizing norm (43). We define the update
term . The coefficients have to be
chosen such that: 1) the norm is minimum; 2) the
boundary conditions imposed by the wavelet primal sketch of

, denoted as , are satisfied with ,
for every scale .

The minimization of is solved at every scale for
. We can easily derive from (43) that the constraint

(48)

should hold. The solution is found by a simple numerical imple-
mentation that alternates between applying the update formula

(49)

and imposing the boundary conditions. The regularization can
be reduced for coarser scales; e.g., .
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