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Abstract—Model-based statistical analysis of functional mag-
netic resonance imaging (fMRI) data relies on the general linear
model and statistical hypothesis testing. Due to the large number
of intracranial voxels, it is important to deal with the multiple
comparisons problem. Many fMRI analysis tools utilize Gaussian
random field theory to obtain a more sensitive thresholding; this
typically involves Gaussian smoothing as a preprocessing step.
Wavelet-based statistical parametric mapping (WSPM) is an al-
ternative method to obtain parametric maps from non-smoothed
data. It relies on adaptive thresholding of the parametric maps in
the wavelet domain, followed by voxel-wise statistical testing. The
procedure is conservative; it uses Bonferroni correction for strong
type I error control. Yet, its sensitivity is close to SPM’s due to
the excellent denoising properties of the wavelet transform. Here,
we adapt the false discovery rate (FDR) principle to the WSPM
framework. Although explicit -values cannot be obtained, we
show that it is possible to retrieve the FDR threshold by a simple
iterative scheme. We then validate the approach with an event-re-
lated visual stimulation task. Our results show better sensitivity
with preservation of spatial resolution; i.e., activation clusters
align well with the gray matter structures in the visual cortex.
The spatial resolution of the activation maps is even high enough
to easily identify a voxel that is very likely to be caused by the
draining-vein effect.

Index Terms—Bonferroni correction, false discovery rate, func-
tional magnetic resonance imaging, general linear model, para-
metric hypothesis-driven statistical test, wavelet transform.

I. INTRODUCTION

F UNCTIONAL magnetic resonance imaging (fMRI) has
developed into a most versatile technique to map brain ac-

tivity, with many applications in both clinical and fundamental
neurosciences. The backbone of a typical fMRI experiment is
the stimulation protocol, the design of which needs to be adapted
to the neurological question to answer. The subsequent fMRI
data analysis is hypothesis driven and directed towards finding
evidence in the spatio-temporal dataset for the presence of a
stimulus-related response [1]. Typical fMRI analysis tools de-
ploy general linear models to extract parametric maps that are
then subjected to statistical hypothesis testing. In order to be
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sound statistically, the hypothesis testing procedure has to be
corrected for the fact one is performing multiple comparisons.
This issue is important due to the abundance of voxels to be
tested. In order to control the global (family-wise) false pos-
itives rate, one can apply the so-called Bonferroni correction.
This procedure is foolproof statistically, but it is often too con-
servative because it does not take into account the spatial corre-
lation that is present in these data.

A popular alternative method for dealing with the mul-
tiple comparisons problem is thresholding based on Gaussian
random field theory (GRFT) [2], [3], which is implemented in
many software tools; e.g., the statistical parametric mapping
(SPM) approach [4], [5]. The key component of GRFT is the
preprocessing of the data by smoothing. It has the advantage
of improving sensitivity, albeit at the risk of losing spatial
resolution.

Data-driven methods that do not (or only partially) rely on
prior knowledge have been proposed as well. The most popular
ones are subspace methods, such as principal components anal-
ysis [6] and independent component analysis [7]–[9]. Next to
revealing unmodeled trends, they can also be used to denoise
fMRI data by stripping components.

The wavelet transform [10] is a powerful tool that has also
found its way into biomedical signal and image processing,
including fMRI data analysis; several overviews are avail-
able [11]–[15]. Within the context of parametric mapping,
the multiresolution and energy compaction properties of the
wavelet transform are advantageously exploited to “statistically
denoise” the activation maps by thresholding the wavelet coef-
ficients [16]–[18]. One of the difficulties associated with such
probabilistic shrinkage is how to map the statistics back into the
spatial domain in order to be able to declare a particular voxel
active. Some proposed solutions include the application of an
ad-hoc threshold (e.g., a percentage of the maximal signal level
or of the estimated noise level [16]) or re-testing in the spatial
domain without taking into account the effect of the initial test
in the wavelet domain [19].

In our recent work [20], [21], we have proposed the
wavelet-based statistical parametric mapping (WSPM) frame-
work that combines adaptive denoising of the parametric maps
in the wavelet domain with statistical testing at the voxel-level.
The type I error rate is controlled by Bonferroni correction,
which guarantees high specificity. At the same time, we re-
ported comparable sensitivity and lesser spatial bias than SPM
[21].

False discovery rate (FDR) is another appealing solution to
the multiple comparisons problem [22], [23]. The basic prin-
ciple is to control the expected proportion of false positives;
i.e., to become more permissive on the number of false positives
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when more voxels are declared active. This method has enjoyed
a large success in a variety of areas, including neuroimaging
[24]. In principle, it can be combined with any of the aforemen-
tioned methodologies. Most notably, Raz [25], [26] deployed
the FDR principle for the coefficient-wise testing in the wavelet
domain. Srikanth et al. [27] estimated the FDR based on sta-
tistical resampling [28]; their method aims at a spatial-domain
threshold after wavelet denoising.

As we shall see in this paper, we can also apply the FDR
principle to the WSPM framework, but it requires some specific
adaptation. For instance, we need to take into account the fact
that statistical testing in WSPM is based on a bound for the null
hypothesis rejection probability, meaning that we do not have
direct access to the voxels’ -values. The main difficulty is that
WSPM relies on the interplay of two thresholds (in the wavelet
and spatial domains, respectively), the optimal values of which
depend on the desired significance level. We show that these
obstacles can be overcome and that it is theoretically possible to
control FDR; in practice, this can be implemented by a simple
(and fast) iterative scheme. Our experiments demonstrate that
the FDR procedure enhances the sensitivity of WSPM, while
retaining its intrinisic high-spatial resolution.

The paper is organized as follows. In Section II, we briefly re-
view the discrete wavelet transform (DWT). Next, in Section III,
we highlight the main elements of wavelet-based methods: the
general linear model, coefficient-wise thresholding in the
wavelet domain, and the spatio-wavelet framework. In Sec-
tion IV, we briefly revisit the FDR principle and we adapt this
strategy to WSPM. Finally, we demonstrate the feasibility of
our approach in Section V for experimental data of an event-re-
lated visual stimulation task.

II. THE DISCRETE WAVELET TRANSFORM

The DWT is a powerful tool for multiresolution signal anal-
ysis [10], [29]. The transform of a signal is a basis decom-
position into a sum of shifted and dyadically-scaled versions of
the (bandpass) wavelet functions and the scaling function .
Mathematically, we write

for a decomposition of levels. The residual after decom-
position levels is represented by the integer shift of the (low-
pass) scaling function . The low-pass coefficients
and detail (or wavelet) coefficients are given by

(1)

(2)

respectively. The analysis functions and are the duals
of and ; they satisfy the biorthogonality property

. In practice, the coeffi-
cients are calculated using a fast iterated filterbank algorithm.

In multiple dimensions, the transform can be applied in a sep-
arable way, leading to different tensor-product wavelets
in dimensions. We use the shorthand notation

(3)

where can be both low-pass or wavelet coefficients at all
different scales and orientations, and where denote the cor-
responding basis functions, irrespective of their type.

III. WAVELET-BASED FMRI DATA ANALYSIS

We review the various elements for wavelet-based hypoth-
esis-driven analysis of fMRI data. First, we describe the general
linear model (GLM) and voxel-wise statistical testing. Next, we
summarize the essential properties of the wavelet-based anal-
ysis methods.

A. The General Linear Model

An fMRI dataset consists of a sequence of slices
or volumes, where and , are the
3-D spatial and temporal indices, respectively. For each
voxel, we also introduce a time-series vector of length

. In the parametric ap-
proach, the temporal behavior of a voxel is described by a
GLM that is fitted to the data [4]. Specifically, one describes
the model as

(4)

where is the design matrix that contains the regres-
sors, is the parameter vector, and is the (random)
error.

Given the observed data , the classical least-squares
estimate of the parameters of the GLM is given by

. This estimate is optimal pro-
vided that the error component is independently and iden-
tically Gaussian distributed. The corresponding residual is

. Next, the information of interest is
extracted from by a contrast vector . At this stage, we
obtain two scalar values for each voxel, as follows:

(5)

(6)

Under the null hypothesis (only noise), the contrast variable
and its estimated variance , follow a Gaussian and

a distribution (with degrees of freedom),
respectively [1], [30].

Now, hypothesis testing is performed to determine whether
or not the contrast of interest for the voxel is significant; that
is, if the mean value is zero or above:

(7)
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Under the null hypothesis, the test statistic, derived from
and

(8)

follows a normalized Student distribution with degrees of
freedom. We control the type I error (false positive rate) at

, which leads to the null hypothesis rejection (and
thus detection of activation) when .

In fMRI data analysis, hypothesis testing is applied to a large
number of voxels, which increases the global type I error. An
easy, but very conservative, solution is Bonferroni correction:
the significance level of an individual test is maintained at

, where is now the desired global type I error, and is the
number of tests (typically, the number of intracranial voxels).
This correction guarantees strong type I error control, but it
often reduces sensitivity as it does not take into account the spa-
tial correlation between voxels, which is potentially present in
fMRI data [31].

B. Wavelet Processing by Coefficient-Wise Testing

Following the lead of Ruttimann et al. [16], [32], the com-
plete hypothesis testing framework can be conveniently trans-
posed into the spatial wavelet domain1. Since then, the method
has been refined and extended by many other researchers [17],
[33]–[35]. In the present setting, we apply the linear model (4)
to the time-course of every coefficient (after applying the spatial
wavelet transform to each volume ). The coefficient-wise
GLM then reads

(9)

where the vector is formed out of the wavelet coefficients
. The estimation process is essentially the same as be-

fore: regression weights and residual are obtained as
and , respectively.

The contrast of interest is then extracted as

(10)

(11)

The hypotheses of (7) are modified into

(12)

The test is two-sided because the contribution of a wavelet co-
efficient to the reconstruction of a given voxel can be either
positive or negative. The coefficient-wise statistical testing then
evaluates the -value of each wavelet coefficient

(13)

1The wavelet transform is performed along the spatial dimensions.

The test procedure checks whether , with
. The wavelet coefficients that survived the

test can then be reconstructed as

(14)

where is the Heaviside step function defined as

when ,
otherwise.

(15)

The number of coefficients that is tested in the wavelet do-
main is at least equal to the number of tests in the spatial do-
main. Again, Bonferroni correction can be applied by setting
the false positive rate (for an individual test) to , where
corresponds to the number of intracranial voxels. (The latter is
approximately equal to the number of intracranial wavelet co-
efficients.) Due to the decorrelating properties of the wavelet
transform, Bonferroni correction should be closer to optimal.

C. WSPM Approach: Wavelet Processing Followed by Spatial
Testing

The specificity of WSPM2 is to combine wavelet domain
adaptive denoising with voxel-wise statistical testing in an
integrated fashion [20], [21]. The spatio-wavelet framework
uses Bonferroni correction for multiple hypothesis testing, thus
ensuring strong type I error control. We give a brief overview
of the different steps of this method.

Here too, wavelet coefficients are hard thresholded
based on the comparison . As opposed to co-
efficient-wise testing, the threshold is not obtained as the
result of a statistical test, but kept as a general parameter of the
algorithm. After reconstruction of from the thresholded
coefficients, we perform a hypothesis test in the spatial domain
to determine whether the voxel is activated and thus has a
nonzero mean

(16)

(17)

The main result of the integrated framework [20] is that the sta-
tistical test amounts to checking whether or not ,
where is the threshold in the spatial domain and is the
reconstruction of the values by a modified inverse
DWT algorithm:

(18)

The probability of a false detection under the null hypothesis
can be bound as

(19)

2This approach has been implemented as a toolbox for SPM2/SPM5, called
“WSPM: Wavelet-Based SPM”, and is available at http://bigwww.epfl.ch/
wspm.
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where is a
data-independent function of the parameters and , with

. Here, follows a truncated normalized
Gaussian distribution and a -distribution with degrees of
freedom—see [20]. The bound can be chosen equal to , the
desired significance level after Bonferroni correction. However,
there is an infinite number of combinations that yields
the same probability bound . In [20], we proposed the
solution that minimizes the worst-case error between the un-
processed and detected parameter map, to be equivalent
to minimizing the sum , subject to .
For , as is typically the case for fMRI, the threshold
can be determined as

(20)

where is the 1-branch of the Lambert W-function; it is
the inverse of the function .

The WSPM toolbox also includes a couple of further exten-
sions [21], such as spatial bias reduction and combining mul-
tiple transforms for improved shift-invariance. For simplicity,
we consider the original framework as summarized here. How-
ever, the results of this paper can readily be adapted to these
extensions as well.

IV. FALSE DISCOVERY RATE FOR WSPM

A. The Principle of FDR

Although controlling the family-wise type I error rate has an
easy interpretation (i.e., we have a chance of finding any false
positive in the whole volume), it is often considered as being too
conservative. FDR is a popular alternative that controls the pro-
portion of false positives to total positives [22]. One attractive
feature is that is maintains the same type I error rate as Bonfer-
roni correction when there is no more than one detection; hence
the so-called “weak type I error control” property. Mathemati-
cally, FDR is defined as the expectation

(21)

where is the number of false positives and where is the
total number of positives. For , the FDR is defined as 0.
Keeping the FDR at a desired fraction corresponds to allowing
on average for false positives. In practice, the FDR can be
controlled by the observed proportion

(22)

where , , are the sorted -values, and
the total positives. Therefore, keeping requires

(23)

This insight leads to the so-called “step-up procedure” for con-
trolling the FDR.

1) The elements to be tested are sorted according to increasing
-values.

Fig. 1. (a) Contrast image and (b) design matrix that are used for generating
the synthetic dataset.

2) The index is determined by the largest -value for
which .

3) The FDR threshold can be determined by
.

The standard FDR approach assumes test statistics that
are positively dependent [23]; this is satisfied when noise
is Gaussian and nonnegatively correlated—a reasonable as-
sumption for fMRI datasets [24]. In the other case, one can
add a factor to the right-hand side of (23) to
compensate for the dependency between voxels [23].

The FDR principle has already been applied to the coeffi-
cient-wise hypothesis testing scenario of Section III-B by [18],
[25], [26], but not yet to WSPM, which requires some special
adaptation.

B. FDR for WSPM

The WSPM framework is based on a bound for the null
hypothesis rejection probability, and consequently it does not
give direct access to the -values of the voxels. In addition, the
two thresholds— and —are distinct and they even vary
in inverse proportion. However, the significance level of the
thresholding procedure is clearly an upper
bound for the true -value of a detected voxel. Therefore, we
define the “critical -value” as the bound when the voxel just
survived the procedure, that is, for which we
have .

The FDR procedure can now be based on the critical
-values. First, we sort the voxels according to increasing ,

with associated thresholds . Controlling the FDR at
requires to find the largest index for which the following

equation holds:

(24)

Note that the FDR is bounded by considering the critical
-values, even if the order of the voxels for increasing (un-

known) -values, , would be different from . Indeed,
also bounds

(25)
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Fig. 2. Results for the synthetic dataset. (a) 5% FWE for SPM, (b) 5% Bonferroni for WSPM, (c) 5% Bonferroni for GLM. (d)–(f) 5% FDR for (d) SPM,
(e) WSPM, (f) GLM.

Fig. 3. (a) Number of detections and threshold values as a function of the significance level of the individual hypothesis test. The number of detections mo-
notonously decreases as the confidence gets larger. The vertical lines indicate the 5% significance level without correction for multiple comparisons and
with Bonferroni correction , respectively. (b) The plot: the critical -values as function of the relative number of detections. The dashed line indicates
the FDR. The horizontal lines correspond to uncorrected and Bonferroni corrected significance levels. The trajectory of the iterative algorithm to find the FDR
threshold is also shown.

Retrieving the critical thresholds for every voxel
would be a tedious task. However, there is a monotonous rela-
tionship between critical -values and number of voxels that
survived testing; i.e., when the significance increases, the
number of detected voxels increases as well.

This observation allows us to deploy the following iterative
procedure to find the FDR threshold.

1) The thresholding procedure is applied using the thresholds
according to the significance level without Bon-

ferroni correction. This would correspond to the most per-
missive case of FDR thresholding where every voxel would
be detected, .

2) The number of detections is determined to establish the
type I error rate that is equivalent to FDR at . The
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Fig. 4. Results using SPM. (a) 5% FWE. (b) 5% FDR.

Fig. 5. Results using WSPM. (a) 5% Bonferroni correction. (b) 5% FDR.

updated thresholds are obtained and the thresh-
olding procedure is re-applied.

3) Step 2 is repeated until convergence.

V. EXPERIMENTAL RESULTS

A. Synthetic Data

We generated a synthetic fMRI dataset that allowed us to
study the behavior of the methods for varying signal-to-noise
ratio (SNR) and feature size. To that aim, we generated the 2-D
zoneplate image according to the formula

where . Next, the
image is thresholded at 0.75 to create fine structures. Finally,
the contrast’s intensity is multiplied in the top-down direction
by a linear ramp. The final contrast image is shown in Fig. 1(a),
for . We generated 60 images with Gaussian noise of
mean 8 and standard deviation 1 and added the contrast image

modulated by the block paradigm of Fig. 1(b); i.e., three con-
secutive on and off blocks of ten scans. This way, we obtained
a synthetic 2-D dataset with varying SNR (top to bottom) and
feature size (excentricity).

Data processing was performed using SPM2 software.3
Smoothing was performed for three pixel units FWHM for
GRFT-based analysis. The exact generative model of the block
paradigm was entered into the GLM. For WSPM, the 2-D
separable linear orthogonal B-spline wavelet transform [36]
with two decomposition levels was applied. With WSPM,
statistical maps are reported as for those voxels
that survived testing [21]. As a reference point, we also applied
the voxel-wise GLM approach to non-smoothed data.

In Fig. 2(a), we show the results for SPM at 5% FWE, over-
laid on the original contrast image in grayscale. The fine features
towards the border of the image are not well resolved due to the
effect of smoothing. Similarly, when applying SPM at 5% FDR,
in Fig. 2(d), the sensitivity increases but only the large rings at
the center are well separated. The results for WSPM are shown

3Available at: http://www.fil.ion.ucl.ac.uk/spm/.
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Fig. 6. Results using GLM with nonsmoothed data. (a) 5% Bonferroni correction. (b) 5% FDR.

in Fig. 2(b) and (e) for 5% Bonferroni and 5% FDR, respec-
tively. While the lower threshold for WSPM-FDR increases
the number of wavelet coefficients to be included in the recon-
struction, close comparison of (b) and (e) reveals that this effect
does not only lead to more detected voxels, but also to more
refined patterns. Finally, the results for the voxel-wise GLM ap-
proach, in Fig. 2(c) and (f), show the beneficial effect of FDR.
However, the continuity on the rings is much less conserved be-
cause spatial correlation is not exploited.

B. Measured Data

We conducted a single-subject fMRI study (healthy volun-
teer, right-handed male, 31y) at the Geneva University Hospital
on the Siemens Magnetom TrioTim 3T scanner. The anatomical
data was acquired by an MPRAGE T1 scan (coronal orientation,
TR 2.5s, TI 1.1s, 224 slices, 1 mm thickness, in-plane resolu-
tion: 0.9 mm 0.9 mm). The functional data was acquired by
EPI scans (axial orientation, , 435
scans, 16 slices, 5-mm thickness, in-plane resolution: 1.9 mm

1.9 mm). Visual stimulation was applied in an event-related
paradigm: different images were short-flashed during 50 s with
fixed inter-stimulus time (17.5 s); during rest a small cross-hair
was shown in the middle of the field-of-view to retain the sub-
ject’s attention.

Again, data processing was performed using SPM2, in-
cluding realignment and 6-mm FWHM smoothing (for
GRFT-based analysis). The GLM contained temporal and dis-
persion derivatives to cope with subject-dependent variations
of the hemodynamic response function. Temporal correlation
was taken into account by SPM’s autoregressive model. In this
study, we only focus on the combined contrast that extracted
the regressor related to any image stimulation; in total, there
were 24 visual stimuli.

The wavelet transform can be applied in multiple dimensions.
However, while fMRI data consist of a series of 3-D volumes,
we applied the transform in 2-D slice-by-slice due to the rather
large slice thickness. We used the orthogonal B-spline wavelet

transform of degree 1, with a single decomposition level. The
same GLM and temporal modeling as SPM are deployed by
WSPM to extract regressor weights.

We analyzed the behavior of WSPM as a function of the
significance level. In Fig. 3(a), we plot the number of detec-
tions for various significance levels, together with the associated
threshold values and . The vertical lines indicate the 5%
significance with and without Bonferroni correction. We note
that the number of detections decreases monotonously as the
significance goes up. The wavelet threshold , which is ap-
plied to wavelet-domain -values, is most influenced by varying
signifance, while the spatial threshold decreases only slowly.
A more interesting way to interpret these results is in the form
of the plot of Fig. 3(b). We convert the number of detec-
tions into the equivalent type I error for FDR, and plot
these versus the significance level of the test that should be (very
close) to the critical -value. The FDR threshold can now be
determined by intersecting this plot with the identity. We also in-
dicate the trajectory of the iterative procedure that we proposed:
the initial significance level is chosen without Bonferroni cor-
rection. Using the observed number of activations, we can adapt
the significance level for the type I error rate equivalent to FDR

. As can be observed, the procedure quickly converges (typi-
cally 2–4 iterations) to the FDR threshold.

Next, we investigated the statistical parameter maps using
SPM; the results are shown in Fig. 4 and are overlaid on the
anatomical reference slices (left hemisphere on the left ac-
cording to neurological convention). The effect of smoothing is
clearly apparent from the blobbiness of the activation clusters.
The smoothing kernel was set at 6 mm FWHM, which is the
minimally recommended amount to ensure the validity of the
GRFT threshold [2]. Switching to FDR thresholding using
SPM clearly improves the sensitivity in the visual cortex, but
also brings along many detections in more anterior regions that
are less likely to be stimulus-related.

In Fig. 5, we show the results for WSPM. In Fig. 5(a), al-
though we use strong type I error control (Bonferroni correc-
tion), the sensitivity is comparable to SPM: almost any cluster
detected by SPM can be found also in the WSPM map, but
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Fig. 7. Results for the posterior part of slice 10 mm. Main effect: (a) SPM (5% FDR); (b) WSPM (5% FDR). Negative dispersion: (c) SPM (5% FDR); (d)
WSPM (5% FDR).

TABLE I
ZOOM-UP OF THE CONTRAST AND -VALUES OF THE NEIGHBORHOOD NEAR THE PEAK VOXEL AT SLICE 10 mm.

VOXELS THAT DO NOT SURVIVE STATISTICAL TESTING ARE INDICATED BETWEEN PARENTHESES

Fig. 8. Time courses of the voxels listed in Table I, extracted from (a) the smoothed data as used by SPM; (b) the unsmoothed data as used by WSPM. The
time-courses are plotted relative to the baseline, which is extracted as the signal’s average. From top to bottom: voxels 1, 2, 3.

with finer spatial detail. The proposed FDR thresholding sig-
nificantly improves the sensitivity. Most activation clusters do
not simply grow isotropically as in Fig. 4(b); instead they tend to
extend along the gray matter structures in the visual cortex up to
the anterior part of the calcarine sulcus. Also note the fine-de-
tailed cluster near the lateral ventricle and occipital posterior
horn [ 5 mm, indicated by the white arrow in Fig. 5(b)], which
is smoothed over the tissue borders in the SPM maps. Another
interesting activation cluster is the fusiform gyrus [ 20 mm, in-
dicated by the green arrows in Fig. 5(b)], which plays an impor-
tant role in object categorization [37]. As a point of comparison,
we also show the result for GLM with non-smoothed data in
Fig. 6. The result after Bonferroni correction in Fig. 6(a) shows
the reduction in sensitivity. It is interesting to observe that ap-
plying FDR thresholding improves sensitivity to a comparable
level as WSPM with Bonferroni correction [see Figs. 6(b) and
5(a)].

We now focus on the strong peak in slice 10 mm, which
seems to fall in between the hemispheres when observing the

anatomical reference (see Fig. 7). While the peak spreads out
in the SPM map, WSPM preserves a fairly isolated voxel.
Moreover, we also tested the data for the significance of “nega-
tive dispersion”, which answers the question “does the voxel’s
timecourse corresponds to a (temporally) more dispersed re-
sponse?” The SPM and WSPM maps for this contrast are shown
in Fig. 7(c) and (d), respectively. The WSPM map shows a
small isolated cluster, which might suggest that signal from an
underlying draining vein dominates the voxel’s timecourse—a
known and important artefact in fMRI gradient-echo acquisi-
tions [38]. In Table I, we list the contrast and -values for the
main and dispersion contrasts of three adjacent voxels. At the
same time, we also plot the underlying time-courses in Fig. 8.
For WSPM, which relies on the unsmoothed data, the BOLD
response of voxel 1 is very strong (almost 10% with respect to
baseline) and dispersed, but remains well isolated. Notice that
voxel 3 even shows a (non-significant) negative response. For
SPM, smoothing contaminates the neighboring voxels 2 and 3
and lowers the response’s strength of voxel 1. These elements
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reinforce our suspicion that the voxel captures the response
from a draining vein. This effect would be difficult to observe
from the smoothed maps and data.

VI. CONCLUSION

Since wavelet-based statistical parametric mapping is per-
formed on non-smoothed data, it usually produces parametric
maps that contain fine spatial resolution. In its original form,
WSPM is based on strong type I error control using Bonferroni
correction. Here, we introduced the FDR principle for WSPM.
Although the -values cannot be obtained directly, we showed
that the FDR threshold can still be retrieved by a simple iter-
ative scheme. We observed that the sensitivity of FDR-thresh-
olded WSPM maps increases significantly. At the same time,
the obtained maps allow to resolve thin spatial patterns. In our
experimental results, the in-plane spatial resolution was still rel-
atively low (1.9 mm 1.9 mm). Consequently, we used only a
single decomposition level. Increasing the number of decompo-
sition levels did not improve on the results.

High-spatial-resolution parametric mapping in fMRI is es-
pecially relevant for single-subject studies; e.g., for retinotopic
mapping or object categorization in the visual cortex and as-
sociative regions [37]. Moreover, the advent of high-field MRI
scanners and dedicated surface coils also increases the avail-
ability of high-resolution data. An important collateral effect
of SPM smoothing is the decrease of inter-subject variability,
which improves the results on the group level. By contrast,
WSPM is more sensitive to individual differences. Therefore,
group-level WSPM analysis should pay particular attention to
normalization; e.g., using landmark-based registration for the
cortical areas under investigation.

The proposed FDR thresholding procedure is included in the
latest available version of the WSPM toolbox.
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