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ABSTRACT

One very influential method for texture synthesis is based on the steerable pyramid by alternately imposing
marginal statistics on the image and the pyramid’s subbands. In this work, we investigate two extensions to this
framework. First, we exploit the steerability of the transform to obtain histograms of the subbands independent
of the local orientation; i.e., we select the direction of maximal response as the reference orientation. Second,
we explore the option of multidimensional histogram matching. The distribution of the responses to various
orientations is expected to capture better the local geometric structure. Experimental results show how the
proposed approach improves the performance of the original pyramid-based synthesis method.
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1. INTRODUCTION

Texture synthesis has attracted a lot of attention in the fields of computer graphics, vision, and image processing.
In most of the methods that have been investigated over the years, statistical models play a central role.1

These models try to characterize the texture by a limited number of parameters. Initially, Markov random
fields were applied to describe (and reproduce) statistical interactions within local neighborhood.2–4 Later
on, mainly inspired by psychophysics, the field of texture classification successfully deployed multiresolution
representations,5,6 including the wavelet decomposition.7 The same concepts were then introduced for texture
synthesis as well.8–10

A simple and elegant method for stochastic texture synthesis was proposed by Heeger and Bergen.11 The
reference texture is characterized by its histograms in the image domain and each subband of steerable pyramid
decomposition. Then, the new texture is synthesized from uniform white noise by alternately matching the
histograms in the image domain and in the transformed domain. This method works well for stochastic textures
and empirically converges after few iterations. While there is no explicit modeling of (in-band) correlation, the
multiresolution structure is supposed to induce spatially correlated structure. In Fig. 1, we show an example of
this method. Portilla and Simoncelli12 generalized this method by imposing joint statistics (e.g., in-band and
cross-scale correlations), resulting in the generated textures that display much more geometric structure.

In this paper, we focus on stochastic methods to generate texture out of noise. We explore two extensions
of the original pyramid-based approach by Heeger and Bergen,11 while maintaining the method’s simplicity and
its easiness of implementation.

• The most powerful feature of the steerable pyramid is its orientation shiftability; i.e., the response can be
oriented in any direction by a linear transformation matrix. We want to exploit this property to decouple
the histogram description from the local orientation. Here, we will maximize the response along the main
orientation of the steerable pyramid.

• We also want to exploit information that is captured by correlation between the orientations. Instead of
sequential 1-D histogram matching along all orientations, we propose multidimensional histogram matching.

After discussing the various elements of our framework in Section 2, we show and discuss experimental results
in Section 3.
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(a) (b) (c) (d)
Figure 1. Example of stochastic texture synthesis using Heeger and Bergen’s method. (a) Reference texture. (b) Uniform
white noise initialisation. (c) Generated texture. (d) Seemless tiling due to periodic boundary conditions that were used
for generating (c).

2. OVERVIEW OF THE TEXTURE SYNTHESIS ALGORITHM

2.1 Steerable pyramid

The steerable pyramid is a multiscale and multi-orientation linear transform.13,14 It constitutes a tight frame
that has shift-invariant and rotation-invariant (but steerability) properties. For K orientations, the redundancy
factor is limited to 4K/3 + 1. The equivalent basis functions of the steerable pyramid are localized directional
derivatives (of order K − 1). For instance, K = 2 gives a classical gradient-type pyramid decomposition.

While we refer to the references13,14 for a detailed description of the steerable pyramid and its properties, we
want to highlight the main feature for this work. Specifically, the core of the filterbank contains bandpass filters
that are steered versions of a single generating filter; i.e., in polar-separable form, the Fourier expressions of the
bandpass filters for K orientations are

Bm(ωωω) = (−j cos(θ − θm))K−1B(ω), m = 1, . . . , K, (1)

where θ = tan−1(ω2/ω1), ω = ||ωωω||, θm = (m− 1)π/K, and B(ω) is the radial profile. The filters Bm(ωωω) can be
turned into any orientation θ̃ by the steering relation

Bm,θ̃(ωωω) =
K∑

k=1

hm,k(θ̃)Bk(ωωω), (2)

where the steering kernels hm,k(θ̃) can be found by solving for the identities:

K∑
k=1

hm,k(θ̃)(−j cos(θ − θm))K−1 = (−j cos(θ − θ̃ − θm))K−1, m = 1, . . . , K. (3)

We denote the coefficients of the steerable pyramid as w
(j)
m [k], where j is the decomposition level, m is the

orientation, and k is the in-band position. We also write the vector w(j)[k] that contains the coefficients of all
orientations at scale j and position k.

2.2 Steering property

Orientation shiftability is probably the most attractive property of the steerable pyramid. Given coefficients of
the pyramid at various orientations for a fixed scale j and position k, the optimal angle can be found; i.e., we
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Figure 2. Example illustrating the principle of steered histogram. (b) and (c) show the marginal histograms for the
coefficients of the first level of the steerable pyramid (K = 2)of image (a). (d) shows the histogram of the optimal
orientation. The histogram of the coefficient after reorienting the pyramid is shown in (e).

look for the orientation angle θmax that maximizes the response in the first channel:

θmax

∣∣
j,k

= arg max
θ̃

K∑
n=1

h1,n(θ̃)w(j)
n [k]. (4)

The optimal angle can be found among the roots of a (K−1)-th degree polynomial. Each coefficient vector w(j)[k]
can then be steered to w̃(j)[k] accordingly, before constructing the histograms. To illustrate this principle, in
Fig. 2, we show an example for K = 2 (gradient-style pyramid). For the test image in (a), the histograms of the
coefficients w

(1)
1 [k] and w

(1)
2 [k] are shown in (b) and (c), respectively. Despite the apparent strong edges in some

directions, no clear trend is visible is these histograms. In (d), we show the histogram of the angle of maximal
response that clearly reveals the preferential orientations. In (e), we show the histogram of w̃

(1)
1 [k], while in the

case K = 2 all coefficients w̃
(2)
2 [k] become zero after steering (a well known property in differential geometry).

The histograms (d) and (e) are able to disentangle better the information of the pyramid’s coefficients.

2.3 Multidimensional histogram matching

The purpose of multidimensional histogram matching (along the orientations) is to better reproduce the local
geometric structure of the reference texture. Let us first start by recalling the traditional histogram, which can
be interpreted (after normalization) as an estimator for the probability density function (pdf) of a coefficient’s
intensity; i.e., we denote the pdf and cumulative distribution function (cdf) as

fj,m(W )dW = P (W < w(j)
m [k] < W + dW ), Fj,m(W ) = P (w(j)

m [k] ≤ W ).

To match the histograms from a source and a reference, characterized by the cdfs FS
j,m and FR

j,m, respectively,
we find the classical mapping function15

Wnew =
(
FR

j,m

)−1
FS

j,m(WS).
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Inverting FR
j,m is only unique when FR

j,m is strictly monotonous. A more general form consists of looking for the
lowest value of W for which FR

j,m(W ) ≥ FS
j,m(WS), which translates in the following mapping function:

Wnew = arg min
W

(
FR

j,m(W ) ≥ FS
j,m(WS)

)
.

Histogram matching has been extended to the multidimensional case,16,17 mostly for the purpose of the color
image processing.18 The pdf and cdf can be easily extended to the multidimensional case:

fj(W)dW1 . . . dWK = P (W1 < w
(j)
1 [k] < W1 + dW1, . . . , WK < w

(j)
K [k] < WK + dWK),

Fj(W) = P (w(j)
1 [k] ≤ W1, . . . , w

(j)
K [k] ≤ WK).

Further on, the joint cdf can be rewritten as

Fj(W) =
K∏

n=1

P

(
w(j)

n [k] ≤ Wn

∣∣∣∣∣
n−1∧
n′=1

w
(j)
n′ [k] = Wn′

)
︸ ︷︷ ︸

F̃j,n(Wn;W1,...,Wn−1)

,

from which one can derive that multidimensional histogram matching can be performed by K sequential 1-D
histogram matchings:

Wnew,1 = arg min
W

(
FR

j,1(W ) ≥ FS
j,1(WS,1)

)
,

Wnew,2 = arg min
W

(
F̃R

j,2(W ; Wnew,1) ≥ F̃S
j,2(WS,2; WS,1)

)
,

...
Wnew,K = arg min

W

(
F̃R

j,K(W ;Wnew,1, . . . , Wnew,K−1) ≥ F̃S
j,K(WS,K ; WS,1, . . . , WS,K−1)

)
.

We illustrate the matching procedure for K = 2 in Fig. 3. The 2-D histograms of the source and the reference
texture are shown in the top row. The first 1-D histogram matching operates on the marginal statistics of W1.
The second matching uses the 1-D histograms of W2 that are conditional to WS,1 and Wnew,1, respectively.

2.4 Texture matching algorithm
We now have all elements to put together the texture matching algorithm. The pseudo-code below shows how
subbands are steered according to the direction of maximal response. Next, multidimensional histogram matching
is performed and the steering is “undone” according to the transfer function that matches the angles’ distribution
of the reference texture.

Function synth texture = TextureMatching( noise, ref texture)
synth texture = HistogramMatching1D( synth texture, ref texture );
ref pyramid = PyramidAnalysis( ref texture );
repeat

synth pyramid = PyramidAnalysis( synth texture );
for synth bands do

synth theta = FindOptimalAngle( synth bands );
ref theta = FindOptimalAngle( ref bands );
ref oriented bands = TurnAngle( ref bands, ref theta );
synth matched theta = HistogramMatching1D( synth theta, ref theta );
synth oriented bands = TurnAngle( synth oriented bands, synth theta );
synth oriented bands = HistogramMatchingND( synth oriented bands, ref oriented bands );
synth bands = TurnAngle( synth oriented bands, -synth matchedtheta );

end
synth texture = PyramidSynthesis( synth pyramid );
synth texture = HistogramMatching1D( synth texture, ref texture );

until convergence ;
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Figure 3. The multidimensional histogram matching is illustrated in 2-D.

3. RESULTS AND DISCUSSION

For the experimental results, we used texture images from the VisTex database∗. To apply our algorithm to color
textures, we first decorrelated the RGB components of the reference texture using a principal component analysis.
The algorithm was then applied to each channel independently, while keeping the same noise initialisation.
Finally, the channels of the generated texture were put together using the inverse of the color decorrelating
matrix. When comparing the different methods, we always used the same noise initialisation.

As we observe from the results in Fig. 4, the steering mechanism improves the “edginess” of the generated
texture; i.e., both (c) and (d) show a better edge contrast similar to the reference texture. The storage needed
for the multidimensional histograms, at fixed quantization quality (number of bins) in each dimension, increases
exponentially with the number of orientations. For example, 100 bins and 4 orientations already require 100M
entries. We empirically found good results for 50 bins in each dimension.

From the results in Fig. 5, we observe that the steered multidimensional solution in (d) has the best color
contrast and also the “grainy” appearance of the reference texture is reproduced. In Fig. 6, we show the
effect of changing the number of orientations (K = 2, 3, 4). More orientations allows to better characterize the
directionality of the texture at larger spatial extent.

Finally, the example in Fig. 7 shows a failure. Nevertheless, the steering and multidimensional histogram
matching show more coherent structures.

Future research could investigate in more detail the influence of the various parameters, such as the number
of orientations and the number of bins. A possible solution to circumvent the quantization problem related
to multidimensional histograms could be Parzen window estimation or parametric models. Another interesting

∗Available at http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html.
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(a) (b) (c) (d)
Figure 4. Results for steerable pyramid with K = 4 orientations and 6 decomposition levels. The image sizes are 256×256.
40 iterations for all methods. (a) Original texture (Stone.0001). (b) No steering, no multidimensional histogram matching.
(c) Steering, no multidimensional histogram matching. (d) Steering, multidimensional histogram matching.

(a) (b) (c) (d)
Figure 5. Results for steerable pyramid with K = 4 orientations and 6 decomposition levels. The image sizes are 256×256.
20 iterations for all methods. (a) Original fabric texture (Fabric.0016). (b) No steering, no multidimensional histogram
matching. (c) Steering, no multidimensional histogram matching. (d) Steering, multidimensional histogram matching.

topic is the convergence—empirically, we observed convergence of the algorithms after 20–40 iterations. Finally,
it should be noted that recently another class of texture synthesis methods received a lot of attention. They
take patches from the original reference texture and use them as building blocks for the generated texture.19,20

These methods work very well for (near-)regular textures since they maintain the local structure, but they
do not contribute to a better understanding of the parameters that characterize the texture. An outstanding
question is whether and how both methodologies—stochastic texture generation and resampling of the reference
texture—can be combined advantageously.

(a) (b) (c) (d)
Figure 6. Effect of changing the number of orientations. (a) Original water texture (Water.0002). (b) K = 2. (c) K = 3.
(d) K = 4.
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(a) (b) (c) (d)
Figure 7. Example of failure. It is interesting, however, to observe the partial coherent structures that appear using the
steering extension. Results for steerable pyramid with K = 4 orientations and 6 decomposition levels. The image sizes are
256× 256. 40 iterations for all methods. (a) Original fabric texture (Fabric.0000). (b) No steering, no multidimensional
histogram matching. (c) Steering, no multidimensional histogram matching. (d) Steering, multidimensional histogram
matching.
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