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Non-Local Means with Dimensionality
Reduction and SURE-Based Parameter
Selection

Dimitri Van De Ville, Member, Michel Kocher

Abstract— Non-local means (NLM) is an effective denoising
method that applies adaptive averaging based on similarity
between neighborhoods in the image. An attractive way to both
improve and speed-up NLM is by first performing a linear
projection of the neighborhood. One particular example is to use
principal components analysis (PCA) to perform dimensionality
reduction. Here, we derive Stein’s unbiased risk estimate (SURE)
for NLM with linear projection of the neighborhoods. The
SURE can then be used to optimize the parameters by a search
algorithm or we can consider a linear expansion of multiple
NLMs, each with a fixed parameter set, for which the optimal
weights can be found by solving a linear system of equations.
The experimental results demonstrate the accuracy of the SURE
and its successful application to tune the parameters for NLM.

Index Terms— Non-local means, Stein’s unbiased risk estimate,
linear transforms, principal component analysis

I. INTRODUCTION

Learning from neighborhoods has become an important
and powerful data-driven approach for various applications
in image processing. Most notably, the non-local means
(NLM) [1] algorithm applies adaptive averaging based on
similar neighborhoods in a search region. Various methods
have been proposed to accelerate the initial approach using
preselection of the contributing neighborhoods based on aver-
age value and gradient [2], average and variance [3] or higher-
order statistical moments [4], cluster tree arrangement [5],
and subspace projection [6], [7]. The computation of the
distance measure between different neighborhoods itself can
be optimized using the fast Fourier transform [8], a moving
average filter [9], using pre-integration [10], early termination
of the search [11], or by reducing redundant comparisons [12].

Variations of the NLM algorithm have also been proposed
to improve the denoising performance; e.g., adaptive neighbor-
hoods [13], iterative application [5], combination with kernel
regression [14] and spectral analysis [15], and other similarity
measures based on principal component analysis (PCA) [6],
[16] or rotation invariance [17]. The smoothing parameter that
determines the contributions of the patches has been locally
optimized using Mallow’s C), statistic [18]. The most evolved
version of the non-local principle is probably BM3D [19],
which further processes the selected neighborhoods and gives
high quality results.

The combination of NLM with dimensionality reduction
methods such as PCA [6], [16] and SVD [7] has gained
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increased interest since the advantages are twofold. First,
the computational complexity is highly reduced. Second,
measuring the distance between neighborhoods in a lower-
dimensional subspace improves robustness to noise; e.g., re-
sults for NLM denoising for a 7 x 7 neighborhood are clearly
improved by reducing the 49 dimensions to 5 — 10. Moreover,
Tasdizen [20] proposed the combination of PCA and NLM
with parallel analysis to select the dimensionality [21].

Stein’s unbiased risk estimate (SURE) [22] is one elegant
way to estimate the mean squared error (MSE) of an image
degraded by additive Gaussian noise. Following this principle,
one can select optimal parameters for regularization in inverse
problems [23]-[25], in denoising strategies for wavelet thresh-
olding [26]-[28], or using a numerical procedure for denoising
approaches in general [29]. In recent work, we derived an
analytical form of SURE [22] for the NLM algorithm [30].
This way, the MSE can be monitored from the noisy image
only, which is a very useful property to optimally tune the
NLM algorithm. This concept can also be used to locally adapt
the NLM parameters [12].

Here we further extend the analytical form of the SURE for
NLM with linear projection of the neighborhoods, including
projection on a dimensionality-reduced subspace as specified
by PCA. Since the PCA-NLM algorithm depends non-linearly
on the different parameters (neighborhood size, width of
smoothing kernel, search region, PCA dimensionality), we
propose to optimize a linear expansion of several NLMs with
different parameter settings; an approach that is inspired by the
SURE-based linear expansion of thresholds (LET) proposed
for wavelet denoising [31]. In our case, the optimal linear
combination can be retrieved using the SURE of the individual
PCA-NLM contributions.

In Section II, we briefly review the NLM algorithm and
the SURE principle, together with the extension of SURE
for NLM with linear projection. We also show how a linear
expansion of multiple NLMs reduces to solving a linear system
of equations. Next, in Section III, we present and discuss the
experimental results to demonstrate the feasibility of using
SURE for NLM parameter selection.

II. METHODS
A. The Non-Local Means Algorithm

We consider the observation model
y=x+n, (1)

where x € RY stands for the vector representation of the
noise-free image containing N pixels, n is the zero-mean
white Gaussian noise of variance o3I, and y is the observed
noisy data. We denote the grayscale value of the individual
pixel at position 1 € 7 as y;, where we implicitly assume
that vector indexing is mapped to a scalar index (e.g., us-
ing lexicographic ordering); this notation better reflects the
spatial dependencies of the image. The pixel-based NLM
algorithm [1] is a spatially adaptive filter that maps the
measured data y into x as follows:

Zkegl Wk 1Yk
> kes; Wkl

2

T =



ACCEPTED FOR PUBLICATION, IEEE TRANSACTIONS ON IMAGE PROCESSING, TIP-06603-2010 2

where S; is the search region around 1 and wy,; are the
weights that compare the neighborhoods around pixels k and
1, respectively. The weights are defined as
2
)

Wk,1 = €Xp (—

where B defines the neighborhood and B is its total size; e.g.,
B =[-3,3] x [-3,3] and B =49 for a 7 x 7 neighborhood.

> bes Wkib — Y14b)
B 2)\2

B. Mean Squared Error and Stein’s Unbiased Risk Estimate

The mean squared error (MSE) of the denoised image with
respect to its noise-free version is

1 1
MSE(x) = N Ix —|* = N Z(Il - )%, “)

lez
where ||-||* is the Buclidean norm. The peak signal-to-noise
ratio (PSNR) is then defined as
MSE(x)
cak?

where the denominator indicates the peak intensity value of
the image. SURE provides a means for unbiased estimation
of the true MSE. It is specified by the following analytical
expression [22]

PSNR(MSE(%)) = —101log;, : (5)

divy {x}
2 2 dlVy
20" ——— 6
Tt —N (6)
where divy, {x} is the divergence of the NLM algorithm with
respect to the measurements

divy {x} = Z %, (7

ez O

. 1 .
SURE(%) = - [ly — %/

which needs to be well defined in the weak sense. The
derivation of SURE relies on the additive white Gaussian noise
hypothesis and assumes the knowledge of the noise variance
o2. In practice, o can be easily estimated from the measured
data (e.g., using the median of absolute deviation). The SURE-
based PSNR, which we will name SURE-PSNR from now on,
can then be computed as PSNR(SURE(X)).

In previous work, we derived the analytical form of SURE
for NLM [30]:

. 1 .
SURE(%) = +- ly — x| — o (8)
202 =) ) 202 1
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NB)\Q Z Z Wi—b,1 (Y1 — Y14+b) (21 — Yi-b),
leI L yes
where W) =, o s, Wk,1 and where x2 is the NLM algorithm

applied to the squared pixel values. The computation of the
divergence term can be readily incorporated within the core
of the NLM algorithm. Specifically, implementing (8) requires
an additional memory array to store z{ (next to W), and its
computational complexity takes only O(B - N) operations,
compared to O(B - N - S) of the NLM algorithm itself, where
S is the number of pixels in the search region.

C. Non-Local Means for Transformed Neighborhoods

Instead of using directly the pixel values of the neighbor-
hoods as positions in the high-dimensional space, an appealing
alternative is to first transform the neighborhoods in another
domain with some favorable properties. For example, the
computational burden of the NLM algorithm can be alleviated
by projecting the neighborhood into a subspace of lower
dimensionality as determined by PCA [6], [16], [20]. Specifi-
cally, the projection matrix A that diagonalizes the demeaned
covariance matrix of all patches in the image is computed.
Then, each neighborhood centered around k can be projected
onto the vector px = [Pk n|n=1,..., 5/ that is in a subspace with
B’ dimensions with B’ < B:

=Y anblitp, n=1,...,B" ©)
beB

Pk.n

The only adaptation to the NLM algorithm is to redefine the
weights as

B’ 2
n=1 \Pk,n — Pln
wm:exp(—ZL 1(B’ )2 ) )

The use of dimensionality reduction (B’ < B) can signifi-
cantly speed-up the algorithm. Here we extend the derivation
of the SURE for the case of PCA-based NLM. The first step
consists of deriving the divergence term.

Proposition 1 (Divergence of NLM with linear transform):
The individual terms of the divergence divy {X} of the NLM
algorithm after transforming the neighborhoods according to
(9) are given by

(10)

o011 W, 1
ay = W Z Gn.0 Z B2 o YkPk,n +1
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Given our vector-indexing, it is important to note that the
element a,, o correspond to the weight of the projection matrix
A for the center position in the neighborhood contributing to
the projection on the n-th component.

Proposition 2 (SURE for NLM with linear transform):
The SURE for the NLM algorithm can be expressed as

11

1 )
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Note that this expression is valid for any linear transformation
of the neighborhood, with or without dimensionality reduc-
tion. The computational complexity for obtaining SURE has
increased with respect to (8); i.e., it is now O(B’ - N - S),
which is of the same order as the NLM algorithm. However,
the operations of (12) can be incorporated in the core loop of
the NLM algorithm.

D. Selection of Best NLM

Using the proposed SURE for NLM, we are able to com-
pare the performance of NLMs with different parameter sets
(B, B', S, \), in order to improve the denoising capabilities.

E. Linear Expansion of Multiple NLMs

Another possibility is inspired by the approach from [31]:
we consider the linear combination of the outputs of several
NLMs with and different fixed parameter sets, and we opti-
mize these linear weights by SURE to hopefully exceed the
performance of each NLM taken individually. Specifically, we
consider the linear expansion approach as

M

X = Z emx(™)

m=1

(13)

In our case, x(™ is the m-th NLM with parameter set
(B, Bl S, Am) and ¢, is the weight in the linear ex-
pansion. The optimal weights are obtained by minimizing the
SURE of the linear combination. From (6),
1 202
SURE(%) = — (x —y)T (% — y)— 0%+ divy {x}, (14)
N N
the partial derivatives towards the weights c,, are then given
by

M
OSURE(X
it x) _ chk(m)Tﬁ(l) ~yTR 4 o%divy {)A((m)}
m =1
5)
which leads to the following system of equations:

M
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=1

(16)
where the derivation of the SURE provides us with the
divergence terms. We can then find the linear weights that
optimize the SURE of the linear expansion efficiently.

III. RESULTS & DISCUSSION

We describe how SURE for NLM can be successfully
deployed for automatic parameter selection following various
optimization strategies. In the various experiments, the param-
eter space that we will sample from is as follows

o neighborhood B =3 x 3,5 x 5,7 x 7, so B =9,25,49;

« dimensionality of projection B’ =6,7,..., B;

e search region § = 5 x 5,7 x 7,...,21 x 21,0 § =
25,49, 441;

« smoothing parameter A\/o = 0.5,0.6,...,1.2.

All results discussed in detail below are summarized in the
Table II. We also show some visual examples for the “peppers”
test image, Fig. 1 (a), corrupted with additive Gaussian noise
of o = 50, Fig. 1 (b), and the “lena” test image corrupted with
noise of o = 20, Fig. 2 (a).

A. Exhaustive Optimization

As a starting point, we perform an exhaustive optimiza-
tion for a single NLM to determine the best parameters
(B*,S8*,\*) for B = B (which corresponds to no PCA
dimensionality reduction) and B’ = 6, respectively. The global
optimum within this parameter space is found by choosing
the settings corresponding to the best SURE-PSNR, which
coincides with the optimal setting for the ground-truth PSNR
for all test images and noise levels. Moreover, SURE-PSNR
was always close within 0.10dB to the true one—see the
results in the rows “1 NLM” in Table II. The best parameter
setting of the NLM varied with the test image and with
the noise level, which indicates the importance of a data-
adaptive strategy such as obtained using SURE. It is surprising
that dimensionality reduction of the patches onto 6 principal
components (PCs) improved the performance with 0.5-1.1dB.
Visually, this difference is also striking as can be observed
by comparing Fig. 1 (d) and (g). Moreover, next to the
performance gain, the computational complexity of PCA-NLM
with 6 PCs is reduced with almost one order of magnitude
(factor of 6/49).

One way to improve the NLM method is to change the
weight of the central pixel, which is overestimated in the
classical NLM formulation; i.e., wy ) is always at the maximum
of one, which is independent of the noise level since the same
two noise realizations are compared. This possibility has been
mentioned by various authors and solved in different ways;
e.g., the NLM weights can be estimated using the SURE
principle as in [32]. Here, we propose to add the original
(noisy) image to the set of images of the linear expansion. This
image’s weight will be determined by SURE and turns out to
be negative in practice in order to lower the importance of the
central pixel'. This way we easily obtain the optimal weights
of the two contributions that result in the best performance.
Despite the face that providing the noisy image improves
the results for the NLM without dimensionality reduction,
especially for high noise levels, the PCA-NLM method does
not improve by doing so. This can be explained by the fact
that the projection onto the most important components of the
patches automatically also removes the sole influence of the
central weight because none of the PC vectors will be localized
at the central pixel of the patch. These results are listed in the
rows “1 NLM+self” in Table II.

B. Heuristic Optimization

Given the improvement by adding a proportion of the
original noisy image with the weight determined by the SURE,
it is tempting to add more NLMs to the linear expansion.

!Providing the noisy image itself to the linear expansion corresponds to
adding the output of the identity operator, for which holds divy (%) = N.
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Fig. 1. Results for the “peppers256” test image corrupted with additive white noise of ¢ = 50. (a) Original image. (b) Noisy image. (c) Results obtained with
BM3D [19]. Without dimensionality reduction (no PCA): (d) 1 NLM, exhaustive optimization; (¢) 12 NLMs with fixed parameters, optimal linear expansion
using SURE; (f) 12 NLMs with Monte-Carlo generated parameters, optimal linear expansion using SURE. With dimensionality reduction (6 PCs): (g) 1 NLM,
exhaustive optimization; (h) 12 NLMs with fixed parameters, optimal linear expansion using SURE; (i) 12 NLMs with Monte-Carlo generated parameters,
including PCA dimensionality B’, optimal linear expansion using SURE.
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(b)

Fig. 2. Results for the “lena512” test image corrupted with additive white noise of o = 20. (a) Noisy image. (b) Results obtained with BM3D [19], PSNR
33.05dB. (c) Best result obtained with the proposed method using dimensionality reduction (6 PCs) and 12 NLMs with Monte-Carlo generated parameters,
including PCA dimensionality B’, optimal linear expansion using SURE, PSNR 32.53dB.

TABLE I
HEURISTIC CHOICE OF PARAMETERS FOR EACH OF THE NLM WHEN
PERFORMING LINEAR EXPANSION OF MULTIPLE ONES.

neighborhood B search region S smoothing \/o
1 3 x3 21 x 21 0.7
2 5x5 21 x 21 0.7
3 7TxT7 21 x 21 0.7
4 3 x3 21 x 21 0.4
5 5xX5 21 x 21 0.4
6 TXT7 21 x 21 0.4
7 3x3 5x5 1.0
8 5%x5 5x5 1.0
9 TxX7 5x5 1.0
10 3x3 11 x 11 0.85
11 5x5 11 x 11 0.85
12 X7 11 x 11 0.85

However, finding the optimal parameters of all NLMs jointly
becomes unfeasible. Therefore, in the next series of experi-
ments, we verify how the performance can be further improved
by linearly combining the outputs of multiple NLMs, each one
with predefined parameter set. In particular, when more NLMs
are added, the parameter set is chosen according to Table I;
ie.,, we used 3, 6, and 12 NLMs, respectively, each time
together with the original noisy image. The results are listed
in Table II in the rows with the label (*). For the case without
dimensionality reduction, increasing the number of NLMs
always improved results. For the case with dimensionality
reduction, the improvement from 6 to 12 NLMs becomes less
significant. In some cases (e.g., “house” with dimensionality
reduction), the SURE-PSNR improved but the true PSNR
decreased. We believe that this is due to an overfitting of
the linear expansion, especially for a simple image such
as “house” where the neighborhoods have a relatively low
dimensionality. In this case, the difference between the true
PSNR and SURE-PSNR increases, as well as the dynamic
range of the weights of the linear expansion (typically below
0.50). An example of “peppers” using 12 NLMs is shown in
Fig. 1 (e) and (h), without and with dimensionality reduction,
respectively.

C. Monte-Carlo Optimization

From the optimal weights of the NLM linear expansions, we
could not identify a clear trend that would be indicative for the
“right” NLM parameters to use; i.e., there is a large variability
for different images and noise levels. Therefore, we consider
another experiment where all NLM parameters (B, B’, S, \)
are randomly generated according to a uniform distribution
within the range of neighborhood size, dimensionality of
the neighborhood after PCA, search region, and smoothing
parameter as defined in the beginning of Sect. IIL.

1) Selection of Best NLM: We now take one step back
and select the best performing NLM, according to its SURE,
for 120 realizations. This reverts parameter optimization by
random sampling of the parameter space (B, B’,S,\). The
results are indicated in the rows “1 NLM-+self” with label
(4 in Table II. We observe that in almost all cases the
performance from the exhaustive search (with fixed B’ = 6)
is not reached. This suggests that random sampling of the
parameter space remains suboptimal, despite the high number
(120) of realizations.

2) Linear Expansion of Multiple NLMs: We have seen
before, when combining multiple NLMs with heuristic param-
eter sets with SURE-based linear expansion, that the diversity
of the various contributions is more important than their
individual quality. Therefore, we use now random parameters
for 3, 6, and 12 NLMs. These are indicated in Table II
with the label *). Each time, the best performance of 10
Monte-Carlo realizations as indicated by the SURE-PSNR is
reported. Interestingly, this simple method outperforms both
the best single NLM and the NLM linear expansion with
fixed parameters: combining only 3 NLMs often reached or
improved the results over 12 NLMs with fixed parameters. The
results for “peppers” are shown in Fig. 1 (f) and (i). Despite
the improved PSNR, visual observation of the images reveals
a grainy appearance which is probably due to contributions of
NLMs with small neighborhoods. As a comparison, the result
obtained by the state-of-the-art algorithm BM3D [19], which
uses basis functions that are better adapted to edges, is shown
in (c). For natural images such as “lena”, this difference is
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Fig. 4. Computation time of a single NLM algorithm for a 256 x 256 image
as a function of the neighborhood dimensionality (B’) and search region.

less obvious; e.g., see Figs. 2 (b) and (c).

D. On the Dimensionality Reduction

We have observed that using PCA to reduce the dimension-
ality of the neighborhood is beneficial for both quality and
computational complexity. The optimal number of dimensions
is still dependent on the image content and the noise level,
which explains why the linear expansion of NLMs with
Monte-Carlo generated parameters is advantageous. In Fig. 3,
we plot the average PSNR as a function of the number of
dimensions for a linear expansion of 12 NLMs with (B, .S, \)
Monte-Carlo generated.

E. On the Computational Complexity

Finally, we also briefly mention the computational complex-
ity of the proposed method, which was implemented in Matlab
(R2010b) using C for the core calculations (Intel Core 2 Duo,
2.66GHz; 4GB RAM). The dimensionality of the neighbor-
hood (eventually after projection) and the search region are
the two main parameters that influence the computation time.
Therefore, in Fig. 4, we plot the computation time of a single
NLM for a 256 x 256 image as a function of B’ and S.
Compared to the main NLM algorithm, the computational
load of the divergence term for the SURE -calculation and
the optimal weights of the linear expansion (when combining
multiple NLMs) are negligible. Note that our best results
taking the best realization of 10 Monte-Carlo parameter sets
for 12 NLMs require 120 NLM evaluations, which typically
adds up to 15-20 minutes. However, this type of algorithm
can make use of a parallel implementation in an almost trivial
way.

IV. CONCLUSION

We derived the SURE for the NLM algorithm with linear
projection of the neighborhoods. The key feature of this
derivation is the explicit analytical form of the divergence term
of NLM, which is surprising for a non-linear algorithm. The

SURE can be easily computed on-the-fly as part of the original
NLM algorithm.

The parameter setting of NLM is dependent on image
content and noise level. Therefore, the SURE is a useful
measure to estimate and tune these parameters. Next to
exhaustive optimisation, we considered a linear expansion
of multiple NLMs. We obtained the best performance for a
linear combination of 12 NLMs using Monte-Carlo generated
parameter sets. These results are close to the state-of-the-
art denoising schemes while relying on the relatively simple
algorithm of NLM and the SURE-based optimisation of linear
weights.

Future work could further investigate the optimal structure
of the NLM parameter settings. Promising avenues also in-
clude the use of different linear projections of the neigh-
borhoods (e.g., to improve invariance to some features) and
further development of a spatially adaptive version of NLM,
including speeding up the algorithm [12]. Finally, the repro-
jection method from [33] could be incorporated to improve
visual quality once the optimal parameter set determined.
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APPENDIX A
DERIVATION OF THE DIVERGENCE TERM

To obtain the divergence term, we introduce W; =
Zke 5 Wkl and we derive 2 with respect to y;, which results
into

0iy Wik (Win) — (Wiinn) 00 an
8y1 a W12
1 ow . ow
=W Z 8k’1yk + w1 —T1 Z o kol
i 7~ G O
Further on, deriving the weights gives
w58 (Znm1 (Pkn = Prn)ano) . 1-k¢B

dwx 1 B’
. 1 W, 1 anl (pkﬂl — pl;n) Qan,0
)

- B’')\2

% (Zf:l (pk,n - pl,n) an,17k> ) I-keB

(18)
By using the previous relations, we derive the constituting term
of the divergence as (11). The divergence is finally given by
combining the previous relation with (7).
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TABLE I

PERFORMANCE OF THE VARIOUS APPROACHES AS MEASURED BY PSNR AND SURE-PSNR (BETWEEN PARENTHESES).

cameraman (256 x 256)

o=20 o =50
method no PCA 6 PCs variable PCs no PCA 6 PCs variable PCs
1 NLM 29.65 (29.51) (D 29.82 (29.66) (1) 24.59 (24.45) (D 25.09 (25.06) (D

I NLM + self (2)

29.73 (29.62) (1)

29.84 (29.72) (1)

29.82 (29.68) (9

25.07 (24.89) (1)

25.10 (25.07) (1

25.40 (25.25) (D

3 NLM + self 3)
6 NLM + self (2:3)
12 NLM + self (2:3)

29.69 (29.60)
29.76 (29.69)
29.97 (29.87)

29.81 (29.67)
29.91 (29.80)
30.04 (29.92)

24.88 (24.71)
24.99 (24.84)
25.09 (25.07)

25.47 (25.35)
25.53 (25.39)
25.60 (25.49)

3 NLM + self 24
6 NLM + self (24
12 NLM + self (2:4)

29.81 (29.63)
29.90 (29.78)
29.66 (30.17)

30.02 (29.88)
30.08 (29.94)
30.09 (29.97)

29.99 (29.82)
30.03 (29.91)
30.09 (29.95)

25.19 (24.94)
25.43 (25.21)
25.20 (25.56)

25.46 (25.30)
25.52 (25.39)
25.59 (25.52)

25.53 (25.36)
25.64 (25.52)
25.79 (25.91)

BM3D 30.48 (N/A) 25.84 (N/A)
house (256 X 256)
o=20 o =50
method no PCA 6 PCs variable PCs no PCA 6 PCs variable PCs
1 NLM 32.02 (32.00) (D 32.81 (32.84) (D 26.37 (26.42) (D 28.41 (28.45) (D

1 NLM + self (2)

32.11 (32.13) (D

32.81 (32.84) (1)

32.78 (32.82) (9

26.97 (27.04) (1

28.41 (28.47) (1)

28.06 (28.37) (9

3 NLM + self :3)
6 NLM + self (2:3)
12 NLM + self (2:3)

32.20 (32.22)
32.20 (32.23)
32.33 (32.44)

32.36 (32.40)
32.73 (32.81)
32.60 (33.25)

26.69 (26.80)
26.78 (26.88)
27.05 (27.46)

27.86 (28.11)
28.27 (28.55)
27.52 (30.70)

3 NLM + self (%)
6 NLM + self (24
12 NLM + self (2:4)

32.28 (32.30)
32.48 (32.44)
32.23 (32.84)

32.62 (33.00)
3278 (33.17)
32.67 (33.50)

32.79 (32.77)
32.90 (32.94)
32.98 (33.01)

27.17 (27.33)
27.49 (27.71)
27.72 (28.01)

28.01 (28.59)
28.00 (29.32)
27.37 (30.45)

27.84 (28.01)
27.85 (28.15)
28.20 (28.50)

BM3D 33.77 (N/A) 29.37 (N/A)
peppers (256 X 256)
o=20 o =50
method no PCA 6 PCs variable PCs no PCA 6 PCs variable PCs
1 NLM 30.37 (30.37) (D 30.71 (30.72) (D 2541 (25.35) (D 26.51 (26.53) (1

1 NLM + self (2

30.49 (30.49) (1)

30.71 (30.72) (D

30.74 (30.73)

25.73 (25.67) (1

26.51 (26.54) (1)

26.47 (26.54) (4

3 NLM + self (2:3)
6 NLM + self (2:3)
12 NLM + self (2:3)

30.09 (30.14)
30.09 (30.15)
30.85 (30.87)

30.42 (30.43)
30.64 (30.71)
31.01 (31.09)

25.20 (25.17)
25.27 (25.25)
26.05 (26.10)

26.17 (26.32)
26.38 (26.53)
26.53 (26.99)

3 NLM + self 4
6 NLM + self (2:4)
12 NLM + self (2:4)

30.76 (30.76)
30.80 (30.79)
30.73 (31.37)

30.83 (30.87)
31.05 (31.09)
31.05 (31.13)

30.97 (30.95)
31.02 (31.01)
31.06 (31.25)

26.03 (26.02)
26.34 (26.36)
26.45 (26.47)

26.51 (26.56)
26.43 (26.79)
26.52 (27.00)

26.48 (26.49)
26.59 (26.65)
26.70 (27.00)

BM3D 31.29 (N/A) 26.41 (N/A)
Lena (512 X 512)
o =20 o =50
method no PCA 6 PCs variable PCs no PCA 6 PCs variable PCs
| NLM 31.54 (31.59) (D 32.14 32.17) D 26.94 (26.89) (D 28.33 (28.30) (D

1 NLM + self (2)

31.65 (31.67) (1

32.15 (32.18) (1)

32.03 (32.10) 4

27.30 (27.27) (U

28.33 (28.30) (V)

28.19 (28.20) (9

3 NLM + self (2:3)
6 NLM + self (2:3)
12 NLM + self (2:3)

31.39 (31.43)
31.41 (31.46)
31.98 (31.98)

31.94 (31.97)
32.14 (32.15)
32.34 (32.34)

27.02 (27.00)
27.08 (27.05)
27.57 (27.59)

28.06 (28.05)
28.28 (28.23)
28.39 (28.37)

3 NLM + self &4
6 NLM + self (2:4)
12 NLM + self (2:4)

31.94 (31.95)
31.91 (32.12)
31.77 (32.29)

32.26 (32.29)
32.34 (32.38)
32.40 (32.43)

32.28 (32.33)
32.39 (32.42)
32.53 (32.56)

27.39 (27.38)
27.88 (27.89)
27.14 (28.49)

28.54 (28.50)
28.55 (28.52)
28.60 (28.57)

28.46 (28.42)
28.39 (28.52)
28.59 (28.61)

BM3D

33.05 (N/A)

28.86 (N/A)

=W N =

: exhaustive optimisation of the NLM parameters

: optimisation of the linear expansion using SURE

: heuristic choice of NLM parameters according to Table I
: Monte-Carlo generation of the NLM parameters (best out of 10 realizations)
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Fig. 3.
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