EEG microstates relate to fMRI resting-state networks through scale-free dynamics
Dimitri Van De Ville¹,², Juliane Britz³, Christoph Michel³

¹Institute of Bioengineering, École Polytechnique Fédérale de Lausanne
²Department of Radiology and Medical Informatics, University of Geneva
³Department of Fundamental Neuroscience, University of Geneva

Over the past decade, researchers using human functional magnetic resonance imaging (fMRI) have started to investigate spontaneous brain activity during "resting state", leading to an intriguing research topic. Such studies allow probing into the intrinsic organization of the brain in large-scale functional networks [Mesulam1998, Bullmore2009], which are remarkably similar to those revealed by tasks probing their function and which show a close link with underlying anatomical connections [Vincent2007]. In the fMRI literature, resting-state fluctuations of the BOLD signal were first revealed by looking into functional connectivity (i.e., temporal correlation of timecourses) between a chosen seed region and every other voxel in the brain. In particular, Biswal et al. observed early on connectivity within the functional motor network during rest [Biswal1995]. Since then, exploratory methods such as independent component analysis (ICA) have contributed to establishing a large number of reproducible large-scale functional networks in resting-state fMRI [Damoiseaux2006]. Their slow temporal dynamics are very striking; i.e., coherent BOLD fluctuations are generally found in the very slow frequencies (<0.1 Hz), which is hardly compatible with the rapid dynamics necessary for normal brain function [Bressler1995, Bressler2006].

The resting-state networks as measured by fMRI are relying on the hemodynamic response as a proxy for neuronal activation; however, their electrophysiological counterpart remains a matter of debate. Using EEG, one can follow the temporal evolution of the scalp electrical potential, where the EEG measurements can be represented as a matrix with time in one dimension and space in the other one, the former being a local and the latter a global measure of momentary brain activity. Conventional analyses of resting EEG consider the presence of spontaneous EEG rhythms at selected electrodes, which has been acknowledged literally since the very beginning [Berger1929]. Several attempts have tried to show a direct link between EEG frequency bands and fMRI resting state networks, albeit with mixed results [Laufs2003, Tyvaert2008]. A complete correlation signature of different EEG bands with ICA-defined fMRI resting-state network has been established, which revealed no clear direct link between different EEG frequency bands and fMRI-resting state networks [Mantini2007].

Topographic EEG analyses consider the temporal evolution of the topography of the scalp electric field, which is a global spatial measure of momentary brain activity with high temporal resolution. These topographies remain quasi-stable during ~80-120ms and are termed “EEG microstates” [Lehmann1987]; surprisingly, only four predominant topographies occur during resting state and all of them can be reliably identified in healthy individuals across the entire life span [Koenig2002].
Recently, we recorded EEG in the MR scanner and convolved the rapid occurrence signals of each of the predominant microstates during spontaneous EEG with the canonical hemodynamic response function; this step basically reduces the dynamics to the 10s timescale. We then fed the convolved and demeaned timecourses into a conventional general linear model (GLM) to analyze the simultaneous fMRI recordings, revealing four large-scale resting-state networks; i.e., the visual, auditory, self-referential, and dorsal attention networks [Britz2010]. We thus showed for the first time a direct link between a global electrophysiological and the hemodynamic measure of brain activity at rest. In Figure 1, we show the scalp topographies of the four EEG microstates with the associated fMRI resting-state networks obtained by the GLM analysis. We have also determined the ICA resting-state networks and paired four of them to the EEG-induced GLM maps using wavelet-based statistical resampling [Patel2006].

To uncover the underlying mechanism of how timescales of EEG and fMRI so different can be linked, we hypothesized and confirmed scale-free behavior of EEG microstate dynamics. Using wavelet-based fractal analysis, we found a clear signature of monofractality over 6 dyadic scales covering the 256ms-10s range [VanDeVille2010], which confirms that the temporal dynamics of resting-state activity is two orders of magnitude faster than fMRI measures alone suggest. Moreover, the degree of long-range dependency was maintained when shuffling the local microstate labels but became indistinguishable from white noise when equalizing microstate durations, which indicates that the temporal dynamics are their key characteristic. In sum, the four rapidly varying EEG microstates seem to represent the neurophysiological correlates of four known resting-state networks and their scale-free dynamics allow them to be measured at the slow fMRI timescale. In Figure 2, we illustrate this finding with a 4-seconds segment of the EEG microstate sequence and a 4-minutes segment of the fMRI regressor after convolution of the microstate occurrence signal. We also show the Hurst exponent that is the single parameter of a monofractal process and representative of long-range dependency.

These findings provide further evidence that the brain is functionally organized in a scale-free way. Other manifestations of fractal behavior have been observed at many instances [Buzsaki2006, Freeman2007], including for signals measured at single EEG electrodes [Lutzenberger1992], using MEG recordings [Linkenkaer2001] or invasive electrocorticography [He2010], or fMRI timeseries [Maxim2005, Ciuciu2008]. More recent work on dynamical aspects of MEG and fMRI recordings have focused on the coexistence of stationary and non-stationary processes [dePasquale2010] and on the power-law scaling behavior of synchronization metrics [Kitzbichler2009].
Figures

Figure 1. The occurrence signals of the four predominant EEG microstates can be linked to large-scale fMRI resting-state networks that are confirmed by fMRI-only group independent component analysis (ICA). Adapted from [Britz2010].
Figure 2. The meaningful correlation of the EEG microstate signals after convolution with the hemodynamic response function can be explained by scale-free organization of the switching between the different microstates. Specifically, we found monofractal behavior that can be characterized by a single parameter (i.e., the Hurst exponent), which is significantly different from its value for white noise (H=0.5) and thus reflects the long-range dependency of the fractal organization. This parameter remains unchanged after shuffling the microstate labels but reverts to its value for white noise (H=0.5) after equalizing the duration of all microstates [VanDeVille2010].
References


