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N E U R O S C I E N C E

When makes you unique: Temporality of the human 
brain fingerprint
Dimitri Van De Ville1,2,3, Younes Farouj1,2, Maria Giulia Preti1,2,3,  
Raphaël Liégeois1,2, Enrico Amico1,2*

The extraction of “fingerprints” from human brain connectivity data has become a new frontier in neuroscience. 
However, the time scales of human brain identifiability are still largely unexplored. We here investigate the 
dynamics of brain fingerprints along two complementary axes: (i) What is the optimal time scale at which brain 
fingerprints integrate information and (ii) when best identification happens. Using dynamic identifiability, we show 
that the best identification emerges at longer time scales; however, short transient “bursts of identifiability,” 
associated with neuronal activity, persist even when looking at shorter functional interactions. Furthermore, we 
report evidence that different parts of connectome fingerprints relate to different time scales, i.e., more visual- 
somatomotor at short temporal windows and more frontoparietal-DMN driven at increasing temporal windows. 
Last, different cognitive functions appear to be meta-analytically implicated in dynamic fingerprints across time 
scales. We hope that this investigation will advance our understanding of what makes our brains unique.

INTRODUCTION
In the 17th century, physician Marcello Malpighi observed the exis-
tence of distinctive patterns of ridges and sweat glands on fingertips 
(1). This key observation led to a long and continuing quest for ways 
to uniquely identify individuals based on fingerprints, a technique 
massively used until today. In the modern era, the concept of finger-
printing has expanded into other biometric data, such as voice re-
cordings and retinal scans, among many others (2). It is only in the 
past few years that technologies and methodologies have achieved 
high-quality measures of an individual’s brain to the extent that 
personality traits and behavior can now be characterized. The most 
insightful correlates emerged from the investigation of structural 
and functional connectivity (FC) that can be modeled and analyzed 
using network science, an area of research usually referred to as 
brain connectomics (3). For the structural connectome, white matter 
pathways between pairs of brain regions are quantified using diffusion- 
weighted imaging and referred to as structural connectivity (SC). 
For the functional connectome, temporal statistical dependencies 
between activity time courses of these regions are taken from func-
tional magnetic resonance imaging (fMRI) to define FC (3, 4). The 
most common paradigm for FC is resting-state fMRI during which 
subjects in the scanner are not engaging in a particular task (5).

The concept of “fingerprints of the brain” is very novel (6, 7) and 
has been boosted because of the seminal work by Finn et al. (6) in 
2015. They were among the first to show that, to a great extent, it is 
possible to robustly identify a “target” subject’s functional connectome 
from a database of FCs, simply by computing the connection-wise 
(Pearson) correlation between the target FC and those in the database. 
The success rate (SR) of this identification procedure was above 
90% for resting-state sessions and ranged between 54 and 87% 
when considering task-task and task-rest sessions (6). Therefore, an 
individual’s functional brain connectivity profile is both unique and 
reliable, similar to a fingerprint, and it is possible, with near-perfect 

accuracy in many cases, to identify an individual among a large group 
of subjects solely on the basis of her or his connectivity profile. 
These findings incentivized human neuroimaging studies to move 
from inferences at the population level to results that apply to the 
single-subject level, i.e., by acknowledging and exploiting properties 
of functional network organization unique to an individual across 
cognitive tasks and resting state (8, 9), by relating such functional 
organization to behavioral phenotypes in both health and disease 
(10), or even by implementing ways for maximizing and denoising 
fingerprints from brain data (11).

Recently, several studies have started to look into the temporal 
aspect of brain fingerprints. Such ventures into the “temporal domain” 
of brain fingerprints are important for two main reasons. First, it might 
provide insights into whether the connectivity patterns needed for 
brain identification are also the ones mostly linked to the time scale 
of the different cognitive processes taking place in a human brain. 
Studies have explored the dynamical organization of brain activity 
across temporal scales (12, 13) and have shown that there might be 
a hierarchy of progressively longer temporal receptive windows in 
the human brain, from sensory to higher-order cognitive processes 
(14). Hence, investigating how brain fingerprints relate to time scales 
of cognition might advance our knowledge on the individuality of 
brain functions, which can have important implications in the emerging 
fields of precision medicine and brain connectomics of disease (10).

Second, studying temporality of brain fingerprints may improve 
our understanding of whether subject identification based on func-
tional brain data is a continuum or possibly preferential for specific 
windows in time, where one’s brain is more identifiable. To address 
these aims, researchers have started investigating the effect of scan 
length on brain fingerprinting (11, 15), how brain fingerprints vary 
across weeks and months (16), and finally using dynamic FC to find 
associations between fluctuations in brain’s functional systems and 
cognitive performance (17, 18). In particular, a first exploration by 
Liu et al. (17), using dynamic FC analysis, showed that individual 
variability was mainly spread across three higher-order cognitive 
systems (i.e., default mode, dorsal attention, and frontoparietal) and 
two primary systems (i.e., visual and sensorimotor). Notably, the spatial 
patterns of these dynamic characteristics of brain connectivity could 
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successfully identify individuals with high accuracy and even pre-
dict individual higher cognitive performance (e.g., fluid intelligence 
and executive function) (17). Together, these first findings confirmed 
the great potential of tapping into the inherent functional dynamics 
of individual brain networks.

Yet, these first explorations raised new questions. In particular, 
what exactly is the information encoded in brain connectomes that 
ultimately leads to correctly differentiating someone’s connectome 
from anybody else’s? In other words, what makes our brains unique? 
More specifically, related to the temporality of FC-based finger-
printing, is the brain more unique at some moments, and what is 
the temporal extent needed for a fingerprint to unfold?

Here, we address these questions by tapping into the temporal 
dynamics of human brain connectivity. We use dynamic FC tech-
niques to explore the time scales of brain identification, i.e., when 
and over which duration do these unique fingerprints originate, and 
which brain areas are most responsible for this. We demonstrate 
that optimal fingerprints manifest at a time scale of 200 s based on 
dynamic functional connectomes (dFCs). Nonetheless, unique in-
dividual “snapshots” of brain connectivity emerge at much shorter 
time scales. In addition, snapshots at different time scales reveal 
specific connectivity patterns in terms of regions and functional 
networks, which show how fMRI blood oxygenation level dependent 
(BOLD) fluctuations relate to different types of underlying neuronal 
events. Moreover, when looking at different areas in the brain fin-
gerprints, we noticed that subcortical regions are the fastest ones for 
individual identification; visual and somatomotor regions appear right 
after; ultimately, at slower time scales, frontoparietal and default mode 
network (DMN) emerge. Last, a meta-analytical investigation revealed 
that brain fingerprints can be associated with behaviorally relevant 
arrangement, revealing a complex gradient of relationship between 
the time scale of fingerprinting and transitions from sensory behavioral 
traits to higher-order cognitive functions. In summary, dynamic FC 
methods allowed us to investigate the temporality of brain fingerprints. 
We provide evidence that what makes our brains unique is multifaceted, 
based on when and how long. That is, individual identification is a 
temporally integrating and fluctuating feature of brain fingerprints.

RESULTS
We introduce “dynamic brain fingerprints” to investigate the tem-
porality of brain fingerprinting. The general scheme for dynamic 
identification can be divided in three steps (Fig.  1): (i) The time 
scale is set by the choice of the temporal window length; (ii) sliding 
window dFC frames are computed for each window position; and 
(iii) the similarity of frames within-subjects and between-subjects is 
evaluated, with the aim to extract the best “identifiable” connectome 
frames, for each subject (Fig. 1; see also fig. S1). In a nutshell, the tem-
poral exploration of human dynamic fingerprints can be decom-
posed according to two complementary axes: the time scale of brain 
identification or how long it takes for the information to optimally 
integrate, and the best matching time of identification or when best 
information is available (Fig. 1). This concept can be formally en-
coded into a “dynamic identifiability matrix” (fig. S1), in which the 
blocks represent within-subject dFC similarity and off block–diagonal 
elements contain the information on the between-subject dFC 
similarity (fig. S1; see also Materials and Methods for details).

We explored these temporality aspects of human fingerprints 
across different time scales (window lengths) on the 100 unrelated 

subjects of the Human Connectome Project (HCP) dataset. We started 
by selecting six different window lengths (7.2, 36, 72, 144, 288, and 
576 s, with a fixed sliding window step of 7.2 s) and explored dynamic 
differential identifiability (dIdiff) and SR (6) across the different 
time scales (Fig. 2; see also Materials and Methods for details on the 
implementation). In a nutshell, dIdiff is an extension of the differ-
ential identifiability score (11), which originally evaluated the dif-
ference between each subject’s FC self-similarity against the other 
subjects’ FCs. In this work, because of dFC evaluation, we extended 
this concept to the test/retest matching within and between the set 
of dynamic “frames” of connectivity estimated. Furthermore, we 
used SR as a complementary score to dIdiff to assess the likelihood 
to correctly identify individuals from their dynamic FC frames.

The dynamic differential identification increases steadily with 
longer window lengths, as well as the corresponding SRs (Fig. 2). 
This is expected because we rely upon more time points for dFC 
computation, increasing the stability of the FC profiles across test- 
retest sessions. However, as dIdiff and SR scores reach values 
comparable to the ones obtained with static connectivity analysis 
(6, 11), clearly noticeable diagonal blocks respecting the subject bound-
aries start appearing before the maximal dIdiff window length 
(Fig. 2). This suggests that, even at shorter time scales, there exist 
specific dynamic fingerprints able to reliably link test-retest sessions.

We then explored whether there were specific individual dFC frames 
that would be driving the dynamic identification. We therefore ranked 
the frames based on how good they could represent the subject (or 
dIself; see Materials and Methods for details) across test-retest and 
evaluated how good these dFC frames could also separate between 
subjects, via dIothers. Figure 3 shows that few FC frames can drive 
identifiability, especially at shorter window lengths (steeper curves; 
Fig. 3A). Note that, although the dIself behavior is expected because 
we based our dFC frames ranking on it, the fact that dIothers (and 
consequently dIdiff) might follow the same trend is not trivial 
(Fig. 3A). In other words, there exist pairs of frames where an indi-
vidual is maximally similar with itself (dIself panel; Fig. 3A), which 
leads to a larger dIdiff than for the static case.

When looking at the variability of the top frame for identifica-
tion across subjects, while median values keep stable across time scales 
and mostly around within-network connectivity (Fig. 3C), one can 
notice the emergence of characteristic spatial patterns of connectivity 
becoming more homogeneous in the population (Fig. 3B). The 
variability in dynamic connectivity starts most prominent between 
sensory (i.e., visual and somatomotor) and higher-order (i.e., dorsal 
attentional, frontoparietal, and DMN) networks at shorter temporal 
windows, transitioning then toward within-network connectivity at 
slower time scales, mainly involving frontoparietal and DMN con-
nectivity (Fig. 3B).

To evaluate the contribution of BOLD fluctuations that are most 
likely driven by neuronal activity–inducing signals, we repeated the 
same analysis using transient activity time courses [as in (19)] ob-
tained as the derivative of the deconvolved BOLD signals (fig. S2). 
This simultaneously removes the effect of the hemodynamic response 
function and detects transition moments in neural activity. The same 
finding as before is confirmed across dIself, dIothers, and dIdiff, 
with small fluctuations across temporal scales (fig. S2).

Given the observed spatial variation as a function of time scale, 
we investigated in more detail the spatial profiles of the fingerprints. 
Specifically, we used edgewise intraclass correlation (ICC; see Materials 
and Methods) to explore the FC connections most contributing to 
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brain fingerprinting across time scales. Figure 4 shows that, at fast 
time scales, the most reliable (i.e., with ICC > 0.4) FC edges are the 
ones related to the connectivity between somatomotor and visual 
regions (Fig. 4A). As the time scale increases, “higher-order” regions 
start to appear, such as DMN and frontoparietal regions (Fig. 4A). 
Notably, no ICC patterns above 0.4 could be obtained from 100 
instances of surrogate data obtained by randomly shuffling subject 
labels in the dataset (fig. S3; see also Materials and Methods for de-
tails on the implementation).

These results reveal a specific time scale for fingerprinting of dif-
ferent functional networks. When refining the temporal exploration 

(see Materials and Methods for details) and looking at the nodal 
counterpart of the ICC profiles across functional networks, one can 
notice that the temporal fingerprint of each functional subsystem peaks 
at specific times (Fig. 4B): shorter for subcortical and somatomotor 
connections and longer for DMN/frontoparietal ones (Fig. 4, B and C).

Last, we looked into the temporality of brain fingerprints and the 
link with behavior. We applied a Neurosynth meta-analysis based 
on 50 topic terms onto the brain fingerprint extracted at a specific 
temporal window, similarly to previous work (20, 21). We found 
that brain fingerprints at fast scales are associated with low-order 
multisensory processing, visual perception, motor/eye movements, 

Fig. 1. Exploring dynamic brain fingerprints. Schematic of dynamic connectome identification for one subject. First, the time scale (window length) of the exploration, 
here depicted as a gradient cone, is set; second, dynamic FC frames are computed at each window for both test and retest fMRI data; finally, the best matching frames 
across test and retest data are retrieved for identification.

Fig. 2. Dynamic identification across temporal scales. Dynamic identifiability matrix evaluation at six different window lengths: (7.2, 36, 72, 144, 288, and 576 s). To ease 
its visualization, the dynamic identifiability matrix in the figure was reduced to 10 sample subjects. The dynamic differential identifiability (dIdiff) values and success rates 
(SRs) on top of each matrix provide two complementary scores of the fingerprint level of the dataset across temporal scales; the asterisks denote significance from the 
chance level (set at P < 0.05, Bonferroni-corrected across the six temporal scales) from the null distributions obtained by randomizing the dynamic identifiability matrices 
at each time scale (see Materials and Methods for details). Black squares indicate the self-similarity of each subject’s dFC frames.
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as well as affective processing and visuospatial attention (Fig. 5). On 
the other hand, brain fingerprints at slower time scales are linked to 
reading comprehension, awareness, verbal semantics, language, so-
cial cognition, as well as declarative and working memory (Fig. 5).

DISCUSSION
The neuroscientific community is moving toward open (22) and re-
producible (23) science to strengthen and deepen our understanding 

of the links between cognition (24), behavior (25), and dysfunction 
(10). In this respect, brain fingerprinting has the promise to play a 
key role in providing valuable insights due to its potential inherent 
to drawing single subject inferences from FC profiles. Seminal work 
(6, 11) showed that brain fingerprints derived from whole resting- 
state sessions contain uniqueness of each individual functional con-
nectome in the brain areas devoted to higher-order cognitive functions, 
such as frontoparietal and DMNs. However, the temporality for 
identifiability of functional connectomes (11) has not been addressed 

Fig. 3. Brain fingerprint resides in few FC frames. (A) Evaluation of brain fingerprints across temporal scales through dlself (left), dlothers (middle), and dldiff scores 
(right), when ranking dFC frames based on individual dIself, in descending order. The dIdiff scores obtained with the ranking are compared with the ones obtained when 
taking all frames (triangles), also depicted in Fig. 2. (B) Edgewise SD across subjects of the best matching dFC frames at each temporal scale. The matrices are ordered 
according to the seven resting-state subnetwork organization proposed by Yeo and colleagues (59), specifically visual (VIS), somatomotor (SM), dorsal attention (DA), 
ventral attention (VA), limbic (L), frontoparietal (FP), and default mode network (DMN). For completeness, an eighth subcortical subnetwork (S) was added at the end (see 
the “Brain atlas” section in Materials and Methods for details). (C) Edgewise median across subjects of the best matching (i.e., k = 1) dFC frames at each temporal scale.
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before. It relates to the key question: When and at which time scale 
functional connectomes become unique and thus identifiable?

To figure out what makes a human brain identifiable at the level 
of functional neuroimaging correlates, we explored the temporality 
of brain fingerprints along two complementary directions: (i) What 
is the optimal time scale at which fingerprints integrate sufficient 
information and (ii) when does better identification of a fluctuating 
pattern happen. Using the concept of dynamic identifiability (Fig. 1), 
we showed that the best identification emerges at longer time scales 
(Fig. 2), which is in line with previous work investigating the effect 
of scan length on individual variability (11, 15). However, short tran-
sient bursts of “identifiability” persist even when looking at shorter 
functional interactions, similarly to previous studies (26, 27). Even 
at faster time scales, very few frames suffice to identify an individual 
from the others (Fig. 3). However, while looking at “when” the most 
identifiable frames happen along the fMRI scans, we found that no 

significant trend emerged outside of the “boundary artifact” (i.e., half 
of the window size) toward the middle of the scan at longer window lengths 
(fig. S4). In other words, the most identifiable frames do not seem to 
have a preferable time location along the resting-state fMRI scans.

These bursts of identifiability might be strongly associated with 
neuronal activity, as the regularized deconvolution with the hemo-
dynamic response function did not tamper the identification rates 
obtained (fig. S1). It is known that mammalian cortical neurons inter-
act in functionally relevant oscillating networks, which span across 
a broad frequency range (28). There is also recent evidence that ep-
isodic local field potential oscillations elicit whole-brain fMRI activity: 
For instance, hippocampal population burst appears temporally 
bounded by massive activations of association and primary cortical 
areas in monkeys (29). On the basis of our findings on human dy-
namic fingerprints, we conjecture that this burst of neuronal activity 
might be one of the sources of this subject specificity and therefore 

Fig. 4. Time scales of brain fingerprints. (A) Top: Edgewise intraclass correlation (ICC) for the most identifiable frame as a function of temporal scale. The ICC matrices 
are thresholded at 0.4, which is usually a lower limit to define a good ICC score (55, 56). The ICC matrices are ordered according to the seven resting-state subnetwork 
organization proposed by Yeo and colleagues (59), specifically visual (VIS), somatomotor (SM), dorsal attention (DA), ventral attention (VA), limbic (L), frontoparietal (FP), 
and default mode network (DMN). For completeness, an eighth subcortical subnetwork (S) was added at the end (see the “Brain atlas” section in Materials and Methods for 
details). Bottom: The ICC edgewise scores on top are averaged across Yeo functional networks to better visualize patterns within and between functional subsystems. 
(B) To assess the temporal profile of dynamic brain fingerprints, the nodal ICC (sum across rows of the ICC matrices) averaged within Yeo functional networks is plotted 
across a more detailed time frame (from 3.6 to 576 s, in 10.8 s steps) for the unthresholded (left) and thresholded (right) ICC matrices. (C) The maximum value across 
temporal profiles at each brain node is then overlaid onto a brain render to obtain a brain map of the time scales of human brain fingerprints. The maximum value for 
each brain node was obtained from the unthresholded nodal ICC values after “smoothing” the curve [with a 50-s moving average, corresponding to five points in (B), left 
plot] to reduce sampling variability and minimize the effects of local maxima.
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closely related to the transient burst in identifiability observed 
(Fig. 3 and fig. S1).

Furthermore, previous studies (6,  11) showed that the main 
drivers of the uniqueness of each individual functional connectome 
reside in the brain areas devoted to higher-order cognitive func-
tions, such as frontoparietal and DMNs. We found compelling evi-
dence that different parts of connectome fingerprints are optimal at 
different time scales (Fig. 4). Each region contributes differently to 
fingerprinting at a specific time scale, i.e., more visual-somatomotor 
at short temporal windows and more frontoparietal-DMN driven 
with increasing temporal windows. These findings open up inter-
esting speculation on the link between individual connectivity pro-
files and the information content associated with the windowed 
BOLD time series. Maybe higher-order cortical fluctuations contain 
more slow long-range information that is lost when looking at short 
windows within them?

Along this line of thinking, our work also provides two new in-
sights into the relationship between resting-state connectome stability 
(30) and fingerprinting, which is still largely unknown. Notably, 
having stable connections across time and subjects seems not to be 
necessarily related to high brain fingerprinting. A good example is 
provided by the limbic network, which appears to be highly stable 
across subjects and scans (Fig. 3B) but poorly identifiable (Fig. 4). 
The limbic network is known to be highly susceptible to scanner 
noise/artifact due to the proximity to the sinuses and is also already 
known to contribute less to individual identification than other cor-
tical networks (11). However, the limbic system is also known to be 
responsible for emotional processing and the processing of dangerous 
elements in the environment (31). The thought that a stable primi-
tive network of emotional processing, common to all human brains, 
did not develop to differentiate individuals but merely to generate 
common (groupwise) responses to external danger is intriguing (32).

Human brain regions appear to be broadly differentiated into 
different aspects of behavior and cognition, and the temporal dy-
namics of neuronal populations across the cortex are thought to be 

reflective of this specialization (33–36). For example, primary sen-
sory neurons are tightly coupled to changes in the environment, 
firing rapidly to the onset and removal of a stimulus and showing 
characteristically short intrinsic time scales. In contrast, neurons in 
cortical association (or transmodal) regions exhibit longer firing 
patterns when a person is engaged in higher-order cognitive tasks 
(33). Here, we hypothesized that the difference in the brain finger-
print spatial patterns might be tightly linked to the neuronal time 
scale of the different cognitive processes taking place in a resting 
human brain (Fig. 4).

The temporal scales of fingerprinting can be related to behavior 
in a meaningful way (Fig. 5). Using the Neurosynth (37) meta-analytic 
approach, we showed that there is a broad spectrum of associations 
with behavior. At faster time scales, human brain fingerprints are 
linked to multisensory stimulation, eye movements, affective pro-
cessing, and visuospatial attention. At slower time scales instead, we 
find higher-cognitive functions, such as language and verbal semantics, 
awareness, declarative and working memory, and social cognition 
(Fig. 5). This is in line with previous work showing that early visual 
areas (e.g., primary visual cortex and motion-sensitive areas) exhib-
ited high response in short temporal receptive windows, as opposed 
to several higher brain areas (e.g., superior temporal sulcus, precu-
neus, and temporal parietal junction), which was affected by infor-
mation accumulated over longer time scales (14). It also corroborates 
recent evidence of intrinsic neuronal time scales observed in mag-
netoencephalography (MEG) data where core-periphery organiza-
tion reflects slower-faster time scales, respectively (38). Our findings 
also suggest that different subtypes of spontaneous (“resting-state”) 
cognitive processes are detectable in specific patterns of time-varying 
FC, depending on the chosen window. Studies of attentional fluctu-
ations, memory reactivation, and the relationship between baseline 
brain activity and variation in perception have each shown that 
spontaneous and transient changes in BOLD FC are relevant to be-
havior and experience (39). By building on the extant literature, our 
finding reveals the link between the individual behavioral relevance 

Fig. 5. Brain fingerprints are associated with behavior across time scales. The Neurosynth meta-analysis of the brain fingerprints maps across time scales (from 50 to 
770 s, in steps of 15 s) shows a spectrum of association with low-sensory regions at fast time scales, ending up into higher-order processing. The brain fingerprint maps 
were masked by selecting only the top 25% brain nodes at each time scale.
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of specific functional networks and the associated time scale at 
which they are manifested.

Notably, these findings are also in line with recent evidence that 
neuronal time scales follow cytoarchitectonic gradients across the 
human cortex and are relevant for cognition in both short and long 
terms (33). Particularly, neuronal time scales increase along the principal 
sensorimotor-to-association axis across the cortex and align with 
macroscopic gradients of gray matter myelination (T1w/T2w ratio) 
and synaptic receptor and ion channel gene expression (33). Previ-
ous work also suggests that functional cortical networks are organized 
as two large ring-shaped networks (differentiated by their preferred 
information processing mode) (40). The first ring comprises visual, 
auditory, somatosensory, and motor cortices that process real-time 
world interactions; the second ring includes parietal, temporal, and 
frontal regions, with networks dedicated to cognitive functions, 
emotions, biological needs, and internally driven rhythms. There is 
evidence that the patterns of gene expression organize the cortex 
into two sets of regions that match the two rings (40). Overall, the 
correspondence between the temporal maps of dynamic brain finger-
prints and the genetic/cytoarchitectonic profiles, as well as behaviorally 
relevant gradients (21), opens up more fascinating questions on the 
relationships between these gradients and human brain identifiability.

This work comes with some limitations. First, the impact of the 
choice of the brain atlas should be further verified. Second, we ex-
amined temporality of brain fingerprints here using sliding window 
analysis. Future studies should also consider other approaches, such 
as edgewise connectivity (41) or more advanced dynamic FC models 
(42). Third, as is well known, connectivity measures are highly sus-
ceptible to artifacts arising from head motion and respiratory fluctua-
tions (43, 44), and these effects are even more pronounced in 
dynamic FC, where there are fewer time points available for a robust 
correlation. However, the data points with high motion present in 
the data did not seem to be a contributor to the differences in finger-
printing across time scales reported here (fig. S5). Notably, the main 
findings reported in Fig. 3 (B and C) across temporal scales could be 
replicated when excluding motion-affected fMRI volumes (average 
correlation between the SD patterns with and without scrubbing: 
0.99 ± 0.01; median patterns: 0.988 ± 0.001) from the most identifi-
able dynamic FC frames. Nonetheless, future work should dig deeper 
on the effect of motion at shorter time scales, where these artifacts 
can particularly dominate.

The investigation on the relationship between transient activa-
tion and brain identifiability (fig. S2) suggests that identification is 
unlikely to be explained only as a by-product of hemodynamics. 
Hence, it would be also interesting to compare the findings from 
this study, which are based on fMRI resting-state data, with data 
coming from fMRI task analysis, or even other neuroimaging modali-
ties, such as EEG (electroencephalography) or MEG. This would 
allow us to extend the range of accessible time scales across modal-
ities for dynamic identification. This work also opens the avenue of 
relating functional brain fingerprints with the underlying structural 
architecture. Recent studies have shown that building FC matrices 
from (very) long resting-state fMRI sessions leads to very good 
proxies for SC (45). Similarly, it has been shown that longer fMRI 
sessions [up to a plateau (11)] improve identification. Furthermore, 
function-structure dependency was recently shown to follow a 
brain pattern extremely consistent with the gradient found here for 
brain fingerprints (20). Future work on identifiability and its asso-
ciation with SC seems therefore worth exploring.

In summary, we have here explored the temporality of the 
human brain fingerprint. We have shown that fingerprints are 
intertwined with the time scales of functional brain connectivity and 
possibly associated with transient bursts in brain activity. This in-
vestigation is promising based on these first findings and represents 
a step toward a better understanding of what and when makes our 
brains unique.

MATERIALS AND METHODS
HCP data: Functional preprocessing
The fMRI dataset used in this work is from the HCP (www.
humanconnectome.org), Release Q3. We assessed the 100 unrelated 
subjects (54 females and 46 males, mean age = 29.1 ± 3.7 years) as 
provided from the HCP 900 subjects data release (22, 46). Per HCP 
protocol, all subjects gave written informed consent to the HCP 
consortium. The fMRI resting-state runs (HCP filenames: rfMRI_
REST1 and rfMRI_REST2) were acquired in separate sessions on 
two different days, with two different acquisitions (left to right or 
LR and right to left or RL) per day (47, 48). For all sessions, data 
from both the LR and RL phase-encoding runs were used to calcu-
late connectivity matrices to have four functional connectomes 
(one LR test-retest pair, one RL) per subject. For this study, we used 
the minimally preprocessed HCP resting-state data (47), with the 
following preprocessing steps. First, we applied a standard general 
linear model regression that included detrending and removal of 
quadratic trends; removal of motion regressors and their first derivatives; 
removal of white matter, cerebrospinal fluid signals, and their first 
derivatives; and global signal regression (and its derivative). Second, 
we bandpass-filtered the time series in the range of 0.01 to 0.15 Hz. 
Last, the voxel-wise fMRI time series were averaged into their 
corresponding brain nodes of the atlas (see the next section) and 
then z-scored.

Brain atlas
We used a cortical parcellation into 400 brain regions as recently 
proposed by Schaefer and collaborators (49) (freely available at 
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_
projects/brain_parcellation/Schaefer2018_LocalGlobal). For com-
pleteness, 16 subcortical regions and 3 cerebellar regions were also 
added, as provided by the HCP release (filename “Atlas_ROI2.nii. gz”), 
resulting in a final brain atlas of 419 brain nodes.

Dynamic FC estimation
To assess brain fingerprints across time scales, we performed slid-
ing window analysis (42). The sliding window scheme is the follow-
ing: First, a temporal window, parameterized by its length w, is 
chosen, and within the temporal interval that it spans (i.e., from 
time t = 1 to time t = w), connectivity is computed between each 
pair of time courses as Pearson correlation coefficient, producing 
one instance of the “dFC” (Fig. 1A). Then, the window is shifted by 
a step T, and the same calculations are repeated over the time inter-
val (t = 1 + T, t = w + T). This process is iterated until the window 
spans the end part of the time course to obtain a set of connectivity 
matrices (i.e., dFCs), summarizing the temporal evolution of whole-
brain FC (Fig. 1A). In this work, we started by exploring six differ-
ent window lengths w, specifically of 7.2, 36, 72, 144, 288, and 576 s 
each, and the sets of dFCs associated with them (the number of 
brain regions is equal to 419). The choice of the shortest window 
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length did not consider the recommendation of previous work (50) 
based on stationarity assumptions; instead, we opted to allow tran-
sient nonstationary events at the level of edgewise FC (41) to be 
fully present in the dFCs at the risk of potential aliasing. The win-
dow step T was fixed to 7.2 s in this study [note that because the 
repetition time (TR) of HCP is 0.720 s, 7.2 s corresponds to 10 fMRI 
data points]. Specifically, we studied the evolution of brain finger-
printing across different temporal windows, as detailed in the 
next section.

Dynamic identification
The idea on dynamic identification was inspired by recent work on 
maximization of connectivity fingerprints in human functional 
connectomes (11). In that work, the authors defined a mathematical 
object known as “identifiability matrix,” which is a similarity matrix 
encoding the information about the self-similarity (Iself; main diag-
onal elements) of each subject with herself/himself, across the test/
retest sessions, and the similarity of each subject with the others (or 
Iothers; off-diagonal elements). The similarity between two func-
tional connectomes was quantified with the Pearson’s correlation 
coefficient between the entries of the connectivity matrices. The dif-
ference between Iself and Iothers (denominated “differential identi-
fiability” or “differential identification,” Idiff) provides a robust score 
of the fingerprinting level of a specific dataset (11). This idea needs 
to be extended in the case of dFC evaluation, because in addition to 
the test/retest set, the set of dynamic frames of connectivity is esti-
mated (fig. S1, A and B). For a fixed window length w, the resulting 
dynamic identifiability matrix (fig. S1C) dI is then a block diagonal 
matrix, where each block represents the self-similarity within the 
dFC frames of a specific subject. The off-diagonal blocks, in this 
representation, encode instead the between-dFC frames similarity 
across different subjects (dynamic Iothers). Let SMT = {dFC1, dFC2, 
…, dFCN} be the set of dFC frames in the test session for a specific 
subject M. Similarly, let SMRT represent the set of dFC frames in the 
retest session for the same subject M. We can then define the dy-
namic Iself (dIself) for subject M as

  

dIself(M ) =   
 ∑ i∈ S  M T               ∑ j∈ S  M RT              corr( dFC  i  ,  dFC  j  )   ──────────────────  

 |    S   M  T     |   ×  |    S   M  RT     |  
   =   

 ∑ i∈ S  M T               ∑ j∈ S  M RT               dI  ij    ───────────  
 |    S   M  T     |   ×  |    S   M  RT     |  

    

where ∣SMT∣, ∣SMRT∣ define the cardinalities of the sets. Similarly, 
let ∣SFT∣, ∣SFRT∣ define the sets for a different subject F. We can define 
dynamic Iothers as

   dIothers (M, F ) =   1 ─ 2   (     
 ∑ i∈ S  M T               ∑ j∈ S  F RT               dI  ij    ───────────  

 |    S   M  T     |   ×  |    S   F  RT     |  
   +   

 ∑ i∈ S  F T               ∑ j∈ S  M RT               dI  ij    ───────────  
 |    S   F  T     |   ×  |    S   M  RT     |  

   )     

and hence

  dIothers(M ) =   
 ∑ F=1  S    dIothers(M, F)

  ──────────── S − 1  , F ≠ M  

where the summation is over the total number of subjects S other 
than M. Last, dIdiff for a subject M results in

  dIdiff(M ) = dIself (M ) − dIothers (M)  

and the average dIdiff

  dIdiff =   
 ∑ M=1  S    dIdiff(M)

  ─ S     

Furthermore, we also used the identification scoring method 
known as SR (6), which can be easily computed in the dynamic do-
main from dIself and dIothers, as the percentage of times dIself is 
greater than dIothers, across subjects (averaged across test-retest 
and retest-test). We used dIdiff and SR to explore connectivity finger-
prints across different window lengths. Note that we first evaluated 
dynamic identification of the LR and RL connectome pairs sepa-
rately and then averaged the corresponding LR/RL dynamic identi-
fiability matrices into one.

Null model for identifiability scores
To assess the statistical significance of the observed differential 
identifiability and SR scores, we designed the following permuta-
tion testing framework: At each iteration of the permutation testing, 
subjects’ test-retest dynamic connectome frames were randomly 
shuffled, and then differential identifiability and SR were computed 
on the randomized dynamic identifiability matrix. This procedure 
was repeated 150 times to generate a “null” distribution for differ-
ential identifiability and corresponding SR scores. The observed 
differential identifiability and SR values were then compared against 
their corresponding null distribution to determine their significance. 
Last, the obtained P values were Bonferroni-corrected (51) for mul-
tiple comparisons across the six time scales evaluated.

Maximum dynamic dFC frame selection
The dynamic identification framework described above provides 
the average behavior of fingerprinting within and between dFC 
frames. However, there might be dynamic FC frames where identi-
fication is higher than others, which might not be captured by the 
average behavior depicted by dIdiff. To cover the necessity of that, 
for each subject, we sorted the dFC frames in test-retest according 
to their similarity, from highest to lowest, based on their dIselfij value 
(see dIself equation above). We then explored dIself, dIothers, and 
dIdiff when iteratively adding dFC frames one at the time, starting 
from the best matching ones and then proceeding based on their 
similarity values.

Transient (total activation) analysis
The total activation (TA) framework (19) incorporates two main 
features for fMRI data processing: (i) Each voxel’s BOLD time course 
is deconvolved from the temporal blur introduced by the hemo-
dynamic response, leading to the activity-inducing signal that is 
supposed to show block-type activation patterns (without any prior 
knowledge on the timing and duration of these blocks), and (ii) 
BOLD signals should show a spatial smoothness, which is supposed 
to be stronger within anatomical atlas regions than across. With 
that aim, TA solves a convex optimization problem that consists of 
a least-squares data-fitting term combined with spatial and tempo-
ral regularization terms. TA produces denoised and well-behaving 
reconstructions of the activity-related, activity-inducing signals, de-
coupled from the hemodynamics. We used this framework to study 
dynamic identification properties of dFC obtained from transient 
brain activity and compare it to the results obtained with the origi-
nal dFC frames.

Dynamic edgewise identification
We quantified the edgewise reliability of individual dynamic FC 
frames across different temporal windows by evaluating the ICC 
coefficient (52), similarly to previous work (11). ICC is a widely 
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used statistical measure to assess the percent of agreement between 
units of different groups. It describes how strongly units in the same 
group resemble each other. The stronger the agreement, the higher 
its ICC value. We used ICC to quantify to which extent the connec-
tivity value of an edge in an FC frame (i.e., FC value between two 
brain regions) was consistent across test/retest acquisitions and could 
separate within- and between-subject data. Specifically, we used the 
ICC(1,1) variant, which is usually used to estimate agreement in 
exact values when sources of error are unspecified (53, 54). In other 
words, the higher the ICC, the higher the “fingerprint” of the edge 
connectivity. Note that we thresholded the resulting ICC matrices 
at 0.4, which is usually a lower limit to define a “good” ICC score 
(55, 56). Last, the nodal strength of the ICC edgewise matrix (i.e., 
sum over columns, evaluated with and without thresholding the ICC 
matrix; see also Fig. 4) was used as a “nodal fingerprinting score” of 
how central each brain region is to connectome identification.

Significance of dynamic edgewise identification
To better characterize the ICC results in dFCs presented in Fig. 4, 
we performed a permutation testing analysis. Concretely, we evalu-
ated ICC scores in 100 surrogate datasets where subject labels have 
been randomly shuffled (fig. S3). Comparing these ICC scores to 
the original ICC scores presented in Fig. 4A allowed us to evaluate 
the extent to which the best matching connectivity patterns in test 
and retest datasets at different time scales are unique to the subjects.

Brain fingerprints and behavior
A Neurosynth meta-analysis (https://neurosynth.org/) similar to 
the one implemented in previous studies (20, 21) was conducted to 
assess topic terms associated with brain fingerprints across time 
scales. First, we created 50 regions of interest binary masks of brain 
fingerprints at different time scales (from 50-s windows to 770 s, in 
steps of 15 s). The binary masks were obtained by selecting the top 
25 percentile of ICC nodal strength at each time step. Each obtained 
binary mask provides a nodal representation of the brain region 
“hubs” involved in dynamic fingerprints at a specific time scale. 
Next, these maps were used as input for the meta-analysis to find 
significant associations between the ICC hub masks and the brain 
binary maps related to 50 topic terms common in the neuroimaging 
literature (15, 16). Neurosynth outputs, for each dynamic finger-
print binary mask and topic term binary mask, a nodal z statistic 
that assesses the similarity between the two maps. Last, we ordered 
the terms according to the weighted mean of the resulting z statis-
tics for visualization, considering significant any association between 
dynamic fingerprints and cognitive maps above z > 3.1 (20, 21).

Effects of motion on most identifiable dynamic FC frames
To test whether top identifiable frames, especially at faster temporal 
scales, where affected or driven by motion, we performed the fol-
lowing analyses: (i) We evaluated the percentage of censored volumes 
by tagging fMRI volumes with high framewise displacement scores 
[here defined as relative root mean square (RMS) distance between 
frames greater than >0.2 (57, 58); HCP file: “Movement_RelativeRMS.
txt”] across the top identifiable k FC frames. In other words, we 
aimed to assess how many poor-quality volumes were contributing 
to the identifiability metrics reported. (ii) We evaluated the edge-
wise SD and edgewise median for the most identifiable frames 
across temporal scales, before and after motion scrubbing of the 
censored volumes.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj0751

View/request a protocol for this paper from Bio-protocol.
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