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Abstract—Tomographic reconstruction from positron emission
tomography (PET) data is an ill-posed problem that requires
regularization. An attractive approach is to impose an �-regu-
larization constraint, which favors sparse solutions in the wavelet
domain. This can be achieved quite efficiently thanks to the
iterative algorithm developed by Daubechies et al., 2004. In this
paper, we apply this technique and extend it for the reconstruction
of dynamic (spatio-temporal) PET data. Moreover, instead of
using classical wavelets in the temporal dimension, we introduce
exponential-spline wavelets (E-spline wavelets) that are specially
tailored to model time activity curves (TACs) in PET. We show
that the exponential-spline wavelets naturally arise from the
compartmental description of the dynamics of the tracer distri-
bution. We address the issue of the selection of the “optimal”
E-spline parameters (poles and zeros) and we investigate their
effect on reconstruction quality. We demonstrate the usefulness of
spatio-temporal regularization and the superior performance of
E-spline wavelets over conventional Battle-Lemarié wavelets in a
series of experiments: the 1-D fitting of TACs, and the tomographic
reconstruction of both simulated and clinical data. We find that
the E-spline wavelets outperform the conventional wavelets in
terms of the reconstructed signal-to-noise ratio (SNR) and the
sparsity of the wavelet coefficients. Based on our simulations, we
conclude that replacing the conventional wavelets with E-spline
wavelets leads to equal reconstruction quality for a 40% reduction
of detected coincidences, meaning an improved image quality for
the same number of counts or equivalently a reduced exposure to
the patient for the same image quality.

Index Terms—Differential system, E-spline wavelets, �-regular-
ization, spatio-temporal positron emission tomography (PET) re-
construction, time-activity-curves.
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I. INTRODUCTION

DYNAMIC positron emission tomography (PET) is a
molecular imaging technique that is used to monitor the

in vivo spatio-temporal distribution of a radiolabeled tracer. Dy-
namic imaging provides richer information than conventional
static PET imaging and has the ability to generate quantitative
information about physiological parameters through the identi-
fication of kinetic or compartmental models.

PET data are collected as projections in sinograms or list-
mode format. Tomographic reconstruction is required to obtain
the spatial distribution of the radioactive tracer from these indi-
rect measurements. Dynamic PET reconstruction is challenging
due to the small number of accumulated counts in each time-bin.
The standard paradigm is to constrain the solution using a reg-
ularization term, which acts as an implicit image model, and
makes the inverse problem well-conditioned [2], [3]. Various
flavors of regularization have been deployed for the reconstruc-
tion of static images [4]–[6]. Some of these methods have been
extended to perform spatio-temporal reconstructions [7]–[9].

A number of multiscale and wavelet-based methods have
also been proposed for solving inverse problems, the rationale
being that wavelets are very good at preserving edges. The
simplest among these are wavelet-based postprocessing tech-
niques, which have been successfully applied by several groups
in the context of dynamic PET reconstructions [10]–[12]; these
typically yield significant increases in signal-to-noise ratio
(SNR) without sacrificing spatio-temporal resolution. Wavelets
have also been incorporated into the reconstruction process
itself. Prominent examples are the wavelet-vaguelette [13], [14]
and vaguelette-wavelet [15] decomposition followed by thresh-
olding of the coefficients [16]. More recently, wavelet-based
regularization methods have been developed for solving inverse
problems including deconvolution [17], [18]. There is also a
connection between wavelets and some recent graph models
that have been developed for Bayesian tomographic reconstruc-
tion from Poisson data [19], [20].

The more recent class of methods is based upon the idea of
imposing a sparsity constraint by penalizing the -norm of the
wavelet coefficients : this leads to a criterion of the form (see
[1])

(1)

where the imaging operator expresses the forward model from
the spatial object to the observations , where is
the tuning (or regularization) parameter, and where denotes
the 2-D wavelet transform of the object . The use of
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the -term for the regularization favors a sparse wavelet repre-
sentation with the advantage that the functional is convex. An-
other interesting aspect is that this criterion can be optimized
using the iterative thresholding algorithm of Daubechies et al.
[1]. In this paper, we extend the nonparametric static reconstruc-
tion that would follow from (1) to a dynamic (spatio-temporal)
setting. Moreover, instead of using conventional wavelets in the
temporal dimension, we opt for E-spline wavelets [21] that are
better matched to the type of responses encountered in dynamic
PET studies. The key concept is that the activity distribution in
the body is ruled by a system of differential equations involving
compartmental models. The proposed E-spline wavelets are ide-
ally suited for the sparse representation of solutions of these dif-
ferential equations.

While we are not aware of any work in this area involving
wavelets, many researchers have shown the advantage of using
tailored temporal basis functions for the representation of TACs
in dynamic PET reconstruction. Snyder [22] proposed to use
rate functions described by convolutions of the input function
with a basis of exponential functions. Several teams have in-
vestigated the use of nonuniform B-splines and have reported
promising results [7]–[9], [23]. It has also been proposed to de-
rive the temporal basis functions from the data itself [24], [25].
Our work differs from these approaches in that the proposed
temporal basis functions form a (generalized) wavelet basis and
in that we make use of a global sparsity constraint in the
spatio-temporal wavelet domain.

The paper is organized as follows. In Section II, we briefly
review PET image formation and the wavelet image represen-
tation. In Section III-A, we discuss the key properties of the in-
troduced E-spline wavelets. In Section III-B, we review the pri-
mary compartmental models that have been proposed for mod-
eling PET time activity curves. We show that the time course
can be obtained as the solution of a differential equation which
provides us with an explicit link with the E-spline wavelet repre-
sentation. In Sections III-C and III-D, we discuss and illustrate
the selection of E-spline wavelet parameters (poles and zeros)
in a realistic simulation. In Section IV, we address some imple-
mentation issues concerning the system model, the reconstruc-
tion algorithm, the prefilter and tuning of the threshold param-
eter. Finally, in Sections V and VI, we perform an evaluation of
the regularization and the E-spline wavelets using 1-D and
3-D computer simulations and illustrate the application of the
method to two clinical data sets.

II. SPATIO-TEMPORAL RECONSTRUCTION

PROBLEM FORMULATION

A. Image Formation

We consider the problem of reconstructing a (nonnegative)
spatio-temporal activity distribution from dynamic
PET data [2], [3]. The basic physical model of the spa-
tially-variant imaging operator1 is a spatially-weighted inte-
gration of

(2)

1In the current setting, we assume a temporally-invariant system model
corresponding to a full-ring detector with no rotating parts as usually encoun-
tered in PET systems.

Fig. 1. Diagram representation of the data acquisition. Forward model is
illustrated by the gray tube, coincidence bin � is formed by the black detector
crystals. Noise term � is added to the data that are collected in a number of
shorter time frames indexed by � and � corresponds to the start time of frame �.
General sampling consists of a temporal integration ��� followed by a sampling

��� � � �.

where represents the tube-shaped sensitivity profile
of the coincidence detector . The discretized version reads

, where the sum is over all pixels . At
coincidence in bin , we observe an inhomogeneous Poisson
process with rate density .

The sinogram is acquired progressively by collecting data in
a number of short time frames. In the present setting, all time
frames are long. The general data sampling is therefore
modelled as a temporal integration at the coincidence bins

(3)

where denotes the number of detected counts in bin
during the th time frame, corresponds to the start time
of frame , if and zero elsewhere.
The noise is conceptually modelled as an additive noise term

. The acquisition process is illustrated in
Fig. 1.

By convention we define one time-unit as so that we con-
sider integer frame start times: .

B. Wavelet Regularized Formulation

Denoting as the spatio-temporal wavelet transform of , the
regularized-reconstruction task is thus to find the nonnegative
minimizer of the criterion

(4)

The first term is the data term and is given by the difference be-
tween the projections of the reconstruction and the
measured projections . This least-squares term can be associ-
ated to a Gaussian noise model. The second term is a penalty
that stabilizes the reconstruction. It is given by the -norm of
the (spatio-temporal) wavelet coefficients of which favours
a sparse description of the image in the wavelet domain. The
tuning parameter controls the data-fit versus regularity trade-
off. The key difference with (1) is that we have extended the op-
timization over the temporal dimension, which is potentially ad-
vantageous for noise reduction, especially when there is a strong
correlation within TACs.
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The main contribution of this paper is our special treatment
of spatio-temporal regularization. This is achieved by using dif-
ferent types of wavelets in space and time, respectively. This
approach is inspired from the fact that the spatial and temporal
characteristics of the image are very different. In the spatial do-
main, we use B-spline (Battle-Lemarié) wavelets that have been
extensively used in (biomedical) imaging (e.g., [26], [27]). In
the temporal domain, we are introducing E-spline wavelets. This
methodology can be easily implemented by considering a sep-
arable wavelet basis. Using a tailored wavelet basis will result
in a much sparser representation of the image. The sparse de-
scription of the true image in the wavelet domain is an impor-
tant prerequisite to the success of the criterion (4); indeed, the
basic motivation for using the proposed penalty is that it is a
good proxy for the -norm, which is a direct measure of spar-
sity but which has the disadvantage of being nonconvex. It has
been proven that this works well provided that the true signal is
sufficiently sparse [28].

Formally we represent the activity distribution
by an expansion onto an orthogonal wavelet basis [29], [30]

(5)

where and are the scale and
translation parameter vectors, the wavelet coefficients and

the basis functions which are either wavelets or
scaling functions. We use wavelets that are separable in space
and time

(6)

where are the 1-D continuously-defined
wavelets; the subscript (1) and (2) denote B-spline and E-spline
wavelets, respectively. Note that we use the same wavelets

for the two spatial dimensions.
In the next sections, we will present the link between the

E-spline defining differential operator [21] and the system
of differential equations that rules the PET signal.

III. TEMPORAL MODEL SELECTION

A. E-Spline Wavelets

E-spline wavelets are a generalization of B-spline wavelets
and are specified by the exponential parameter vectors (poles)
and (zeros). The dimension of vector is and the vector
consists of distinct ’s of multiplicity with

. The dimension of is with . The interest
of using E-spline wavelets is that they generalize the vanishing
moments property of the conventional wavelets. Let be
an E-spline wavelet defined by and then we have that [21],
[31], [32]

(7)

We say that has vanishing exponential moments. This
implies that the E-spline wavelets are able to kill all exponential
signals of the form

(8)

where are arbitrary coefficients. This property of the E-spline
wavelets translates into a sparse representation of piecewise
exponential signals as many wavelet coefficients vanish. A
sparse description of the signal is an important prerequisite to
the success of the penalty. Note that we recover the B-spline
wavelets of degree if and all ’s are 0 [21].
Further details are discussed in Appendix.

The corresponding E-spline function-space is a generaliza-
tion of the classical polynomial splines. The E-spline specified
by , and knots is
a function that contains discontinuities of order at the knot
points but that is very smooth otherwise [31]. Formally, the
E-spline function-space is given by [31]

(9)

where the underlying linear differential operator is defined
in the Laplace domain as

(10)

The operator corresponds to the linear differential system

(11)

where is the th-order derivative, and corre-
spond to the roots of the polynomials
and , respectively. Note that if
and all ’s are 0 the function-space corresponds to the polyno-
mial splines (which we will denote as ).

In the right part of Fig. 2, some E-splines are illustrated. From
this figure and (9), an alternative interpretation of the E-spline
wavelets’ ability to generate a sparse representation of exponen-
tial signals is apparent. Clearly, if there are only few then

generates a sparse description of the exponential
signal. In [21] it is shown that the E-spline wavelets essen-
tially behave as multiscale versions of the underlying operator

(see also Appendix A) thus generating a sparse wavelet
representation of .

B. Compartmental Models for PET

The motivation to use E-spline wavelets for the representa-
tion of the temporal variations of the radiotracer is that we can
interpret the TACs as E-splines. To show this, we need to iden-
tify the underlying differential operator. The left part of Fig. 2
illustrates how the operator is identified. The pulsetrain of
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Fig. 2. Typical exponential splines ���� encountered in dynamic PET. Top
row: time course of the intraveneous bolus injection; middle: infusion; bottom:
typical plasma activity concentration. Illustration of the link between the transfer
function ���� and the differential operator � ���. Left: generation of the
time curves as a response to short injection events. Right: analysis of the time
curves with the operator � .

stimulations on the left side of the figure represents short
events that correspond to the tracer injections; when the Laplace
transform of the spline-defining operator is matched to
the inverse of the transfer function of the system of dif-
ferential equations that generates the PET signal, then applying

yields back the pulses. The E-spline wavelet transform is
able to approximately replicate this behavior if the parameters
are chosen appropriately. The relevant transfer function can be
identified from the compartmental model description of the PET
signal [33]–[36].

1) PET Signal: The best known kinetic model is probably
the two-tissue compartmental model that describes the uptake
of [37], [38]. The system takes the blood plasma
activity as input and produces an output that corresponds to
the PET signal. We consider here a general time-invariant
linear tissue model that consists of tissue compartments
[34]. The system is conveniently described using a state space
representation

(12)

(13)

(14)

where the is the vector of state variables,
denotes the first derivative of , is the transition
matrix, is the input matrix, is the input
vector, is the observation vector, is the
observation matrix, is the feedforward matrix, and
is the vector with the initial conditions.

In our case, the state variables are the activity concentrations
in the individual tissue compartments and contains the rate
coefficients that describe the activity exchange between the indi-
vidual compartments. The input consists of two elements

: the (unmetabolized) activity in the plasma
and in the whole blood , respectively. The ob-
servation is the PET signal and we as-
sume that there was no activity present before the first injection:

. In general, the activity exchange between the blood

and the tissue is regulated by one single coupling between the
plasma activity and one individual tissue compartment

. This results in an input matrix , where
is the unit vector in the -direction.

The PET signal is composed of the total activity in the tissue
plus a contribution from the vasculature .

We can therefore write as and as , where
is the fractional blood volume and with is a vector

of ones. Using the Laplace transform, we have that

(15)

(16)

2) Plasma Activity: Compartmental models that transform
the time course of the activity measured in whole blood into the
time course of the radiotracer in plasma are given in [34] and
[39]. A similar state space analysis can be performed and we
have that .

3) Whole Blood Activity: Models describing the whole blood
activity have also been discussed [40]–[42]. These models take
the intravenous injected tracer concentration and trans-
form it into a whole blood activity signal. We have formally that

. It should be noted that the gamma-
variate that has often been used to fit the time course of the blood
activity functions [43], [44] can also be formulated as a solution
to a compartmental model [40].

4) Intravenous Injection: Differential models for the time
course of the intravenous injection for bolus and constant infu-
sion have been described in [42]. The simplest model for a bolus
is an instantaneous mixing in the plasma compartment. More re-
alistic models include one compartment [42] and we can write

, where is the Laplace transform of
the events . The models for bolus and in-
fusion injections are illustrated in the upper two rows of Fig. 2.

5) Total System: Specifically, the global effect is
that of a cascade of systems transforming the injec-
tion events into the PET signal as depicted
in Fig. 3. We have that , with

. Thus, we may
interpret the PET signal as an E-spline associated with the
differential operator for which holds

(17)

where represent the stimulation times. The parameter vec-
tors and are obtained as the poles and zeros of ,
respectively.

Note that we assume that the stimulation times of the pulse-
train correspond to the start times of the acquired time
frames. This approximation is appropriate if we choose the time-
unit small enough.

C. Selection of E-Spline Wavelet Parameters

When designing the temporal E-spline wavelets for
the PET reconstructions we need to specify the parameter vec-
tors and . However, the poles and zeros of the transfer func-
tion clearly depend on the rate coefficients that describe
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Fig. 3. Schematic representation of the cascade of systems transforming the
injection events ���� into the PET signal ����.

the exchange between the compartments. Unfortunately, most
tissue rate coefficients are unknown. In fact, the dynamic PET
experiments are being designed to estimate those coefficients.
In other words the transfer function is unknown. More-
over, when developing models for newly-developed tracers the
number of compartments in tissue, thus the order of ,
is unknown. Assigning the exact and prior to the PET re-
construction is thus impossible. Furthermore, different regions
in the image are described by different kinetic parameters.

The time courses of the whole blood and plasma activity,
on the other hand, are generally obtained from blood samples.
From these measurements the transfer functions , ,
and can be approximated.

In designing the multiresolution decomposition of the signal,
we have built in a certain robustness against the selection of
and . However, the more accurately the parameters and
are chosen, the sparser the signal can be represented, which is
advantageous for the regularization.

Therefore, we select a and vectors that approximately
capture the important properties of transfer function . The
appropriate selection of and is a study-dependent process.
As a general rule, we recommend to avoid the use of high orders

so that the constructed wavelets are reasonably localized. In
all our experiments, we have used vectors with . The
vector should contain at least one 0, so that the E-spline wavelets
are able to reconstruct the baseline. Other ’s are chosen to
model the high frequency behavior. In our experiments we have
used one additional of multiplicity 2 which approximately
modeled the highest frequency we expected in our data. An
important observation is that the tissue signal will not contain
higher frequency components than the whole blood and plasma
signal and that the whole blood activity will play an important
role in the selection of the high frequency characteristics of the
parameter vectors. Finally, in all our experiments, we have set

and we did not investigate the influence of . A specific
example of parameter selection is considered next. The robust-
ness of the method with respect to parameter variations will be
illustrated in the examples Section VI.

Fig. 4. Cardiac � �� � �� imaging simulation experiment. TACs for the
different regions and slice of the NCAT phantom (31 cm � 25 cm) with the
positions of the pixels used for the analysis.

D. Example: The Kinetic Model

We illustrate the parameter selection for a myocardial perfu-
sion study using -Ammonia PET. The corresponding spa-
tial distribution map and time activity curves are shown in Fig. 4.

This case is challenging as the image contains regions of
pure whole blood signal (the heart chambers) and tissue re-
gions where the transfer functions may be quite different.
Furthermore, myocardial perfusion studies are often performed
without arterial blood sampling. The time course of the left ven-
tricular activity is then taken as the blood input function for the
fitting of the tissue model to the data . Thus, neither

, nor are known prior to the reconstruction.
1) Whole Blood: The whole blood signal is well modelled

by [43]

(18)

with parameters (between 2–9), (between 0.5–0.11 ),
is reasonable small (no values given in [43]), and is scaled so
that the maximum of is approximately . The first term
is a gamma variate, the second term is the recirculation term.

In our case, we consider the TAC model
which corresponds to the impulse response of the

system with transfer function

(19)

In a first approximation, we cancel the terms
and , and approximate by a

constant in the frequency interval of interest. Thus, we select
the parameter vectors and .

2) Tissue Response: The tissue model is described by a two
compartmental model [43]. If we consider a pure tissue signal,
i.e., , then the transfer function for the tissue response
is given by

(20)
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TABLE I
TYPICAL VALUES FOR THE PARAMETERS OF THE

� �� � �� TISSUE RESPONSE

where and are parameters that depend on the rate constants
of the model such as the myocardial flow . Typical values for

and as found in humans [43] are given in Table I.
For low flow values it is easy to see that the system is well

approximated by an integrator . For higher flow values,
we can neglect the effect of and and the system is still rea-
sonably well approximated by an integrator . This is illus-
trated in Fig. 5 by the amplitude diagram of the transfer func-
tion and by the impulse responses of for dif-
ferent values of . This system requires the parameter vector

and .
3) Total System: The transfer function for the global system

is easily identified. We have that ,
, and . In the image,

there are regions of almost pure blood ( ) and of al-
most pure tissue . Therefore, the parameter vectors

and form a
good compromise for the modelling task.

IV. IMPLEMENTATION

A. System Model

The projector for the reconstruction was based on the line-
length model and involved multiple tracings per detector pair.
We have considered a 2-D system model. The clinical data were
therefore first rebinned into 2-D slices using the single slice re-
binning algorithm. The projector did not consider an attenuation
model. The clinical data were precorrected for attenuation while
the synthetic experiments did not include photon attenuation.

B. Reconstruction Algorithm

To find the minimizer of (4), we use the iterative thresholding
algorithm as proposed in [1], which computes the next estimate
of the image as

(21)

where is the iteration number, is the projector on the non-
negative functions (see Section IV-C), is the tuning parameter
[see (4)], and the nonlinear operator acts in the wavelet do-
main coefficient-wise

(22)

where is the soft-thresholding function

if
if
if

(23)

Fig. 5. E-spline parameter selection example. (a) Amplitude diagram of� ���
for a range of flow values �� �. For low values of � the amplitude character-
istic almost coincides with the amplitude characteristic of ��� (line of slope
�20 dB/decade). (b) Impulse response of the total tissue response� ���� ���.
Qualitatively the curves corresponds to an integration after a low-pass filtering.
Impulse response with � ��� � ��� (not shown) is very close to the curve for
� � 	�
.

One iteration nicely decomposes into three steps: an unregular-
ized update of the estimate followed by a denoising step [45],
[46] and a projection onto the nonnegative solutions. The de-
noising step (22) involves a wavelet analysis step , a
soft thresholding , and a wavelet synthesis step. In our
experiments, we have used a zero start image .

C. Approximation in

By including a full range of scales and spatio-tem-
poral translations in (5), the wavelet
functions can be specified to form an orthonormal basis
for the Hilbert space of square integrable functions

. In practice, we consider an approxima-
tion space , where
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is defined in Section III-A. The function-space is spanned
by the finest-scale scaling functions [29], [30]. The ap-
proximation is done by only considering wavelet
decomposition levels and by including the coarsest-scale
scaling functions . In (6), the (coarsest-scale) scaling

functions correspond by convention to .
To apply the wavelet decomposition algorithm, we first need

to approximate the reconstructed signal in . Conventionally,
the activity is represented as a time series of pixelated images.
The choice of pixels in the spatial domain is related to how the
projector is (spatially) discretized. The choice of bins in the
time domain may be imposed by the time resolution in the avail-
able data (list-mode format or a sequence of sinograms). We
have chosen to keep this simple image model and we will de-
note it as

(24)

where the time pixel is given by
, with and boxcar func-

tions and are the corresponding coefficients. This choice
may be imposed by the PET system and we will refer to the
space spanned by the time pixels as the sampling space . Note
that this image model is still possible for sinogram data with
nonuniform temporal bins by considering a uniform resampling
of the data.

It is useful to think of as generalized samples of the re-
constructed image . The samples are ob-
tained from an integration over the time pixel similar to (3). To
avoid loss in spatial and temporal resolution the pixels are
chosen small enough.

The coefficients of the approximation in can be ob-
tained from the generalized samples by a simple prefiltering
step, similar to the anti-aliasing filter in conventional sampling.
In the case of separable basis functions, we can implement the
filtering as separable 1-D filtering operations along the rows,
columns, and time dimension of . The 1-D prefilters
are designed using the principle of consistent sampling and are
given by the convolutional inverse of the cross-correlation se-
quence [47].

When we include this prefiltering step explicitly in the update
equation we get

(25)

where denotes the prefiltering operation that maps an image
from to following the consistent sampling methodology,

represents the inverse operation. The projector on nonneg-
ative functions works in the pixelized space and therefore
corresponds to setting pixels with negative values to zero.

D. Filterbank Implementation

The wavelet analysis and synthesis steps can be implemented
by means of a filterbank [29]. Explicit expressions for designing
the E-spline wavelet filters for given and can be found in
[21]. One important difference with B-spline wavelets is that
the analysis and synthesis filters depend on the decomposition

level ; this translates in selecting the appropriate precalculated
filters at every decomposition level. We have used orthogonal
wavelet transforms using IIR filters with exponential decay. The
filtering operations were performed in the Fourier domain using
the fast Fourier transform (FFT) algorithm. Since the consid-
ered wavelets are separable, the filterbank algorithm is applied
successively to the rows, columns, and time dimension of the
image. For the reconstruction of the simulated data, we used
mirror boundary conditions in both space and time. The gated
data were reconstructed using cyclic boundary conditions in the
time domain.

E. Shrinkage

For the data reconstruction, we have set for all de-
composition levels. The scaling-function coefficients were not
penalized. The total number of temporal decomposition levels,

, was kept constant for all experiments; i.e.,
, instead mentioned otherwise. The total number of spa-

tial decomposition levels was set to
. Because the spatial resolution in the initial approximation

space is already relatively low (e.g., pixel size 3.13 mm
3.13 mm in the cardiac phantom), we have selected .
We also considered the case of pure temporal regularization,
which can be seen as the special case . To avoid the
typical block artefacts when using the orthogonal DWT, we
have applied wavelet cycle-spinning, as proposed in [18]. This
method is easy to implement in the current setting; it aims at
achieving some level of translation invariance by choosing a ran-
domly-shifted DWT at each iteration of (21).

V. EXPERIMENTAL EVALUATION

A. One-Dimensional Evaluation of the E-Spline Wavelets

To illustrate the possibilities of the E-spline wavelets in dy-
namic PET reconstruction, we performed a 1-D denoising ex-
periment on a left and right ventricular blood pool time activity
curve as encountered in dynamic PET [43]. The
two time activity curves were given by exponential polynomials
[43]

(26)

with is 0.2 and 0.4 for the left ventricle (LV) and right ven-
tricle (RV), respectively. Fig. 4 depicts scaled versions of the
TACs. The poles and zero’s of the system with the used curves
as impulse response are given in Table II. The table also indi-
cate the cutoff frequency. The cutoff frequency corresponds, in
a first-order approximation, to the frequency where the slope of
the amplitude characteristic changes.

The wavelet decomposition consisted of five levels and we
included cycle spinning in the procedure. We used orthogonal
E-spline wavelets with where ranged from 0 to

1 in steps of 0.05. Note that we have used here a multiplicity
of 2 instead of 3 for the pole in order to illustrate the robustness
of the parameter selection.

Additionally we have considered modified versions of the
right ventricular input curve. First we reduced the multiplicity
of the pole 0.4, which corresponds to replacing with in
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TABLE II
POLES AND ZEROS AND THE CORRESPONDING CUT-OFF FREQUENCY � OF

THE RIGHT AND LEFT VENTRICULAR RESPONSE. THE IDEALIZED ��� AND ���

ARE COMPOSED OF THE ROOTS WITH MULTIPLICITY � CORRESPONDING

TO THE POLES AND ZEROS, RESPECTIVELY

Fig. 6. Brain � ������ imaging simulation experiment. TACs for the dif-
ferent regions. Vertical lines at 30 and 60 min indicate the displacement injection
and the coinjection times, respectively. And slice of the Zubal phantom (22 cm
� 18 cm) with the positions of the pixels used for the analysis.

(26) . We also included a curve without a recircu-
lation term . For the latter, we have also considered
the parameter vector .

The 1-D denoising experiment was also performed for a TAC
derived from a (FMZ) brain PET study [48].
The TAC corresponds to region 1 in Fig. 6. We used orthogonal
E-spline wavelets with where ranged from 0 to

2 in steps of 0.1.
The TACs were divided into 100 time bins and 1000 Poisson

realisations were generated. The curves were scaled to achieve
a data SNR of around 10 and 20 dB. We evaluated the SNR of
the curves reconstructed from the largest wavelet and scaling
coefficients ( -norm). The SNR was calculated from the sam-
ples at as

(27)

where are the samples of the denoised TAC.

To test the robustness, we have calculated the fraction of
tested exponential parameter vectors that outperformed the
B-spline wavelets with at least 5% in terms of reconstructed
SNR.

B. Tomographic Simulation Studies

We considered two (spatial + temporal) tomographic
simulations, a cardiac and -flumazenil (FMZ)
brain imaging experiment, respectively. The cardiac phantom
consisted of 100 time frames of 100 80 pixels

. The phantom was a slice of the NCAT phantom
containing the myocardium [49]. The phantom consisted of four
regions and four TACs were simulated for the left and right ven-
tricle, the myocardium and the background, respectively. The
time curves in the ventricles were given by the exponential poly-
nomials, as in Section V-A. The time curves of the myocardium
were derived from the left ventricular input function using a two
compartmental model [43]. The phantom and the time curves
are illustrated in Fig. 4.

The brain phantom consisted of 100 time frames of 100
80 pixels min . The phantom was a
mid brain slice of the Zubal brain phantom [50]. Five different
TACs were simulated as illustrated in Fig. 6. The kinetics of the
data are based on a multi-injection protocol using -FMZ
for quantification of benzodiazepine receptors [51]. The TACs
were synthesized from a measured input curve [48] and the 5
parameter compartmental ligand-receptor model [51]. The dif-
ferent responses were obtained using typical parameter values
for different regions. The five regions correspond to the tem-
poral cortex, pons, cerebellum, frontal, and occipital cortex for
region 1–5, respectively. At times min and min
labelled and unlabelled (displacement injection) ligand is in-
jected, respectively. At min both labelled and unlabelled
ligand are injected (coinjection), as illustrated in Fig. 6. The
sinogram data were generated using the decay corrected TACs.

The simulated PET system was set up as a geometric ap-
proximation of a commercial scanner consisting of 616 detector
crystals in a ring (radius 43 cm) [52]. Photons were emitted
back-to-back according to an inhomogeneous Poisson process
but no absorption and scatter effects were simulated.

We considered different ’s for each experiment: 1) the
B-spline wavelets using , corresponding to cubic
Battle–Lemarié wavelets and (2) E-spline wavelets of the form

with , , and and
with , , and for the cardiac and
brain imaging reconstructions, respectively.

We simulated 10 noise realizations of both phantoms. Each
realization consisted of about 800 000 and 1 400 000 detected
pairs for the cardiac and brain study, respectively. The recon-
structions were obtained after 100 iterations of (21) with
equal to zero. For each experiment, the reconstructed SNR fol-
lowing (27) with , the samples of the reconstructed
TAC at location was evaluated. There were 30 pixel
locations, 10 per representative region (left and right ventricle
and left myocardium and region 1–3 for the two experiments,
respectively). The pixel locations are illustrated in Fig. 4 and 6.
Thus, for the all regions we had 10 (ROIs) 10 (realizations)
reconstructed TACs.
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Fig. 7. One-dimensional denoising results for the right (a) and left (b) ventricle of the heart phantom and for region 1 (c) of the brain phantom. SNR as a function
of the number of nonzero coefficients and ��� � ��� �� ��. Top: input SNR around 10 dB and bottom: input SNR around 20 dB. Seven contour lines are drawn
with intervals of 0.5 dB. Input noise level is illustrated by the white dashed line. The number of non-zero coefficients achieving the highest SNR for different �
parameters is illustrated by the black dashed line. E-spline wavelet denoising can attain a higher reconstructed SNR using less coefficients.

TABLE III
ONE-DIMENSIONAL DENOISING RESULTS. OPTIMAL � AND THE RESPECTIVE

GAINS IN SNR AND NUMBER OF NONZERO COEFFICIENTS COMPARED TO

THE RESULTS USING B-SPLINE WAVELETS �� � ��

C. Clinical Data

We have reconstructed two different clinical data sets. One
dynamic -FDG study of the liver and one gated cardiac

-FDG study.
The 45 min dynamic liver study was acquired at the Ghent

University Hospital on a Philips Allegro PET/CT scanner
[52]. The data were acquired in list-mode format and were
then binned into 90 temporal frames of 30 s. To reduce the
computational cost, we used single slice rebinning (SSRB) to
create a stack of 3-D (2-D spatial + 1-D temporal) transaxial

sinograms. The SSRB [53] maps the oblique sinogram data
into equivalent transaxial sinograms. We reconstructed every
transaxial plane separately. The data were precorrected for
randoms using a smoothed version of the delayed events;
after randoms subtraction counts were left. Attenuation
precorrection was performed using the map available from the
scanner and generated from the CT image. We did not consider
scatter correction. The data were reconstructed in 90 temporal
frames of 30 slices (6 mm thick). The slices were 144 144
(4 mm 4 mm).

For this study, we have selected . We
have used mirror boundary conditions in the temporal and spa-
tial domain. The wavelet decomposition was made with three
decomposition levels .

We also considered a more conventional reconstruction we
have binned the data for the first 34 min into 17 nonuniform time
frames. The shortest time frames were used at the beginning of
the scan. There were six frames of 30 s, three frames of 1 min,
two frames of 2 min, and six frames of 4 min. The nonuniformly
binned data were preprocessed in the same way as the uniformly
binned data. The 17 time frames were reconstructed indepen-
dently without any spatial regularization. To compare these re-
constructions to the reconstructions using the spatio-tem-
poral wavelet regularization, we have postsmoothed the 17 indi-
vidual time frames using a 2-D Gaussian filter (smoothing in the
spatial domain). The FWHM of the Gaussian filter was chosen
so that the reconstructed images had approximately the same
spatial resolution at the injection site.

To further illustrate the range of applicability of our method,
we have performed reconstructions of a gated cardiac PET study
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Fig. 8. Tomographic reconstruction results of the cardiac imaging simulation. SNR as a function of � for the three regions and for a different number of spatial
decomposition levels. SNR obtained using the B-spline wavelets ���� � ��� �� ��� compared to the SNR obtained using E-spline wavelets (��� � �������������,
��� � �������������,��� � �������������). Dotted lines denote the maximal attainable SNR using ��� � ����� �� for data sets with 20%, 40%, and 60% more
counts, respectively. Completely unregularized solutions corresponding to � � � attained SNRs of less then 10 dB. It can be observed that appropriately chosen
E-spline wavelets consistently outperform B-spline wavelets.

acquired at the Geneva University Hospital. The data were ac-
quired on a Siemens Biograph PET/CT scanner [54] and the
cardiac cycle was divided into 20 gates. We have used SSRB to
reduce the computational cost. The original sinogram data con-
tained M counts. After SSRB with a maximal ring difference
of 16 this was reduced to M counts. The data were precor-
rected for randoms and for attenuation using an attenuation map
derived from the CT image [55]. We did not consider scatter
correction. We have reconstructed 40 slices (4 mm thick). The
slices were 184 184 (2.5 mm 2.5 mm).

In this study, the dynamics of the data are caused by the mo-
tion of the heart rather than by the activity exchange between
compartments. The dynamics are rather slow which led us to
select ; i.e., B-spline wavelets, which are a spe-
cial case of our framework. This example allows us to illus-
trate the effect of temporal regularization. We have used periodic
boundary conditions in the temporal domain to reflect the peri-
odicity of the heart phase. As before, mirror boundary condi-
tions were applied in the spatial domain. The wavelet decompo-
sition was made with three decomposition levels .

VI. RESULTS

A. One-Dimensional Evaluation of the E-Spline Wavelets

The results for the 1-D study are shown in Fig. 7 for the
left and right ventricle and the region 1, respectively. B-spline
wavelets corresponds to .

For high noise levels (close to 10 dB), the best results are ob-
tained with a low number of coefficients (less than 12), leading
to a very sparse solution. The best performance is obtained for

, , and and is about 1.1, 1.5, and

TABLE IV
IMPROVEMENT IN RECONSTRUCTED SNR USING E-SPLINE WAVELETS

COMPARED TO B-SPLINE WAVELETS ���� � ����� ��� FOR THE CARDIAC

IMAGING ���� � �������������� AND BRAIN IMAGING SIMULATIONS

���� � ������	����	��. HIGH NOISE RESULTS (TWO TIMES LESS COUNTS)
ARE DENOTED BY . TUNING PARAMETER IS

� � ��
 AND � � ���, RESPECTIVELY

0.8 dB better than the results for the B-spline wavelets for the
left and right ventricle and the region 1, respectively.

A higher number of coefficients can be used for the lower
noise level (around 20 dB). For , the best results are
obtained for a smaller number of coefficients as compared to
the B-spline wavelets. For the left ventricle, the best results are
obtained using with nine wavelet coefficients only
whereas the best results for the B-spline wavelets are found
when using 13 coefficients. This illustrates that a sparser repre-
sentation is possible when using appropriate E-spline wavelets.
Moreover, the best performance for is about 2.7 dB
better than for the best performance using . Similar results
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Fig. 9. Tomographic reconstruction results of the brain imaging simulation. SNR as a function of � for the three regions and for a different number of spatial
decomposition levels. SNR obtained using the B-spline wavelets ���� � ��� �� ��� compared to the SNR obtained using E-spline wavelets (��� � �������������,
��� � ���������, ��� � �������������). Dotted lines denote the maximal attainable SNR using ��� � ����� �� for data sets with 20%, 40%, and 60% more
counts, respectively. It can be observed that E-splines consistently outperform B-spline wavelets.

are obtained for the right ventricle. The maximal SNR gain of
the E-splines in this case was about 2.9 dB for and
required six coefficients less compared to the B-spline results.
The results for the modified curves and region 1 are summarized
in Table III.

Note that for the more complex TAC of region 1 there are
more coefficients required compared to the TACs of the LV and
RV.

Finally, from Fig. 7 and Table III, it can be seen that there is a
broad range of ’s that yields reasonably sparse representations
and that perform at least 5% better than the B-splines in terms
of reconstructed SNR.

B. Tomographic Simulation Study

The results for the tomographic reconstruction of the
simulation data are shown in Fig. 8. Again, the

highest reconstructed SNR is obtained when using the appro-
priate E-spline wavelets. The best results for the right ventricle
are found for and are only slightly better than the
results for . For , the results are in between
the results for and the B-spline wavelets .
The best results for the left ventricle are found for
and are only slightly better than the results for . The
results for are slightly worse than the results for the
B-spline wavelets . For the myocardium all the different
E-spline wavelets perform equally well. The results for the
three different curves reconstructed with the three different
exponential spline parameters illustrate the robustness of the
parameter choice.

A good compromise for the tomographic reconstruction is
. With this particular parameter vector,

the reconstructed SNR for the different regions is improved as
summarized in Table IV. We have also calculated the gains for
a high noise study containing two times less detected counts
( 400 000) than the original study. Fig. 8 also illustrates the
highest attainable SNR when using for the re-
construction of data sets with 20%, 40%, and 60% more counts,
respectively. Replacing the B-spline wavelets by the well tuned
E-spline wavelets correspond to a 20%, 40%, and 60% increase
in counts for the myocardium, left ventricle and right ventricle,
respectively.

Although the original TACs used for the -FMZ simula-
tion data, which are obtained from a linear interpolation of mea-
sured data, are not exactly exponential polynomials, we found
that all tested E-spline wavelets ( , 1, 1.5) out-
performed the B-spline wavelets in terms of reconstructed SNR
as illustrated in Fig. 9. This was true for TACs of the three
different regions, illustrating the robustness of the parameter
choice. The improvements for reconstructions using the two
types of wavelets are summarized in Table IV. The improve-
ments obtained by the E-spline wavelets is comparable to a 20%
increase of detected counts as indicated by the dotted lines in
Fig. 9.

In Fig. 10 temporal profiles for a pixel located in the left
ventricle are illustrated. For these curves, no spatial regulariza-
tion was applied. A regularized and unregularized

profile of a single pixel are depicted along with a mean
regularized profile. The mean profile was obtained as the mean
over the 10 pixel ROIs (Fig. 4) and over the 10 different noise
realizations.

Reconstructed slices using different spatial levels of de-
compositions are compared to the nonregularized solution in
Figs. 11 and 12.
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Fig. 10. Temporal profile for a pixel located in the left ventricle. Reconstruc-
tions are for ��� � ��� �� ��. Regularized reconstruction is for � � ��� with
only temporal regularization. Mean regularized reconstruction is the mean over
all 10 pixel ROIs (Fig. 4) and over the 10 realizations. (a) Time activity curves
for the low counts study. (b) Time activity curves for the high counts study.

C. Clinical Data

Reconstructed transverse slices, 45, 285, and 1185 s postin-
jection, of the dynamic liver data are illustrated in Fig. 13. The
slice position is chosen so that the slice contains the liver, a
kidney and the injection site. A 30-min-long temporal slice
illustrated in Fig. 13. The reconstructions are obtained after
100 iterations and using tuning parameters , ,
and , respectively. As a comparison, a reconstruction
using nonuniform temporal frames without any additional
temporal regularization is shown. The individual reconstructed
nonuniform frames were postsmoothed with a Gaussian filter.
The FWHM of the Gaussian filter was chosen so that all recon-
structed images had approximately the same spatial resolution
at the injection site. Finally, the nonuniform frames were lin-
early interpolated to correspond to uniform time frames of 30 s.

From Fig. 13, the different noise levels and spatial resolution
of the different reconstruction can be appreciated. The recon-

Fig. 11. Reconstructed slices using different number of spatial decomposition
levels using E-spline wavelets with ��� � �������������. Upper and lower
rows are spatial and temporal slices, respectively. The time and space locations
are indicated by the white bars.

Fig. 12. Reconstructed slices using different number of spatial decomposition
levels and tuning parameter � using E-spline wavelets with ��� � ���������.
Middle row are temporal slices. Time and space locations are indicated by the
white bars. Upper and lower spatial slices correspond with the upper (early time)
and lower (late time) bars in the temporal slice, respectively. Results in the third
column give a good compromise between spatial and temporal regularization.

structions using the E-spline wavelets have lower noise. While
for there is a low spatial resolution, the reconstruction
for and have resolution characteristics compa-
rable to the postsmoothed reconstruction.

Temporal profiles of single pixels are illustrated in Fig. 14.
The pixels are located in the injection site, the aorta, the liver,
and kidney. Note that for display we have scaled down the
TAC in the injection site by a factor 0.5. The profiles for
reconstructions using and are compared to
the postsmoothed reconstructions using the nonuniform time
frames. Again the different noise levels can be appreciated.

Transaxial and transverse slices of the reconstructions of the
gated data are illustrated in Figs. 15 and 16. The reconstruc-
tions are at 0% and 40% of the cardiac cycle and are obtained
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Fig. 13. Reconstructed slices of the liver data. Top three rows: transverse slices 45, 285, 1185 s postinjection (from top to bottom). Bottom row: temporal slice.
Time locations of the transverse slices are indicated by the horizontal bars. Location of the temporal slices is illustrated by the white vertical bars. The reconstruc-
tions are obtained after 100 iterations and using tuning parameters � � ��, � � ��, and � � ��, respectively. Postsmoothed reconstruction of the nonuniform
time frame data is illustrated in the right most column (post).

after 200 iterations using tuning parameters and
for Figs. 15 and 16, respectively. It is apparent that the

increased tuning parameter significantly reduces noise. Dif-
ferent levels of noise reduction can be achieved by changing the
tuning parameter.

VII. DISCUSSION

The iterative thresholding algorithm for linear inverse prob-
lems [1] was originally proposed for -penalties with

and for any orthogonal decomposition. We have considered
here the sparsity promoting penalty on a wavelet decomposi-
tion. In [56], it has been shown that the regularization per-
formed significantly better than the regularization. The
regularization could produce sparser representations while the

regularization tends to blur edges.
The concensus among researchers is that the likelihood term

has a great effect. However, in situations like ours where there
is a strong regularization, the exact functional form of the data
term is much less important. Yet, a topic of future research could
be to develop a version of [1] for Poisson noise.

The modular structure of the iterative thresholding algo-
rithm allows a flexible implementation. In particular, different
wavelets can be used at a negligible implementation cost. The
algorithm only needs to select the appropriate filters. In the case
of the E-spline wavelets, these filters are level-dependent and
need to be precalculated, introducing only a minor additional
complexity to the implementation.

Interestingly the modular update scheme is similar to the ex-
pectation maximization smooth (EMS) or interiteration filtering

[57]–[59] reconstruction strategies, well known in the PET re-
construction community. The fundamental difference is the ex-
istence of strong convergence results for the iterative thresh-
olding algorithm [1] while there is no proof of convergence for
the EMS algorithm.

In our computer experiments, we introduced an artificial pa-
rameter . In general one considers the same number of de-
composition levels in all dimensions as we have done for the
reconstruction of the clinical data. We have introduced this pa-
rameter solely to emphasize the effect of the E-spline wavelets
in the temporal domain, e.g., corresponds to no spatial
regularization. It is however natural to consider both temporal
and spatial regularization and the balance between spatial and
temporal smoothness can be adjusted by considering different
scaling factors in the different subbands. For example, the sub-
band-dependent threshold can be derived in a Bayesian frame-
work when the wavelet coefficients in each subband are well
modeled as realizations of a generalized Gaussian distribution
[60].

We have compared the performance of the E-spline wavelets
to the B-spline wavelets in our dynamic reconstruction task, for
wavelets of the same order . We expect that other classical
wavelets would show results similar to the B-spline wavelets
with equivalent order. In fact, the primary mathematical wavelet
properties such as order of approximation and vanishing mo-
ments are entirely due to the B-spline component [30].

An important step that needs to be performed prior to the
wavelet decomposition is the approximation of the reconstruc-
tion in the space . This step is implemented here using the
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Fig. 14. Temporal profiles for reconstructions using tuning parameters � � �� (a), � � �� (b) and of the postsmoothed reconstruction of the nonuniform time
frame data (c). TACs are obtained from single pixels located in the injection site, the aorta, the liver, and kidney. TAC of the injection site has been scaled down by
a factor 0.5 for a better display.

Fig. 15. Single slices for reconstructions using tuning parameter � � ���. The
slices are at [(a), (c)] 0% and [(b), (d)] 40% of the cardiac phase. Transaxial and
transvers slices, [(a), (b)] and [(c), (d)], respectively. White bars illustrate the
positions of the slices. Slices were cropped and the colorscale covers 0%–75%
of the dynamic range of the total data set.

consistent sampling strategy which projects the pixelized recon-
struction into . Another solution would be to discretize the
problem directly in by using and as basis
functions instead of using time pixels. Similar discretizations
were considered using modified Kaiser-Bessel basis functions
[61], using B-splines in the spatial domain [62] and in the tem-
poral domain [7], [9], [23]. If the data are available in list-mode
format such a direct approach in the time domain is advanta-
geous, as one can work directly with list-mode data without the
need to bin the data in a number of frames. A disadvantage of
the direct method is that in general the projection onto the
nonnegative functions is not implemented easily as it should be
implemented directly in rather than in . A limitation re-
lated to using list-mode data would be that we have to perform
a complete projection and backprojection to and from all sino-
gram bins for every event that is detected, as can be seen from
(21). We have illustrated the selection of the E-spline wavelet
defining parameters and . We investigated the robustness of
the parameter selection. Our results suggest that the method is
not overly sensitive: there is a broad range of parameter vec-
tors that perform better than B-spline wavelets. This was con-

Fig. 16. Single slices for reconstructions using tuning parameter � � ���. The
slices are at [(a), (c)] 0% and [(b), (d)] 40% of the cardiac phase. Transaxial and
transvers slices, [(a), (b)] and [(c), (d)], respectively. White bars illustrate the
positions of the slices. Slices were cropped and the colorscale covers 0%–75%
of the dynamic range of the total data set.

firmed by both 1-D and tomographic simulations considering
a wide range of imaging protocols (cardiac and brain imaging)
and considering a range of parameter vectors. A fair amount
of this robustness is necessary to allow the E-spline wavelets
to be successfully applied in real-life situations. First, because
the theoretically ideal parameter vectors are not know before
reconstruction. Second, because different regions (blood/tissue,
normal/disease) can have very different theoretically optimal
parameters.

The presented link between the underlying operator of
the E-spline wavelets and the differential equations modelling
the TACs illustrates how the E-spline wavelets arise naturally in
the setting of spatio-temporal PET reconstruction. Moreover it
gives an insight in the process of selecting the parameter vec-
tors. A careful selection is necessary to maximize the achieved
gain compared to the B-spline wavelets. The presented param-
eter selection is still relatively crude and further investigation of
this topic is appropriate. In particular, we have seen in our 1-D
experiments that the optimal in was a little higher than the
derived from theoretical reasoning, especially in the low noise
situations.
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Fig. 17. E-spline wavelet examples at scales [(a), (c)] � � � and [(b), (d)]� � � for different parameter vectors ���. [(a), (b)] Scaling functions and [(c), (d)]
wavelets. For classical wavelets (��� � ��� �� ��) the scaling functions and wavelets at different scales are obtained by dilating the wavelets and scaling functions
at lower scales. This is not generally the case for E-spline wavelets (��� � �������������,��� � ���������).

Fig. 18. Analysis and synthesis steps using one level of the filterbank.
Scale-dependent filters (index �) are required for E-spline wavelets. For
conventional wavelets, the filters are scale-independent, i.e., �� �� � �
���� �� 	 	 	 � � ��� � ����.

The results presented here are quite encouraging, but still
preliminary, leaving still room for further research and im-
provements. Important topics include the selection of E-spline
wavelet parameter vectors, selection of the threshold and
appropriate modelling of the noise and wavelet coefficients,
investigation of the convergence speed and possible speedup.
Further studies are also required to examine the impact of the
proposed method and to compare it to other techniques.

VIII. CONCLUSION

We have demonstrated the beneficial use of E-spline wavelets
in combination with spatio-temporal regularization in dy-
namic PET imaging. The E-spline wavelets were found to be
advantageous over conventional B-spline wavelets in modelling
TACs.

The key concept is that the activity distribution in the body
is ruled by systems of differential equations involving compart-
mental models. By construction, the proposed E-spline wavelets

are well suited for the sparse representation of solutions of
these differential equations. The parameters characterizing
these wavelets are the poles and zeros of the underlying system.
We have discussed the selection of the appropriate parame-
ters and demonstrated that a wide range of these parameters
outperformed the B-spline wavelets in terms of the recon-
structed SNR and the sparsity of the wavelet coefficients. The
experimental evaluation included 1-D denoising experiments
and tomographic reconstruction experiments of simulated and
clinical PET data.

The modular spatio-temporal regularization algorithm [1]
allows a flexible selection of the wavelet basis. In combination
with well designed E-spline wavelets this regularization algo-
rithm is of interest for the quantitative nonparametric recon-
struction of dynamic PET data.

APPENDIX

E-SPLINE WAVELETS

The E-spline wavelets that we are using as the tem-
poral basis functions are not wavelets in the classical sense [29],
[63]. There are three main differences [21].

Operator-Like Behavior: While conventional wavelets act
as pure derivatives, E-spline wavelets have a differential-oper-
ator-like behavior; i.e., when applied to the data the wavelet co-
efficients correspond to

(28)

where is the E-spline scaling function at level that acts as
a low-pass smoothing function [21].
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Dilation-Free Multi-Resolution: Conventional wavelets are
obtained by dilation and translation of the wavelet , i.e.,

. A similar expression holds
for conventional scaling functions. For the E-spline wavelets, on
the other hand, the wavelets and scaling functions at level
are not dilations of the wavelets and scaling functions at level
. Some examples of E-spline wavelets and scaling functions at

different levels are illustrated in Fig. 17.
Scale-Dependent Filters: The two-scale relation and wavelet

equation [29], [30] are relaxed upon, allowing the filter coeffi-
cients and to depend on the scale

(29)

(30)

Fortunately, the E-spline wavelet transform can still be effi-
ciently calculated using a two-channel filterbank after approx-
imating the signal in [21]. However, the low and
high pass filters will depend on the scale, as illustrated
in Fig. 18. This translates into selecting the appropriate precal-
culated filters at every decomposition iteration. Explicit expres-
sions for designing the E-spline wavelet filters can be found in
[21]. For orthonormalized E-spline wavelets the filters are IIR
with exponential decay.

The gain we get from this extension is that we can generalize
the property of the vanishing moments (see Section III-A).
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