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ABSTRACT
BACKGROUND: Prodromal positive psychotic symptoms and anxiety are two strong risk factors for schizophrenia in
22q11.2 deletion syndrome (22q11DS). The analysis of large-scale brain network dynamics during rest is promising to
investigate aberrant brain function and identify potentially more reliable biomarkers.
METHODS:We retrieved and examined dynamic properties of large-scale functional brain networks using innovation-
driven coactivation patterns. The study included resting-state functional magnetic resonance scans from 78 patients
with 22q11DS and 85 healthy control subjects. After group comparison of temporal brain network activation
properties, functional signatures of prodromal psychotic symptoms and anxiety were extracted using multivariate
partial least squares correlation.
RESULTS: Patients with 22q11DS had shorter activation in cognitive brain networks, longer activation in emotion
processing networks, and generally increased segregation between brain networks. The functional signature of
prodromal psychotic symptoms confirmed an implication of cingulo-prefrontal salience network activation duration
and coupling. Further, the functional signature of anxiety uncovered an implication of amygdala activation and
coupling, indicating differential roles of dorsal and ventral subdivisions of the anterior cingulate and medial
prefrontal cortices. Coupling of amygdala with the dorsal anterior cingulate and medial prefrontal cortices was
promoting anxiety, whereas coupling with the ventral anterior cingulate and medial prefrontal cortices had a
protective function.
CONCLUSIONS: Using innovation-driven coactivation patterns for dynamic large-scale brain network analysis, we
uncovered patterns of brain network activation duration and coupling that are relevant in clinical risk factors for
psychosis in 22q11DS. Our results confirm that the dynamic nature of brain network activation contains essential
function to develop clinically relevant imaging markers of psychosis vulnerability.

Keywords: 22q11.2 Deletion syndrome, Amygdala-prefrontal connectivity, Anxiety, Positive psychotic symptoms,
Resting-state fMRI dynamics, Salience network
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Schizophrenia is a strongly debilitating mental disorder both
for affected individuals and in terms of societal cost (1,2).
Converging evidence suggests that schizophrenia is a pro-
gressive neurodevelopmental disorder, given that, in most
cases, subclinical psychiatric and cognitive symptoms of the
disorder are present several years prior to the onset of a full-
blown psychotic episode (1,3–7). The neurodevelopmental
model critically implies that earlier interventions might prove
more effective in preventing the progression toward psychosis
(5,8). Hence, extensive research has been devoted to char-
acterizing the prodromal disease stage, also known as psy-
chosis high-risk state (3). In particular, the presence of
attenuated positive psychotic symptoms, operationalized in
the ultra-high-risk criteria (9), confers a strongly increased 30%
to 40% risk of developing psychosis (10). While current clinical
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management is based purely on clinical observation (11,12),
the identification of biomarkers of early psychosis could
improve our understanding of the pathophysiology in its
earliest disease stage (13). In this sense, the addition of im-
aging markers to the existing clinical diagnostic tools could
allow the establishment of more precise biomarker-informed
stages in the evolution of psychosis, which would give way
to more targeted therapeutic strategies and improved clinical
outcomes (1,8,13).

Chromosome 22q11.2 deletion syndrome (22q11DS) is a
neurodevelopmental disorder that comes with a highly
elevated risk for schizophrenia, with 30% to 40% prevalence
by adulthood (14). Most patients with 22q11DS were diag-
nosed during childhood, which allows characterizing the
earliest stages of schizophrenia’s disease course (1,15).
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Similar to the general population, the presence of attenuated
psychotic symptoms strongly increases the risk of psychosis
in 22q11DS, pointing to a common clinical trajectory with
nonsyndromic schizophrenia (16). Moreover, anxiety has
emerged as another strong risk factor for psychosis in
22q11DS (17,18). These clinical findings point to the particular
importance of understanding the pathophysiology and char-
acterizing biomarkers of attenuated psychotic symptoms and
anxiety in 22q11DS.

Among the tools to characterize biomarkers, resting-state
functional magnetic resonance imaging (rs-fMRI) has
emerged as promising (19). fMRI provides the unique oppor-
tunity to noninvasively observe brain function, and the resting
condition is especially well suited in clinical populations
because it requires minimal compliance from participants.
Most studies on rs-fMRI in psychosis to date have used static
functional connectivity (FC); i.e., the correlation between the
activation in different brain regions over the whole scanning
time (20). However, a limitation of such static approaches is
that they ignore the inherently dynamic nature of brain activity,
with potentially valuable information contained in dynamic
changes of activation and connectivity (21–25). In this
perspective, dynamic approaches have the potential to identify
more precise and more reliable biomarkers, and these ap-
proaches are particularly promising in schizophrenia, given the
multiplicity of affected behavioral domains and brain circuits
(20,26–29). Studies on dynamic brain function in schizophrenia
point toward disrupted dynamic interaction between several
brain states, in particular, of subcortico-cortical connectivity
(30) and connections of the default mode network (DMN)
(31–34). The few studies to date investigating dynamic FC
(dFC) in individuals at clinical high risk found reduced dFC of
the salience network (SN) and DMN (35) and stronger alter-
ations in early schizophrenia patients than subjects at ultra
high risk (36), underlining the potential of dynamic brain func-
tion to improve our understanding of the pathophysiology in
subjects at risk for schizophrenia.

Despite these promises of dynamic fMRI analysis, func-
tional neuroimaging research in 22q11DS has so far mostly
focused on static functional features (37–41), often targeting
only specific networks such as the DMN (42,43). The studies
that explicitly investigated psychotic symptoms in 22q11DS
showed correlations of DMN dysconnectivity with prodromal
psychotic symptoms (37), as well as successful discrimination
between patients with high-risk– versus low-risk– based
whole-brain rs-fMRI (38) and hypoconnectivity of the DMN,
SN, anterior cingulate cortex (ACC), and frontoparietal network
(FPN) (40). Further, in the only two studies to date investigating
a dynamic feature of brain function in 22q11DS—the variability
of blood oxygen level–dependent (BOLD) signals—we found
widespread reductions in brain variability in 22q11DS (44) and
reduced variability in the dorsal ACC (dACC) in patients with
higher prodromal psychotic symptoms (45). In general, not
only the aberrant function, but also the structure of the ACC
have been suggested as neuroimaging markers for the devel-
opment of psychosis in 22q11DS (46) and might reflect
dysfunctional self-monitoring and salience processing,
possible mechanisms for the emergence of psychosis (47).

Among the multiple methods to investigate dynamic fMRI
(23), many have already been applied in schizophrenia as
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outlined above (26,36). Sliding-window dFC tracks changes in
FC by computing FC in a temporal window that is shifted over
time (21,34), but it is limited by the necessity to choose the
window size and can only detect relatively slow changes in FC
(48). Alternatively, so-called first-order approaches rely on
temporal clustering of fMRI frames to obtain “coactivation
patterns” (CAPs) (49). Here, even fast changes can be traced
as no minimum activation duration needs to be specified.
However, only one brain state (or CAP) can be active at a time
point. To overcome these limitations, the recently introduced
innovation-driven CAPs (iCAPs) framework detects moments
of significantly changing brain activity to extract large-scale
brain networks and their dynamic properties (25,50,51). Here,
brain networks are retrieved from dynamic activation changes,
which allows robust retrieval of spatially and temporally over-
lapping brain networks.

In this study, we complement the existing literature on dFC
in schizophrenia by using iCAPs combined with multivariate
pattern analysis to identify potential biomarkers for psychosis
vulnerability in 22q11DS. We detect functional fingerprints of
anxiety and positive prodromal symptoms, two symptoms that
have emerged as reliable predictors of psychosis in 22q11DS
(16,18).

METHODS AND MATERIALS

Participants

The study included 221 subjects (111 patients with 22q11DS,
110 healthy control [HC] subjects; both groups comprising
individuals 8–30 years of age). We excluded 33 patients and 25
HC subjects to ensure good-data quality (see Supplementary
Methods). The final sample included 78 patients with
22q11DS (37 males) and 85 HC subjects (36 males) (see
Table 1). HC subjects were recruited among patients’ siblings
and through the Geneva state school system and had no
present or past history of neurological or psychiatric disorders.

Prodromal positive psychotic symptoms in patients with
22q11DS were assessed using the Structured Interview for
Prodromal Symptoms (52). The Structured Interview for Pro-
dromal Symptoms was not conducted in HC subjects. Anxiety
was assessed both in HC subjects and patients with 22q11DS
by combining the Child Behavior Checklist Anxious-Depressed
scale (53), and the Adult Behavior Checklist Anxious scale in
adults above 18 years of age (54).

Participants and their parents (for minors) gave their written
informed consent, and the research protocols were approved
by the Institutional Review Board of Geneva University School
of Medicine.

Image Acquisition

All MRI brain scans were acquired at the Centre d’Imagerie
BioMédicale in Geneva on a Siemens Trio (12-channel coil; 54
HC subjects, 42 patients) (Siemens Healthineers, Erlangen,
Germany) and a Siemens Prisma (20-channel coil; 31 HC
subjects, 36 patients) (Siemens Healthineers) 3T scanner.
Structural images were obtained with a T1-weighted sequence
of 0.86 mm3 3 0.86 mm3 3 1.1 mm3 volumetric resolution (192
coronal slices, repetition time = 2500 ms, echo time = 3 ms,
acquisition matrix = 224 3 256, field of view = 22 cm2, flip
ctober 2019; 4:881–892 www.sobp.org/BPCNNI
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Table 1. Participant Demographics

HC Group
(n = 85)

22q11DS Group
(n = 78)

p
Value

Gender, Male/Female 36/49 37/41 .514 (c2)

Age, Years 16.73 6 5.85
(8.1–30.0)

17.19 6 5.37
(8.1–29.7)

.603

Right-handed, %a 80.00 77.94 .715 (c2)

IQb 110.12 6 13.78 70.01 6 12.41 ,.001

Subjects Meeting Criteria
for Any Psychiatric
Diagnosis

N/A 43 (55)

Anxiety disorder N/A 9

Attention-deficit/
hyperactivity
disorder

N/A 8

Mood disorder N/A 5

Schizophrenia or
schizoaffective
disorder

N/A 4

More than one psychiatric
disorder

N/A 17

Subjects Medicated

Methylphenidate 0 9

Antipsychotics 0 3

Anticonvulsants 0 1

Antidepressants 0 1

More than one class
of medication

0 3

Values are n, mean 6 SD (range), mean 6 SD, or n (%).
22q11DS, 22q11.2 deletion syndrome; HC, healthy control; N/A, not

applicable.
aMeasured using the Edinburgh laterality quotient, right-handedness

was defined by a score of more than 50.
bMeasured using the Wechsler Intelligence Scale for Children–III

(100) for children and the Wechsler Adult Intelligence Scale–III (101)
for adults.
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angle = 8�). rs-fMRI data were recorded with a T2*-weighted
sequence of 8 minutes (voxel size = 1.84 mm3 3 1.84
mm3 3 3.2 mm3, 38 axial slices, repetition time = 2400 ms,
echo time = 30 ms, flip angle = 85�). Subjects were instructed
to fixate on a cross on the screen, let their mind wander, and
not fall asleep.

Preprocessing

Before applying the iCAPs pipeline, MRI scans were pre-
processed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/)
and functions of the Data Processing Assistant for Resting-
State fMRI (55) and Individual Brain Atlases using Statistical
Parametric Mapping (56) toolboxes. After realignment of
functional scans, we applied spatial smoothing with an
isotropic Gaussian kernel of 6-mm full width at half maximum
and coregistered structural scans to the functional mean.
Structural images were segmented with the SPM12 Segmen-
tation algorithm (57), and a study-specific template was
generated using Diffeomorphic Anatomical Registration using
Exponential Lie algebra (58). Then, the first five functional
scans were excluded, and average white matter and cerebro-
spinal fluid signals were regressed out from the BOLD time
series. We applied motion scrubbing (59) for correction of
Biological Psychiatry: Cognitive Neuroscience and Neu
motion artifacts, marking frames with a framewise displace-
ment of more than 0.5 mm. As the filters implemented in the
iCAPs framework require a constant sampling rate, marked
frames were replaced by the spline interpolation of previous
and following frames. Finally, motion frames were excluded
before computation of temporal characteristics (described
below).

Total Activation and iCAPs

We used openly available MATLAB code (https://c4science.
ch/source/iCAPs/) MATLAB vR2017a (The MathWorks, Inc.,
Natick, MA) to apply iCAPs (25,50,51). We first employed Total
Activation (60–62), which applies hemodynamically informed
deconvolution to the fMRI time series through spatiotemporal
regularization. Significant activation changepoints (i.e., tran-
sients), derived from deconvolved time series, were concate-
nated across all subjects and fed into temporal k-means
clustering to obtain simultaneously transitioning brain patterns,
the iCAPs. The optimum number of 17 clusters was deter-
mined by consensus clustering (63) (see Supplemental
Figures S1 and S2). Finally, time courses were obtained for
all iCAPs using spatiotemporal transient-informed regression
(51). A detailed description of all steps can be found in the
Supplementary Methods.

Extraction of Temporal Properties

For computation of temporal properties, iCAPs time
courses were Z-scored within each subject and thresholded
at a Z score .j1j to determine “active” time points (50). For
each iCAP, we then computed the total duration of
overall activation as percentage of the total nonmotion
scanning time.

Further, coupling and anticoupling duration of two iCAPs
were calculated as time points of same-signed or oppositely
signed coactivation measured as percentage of the total
nonmotion scanning time or as Jaccard score; i.e., percent
joint activation time of the two respective iCAPs.

Statistical Analysis

Group Comparisons of iCAPs Activation Measures.
Duration and coupling measures between groups were
compared using two-sample t tests. The p values
were corrected for multiple comparisons with the false
discovery rate.

Partial Least Squares Correlation. To evaluate multi-
variate patterns of correlation between behavioral variables
and iCAPs activation measures, we used behavior partial least
squares correlation (PLSC) (64). Briefly, we first computed a
correlation matrix between behavioral variables and brain
variables. Group-specific correlation matrices of HC subjects
and patients with 22q11DS were concatenated, and singular
value decomposition of this matrix then led to several corre-
lation components (CorrComps). Each CorrComp is composed
of a set of behavior weights and iCAPs duration/coupling
weights, which indicate how strongly each variable contributes
to the multivariate brain-behavior correlation. Significance of
CorrComps was determined by permutation testing (1000
permutations). Stability of brain and behavior weights was
roimaging October 2019; 4:881–892 www.sobp.org/BPCNNI 883
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obtained using bootstrapping (500 bootstrap samples). See
the Supplementary Methods for a detailed outline of PLSC.

Here, we first conducted two PLSC analyses, with duration
of altered iCAPs as brain variables and with psychotic symp-
toms (in the first PLSC analysis) and anxiety (in the second
PLSC analysis) as behavioral variables. In four more PLSC
analyses, we then investigated positive couplings and anti-
couplings of one selected iCAP for each behavioral measure.
Owing to differences in design of each PLSC in terms of
measure type and number of items, we did not correct for
multiple comparisons.

Nuisance Variable Regression. Age, gender, and motion
were included as nuisance regressors in group comparisons
and PLSC analyses. Nuisance regressors were standardized
within each group to avoid linear dependence with the effects
of interest.

RESULTS

Extracted Spatial Maps Correspond to Known
Resting-State Networks

We applied the iCAPs framework to rs-fMRI scans of both HC
subjects and patients with 22q11DS. Identified iCAPs corre-
spond to well-known resting-state networks (see Figure 1 and
Supplemental Table S2). The obtained networks included
sensory-related networks such as primary visual 1 and 2,
secondary visual, auditory/sensorimotor, and sensorimotor
networks. The DMN was decomposed into anterior, posterior,
and precuneus/ventral DMN. There were two attention-related
iCAPs, i.e., the FPN and visuospatial network. Two iCAPs
included regions commonly considered as the SN: the anterior
insula and dACC together with dorsolateral prefrontal cortex
(dlPFC). The remaining iCAPs comprised a language network
(LAN), inferior temporal and fusiform (iTEMP/FUS), amygdala
and hippocampus (AMY/HIP), orbitofrontal cortex, and PFC.

Altered iCAPs’ Activation and Coupling in 22q11DS

To probe into alterations of the identified networks’ temporal
properties in patients with 22q11DS, we first investigated
aberrant activation duration followed by the analysis of altered
network interactions; i.e., duration of positive coupling (coac-
tivation with same sign) or anticoupling (coactivation with
opposite sign) between all pairwise combinations of iCAPs.

Altered Duration of iCAPs’ Activation. Figure 2 shows
duration for all 17 iCAPs in percentage of total nonmotion
scanning time.Median total activation time ranged from34.36%
for the LAN to 1.54% for the PFC. Patients with 22q11DS
had significantly shorter activation of the dACC/dlPFC, primary
visual 2 network, FPN, anterior DMN (aDMN), and posterior
DMN and significantly longer activation of the sensorimotor
network, iTEMP/FUS, AMY/HIP, and orbitofrontal cortex.

Alterations in Coupling Between Networks. Figure 3
shows significant group differences in iCAPs’ coupling. For
several networks, the duration of coupling was longer in pa-
tients with 22q11DS than in control subjects. This was true for
six positive couplings and 13 anticouplings. Fewer networks
884 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging O
had shorter duration of coupling in patients with 22q11DS (one
positive coupling, five anticouplings). Globally, alterations were
more numerous for anticouplings (25 in total) than for positive
couplings (six in total).

Functional Signature of Positive Psychotic
Symptoms

To look into the behavioral relevance of these aberrant acti-
vation and coupling, we conducted behavior PLSC including
positive symptoms.

Altered iCAPs’ Duration Associated With Psychotic
Symptoms. A first PLSC analysis including positive Struc-
tured Interview for Prodromal Symptoms items in 22q11DS
and iCAPs’ activation duration of the nine altered iCAPs (see
Figure 2) resulted in one significant CorrComp (p = .05) (see
Figure 4A). Duration of the dACC/dlPFC, FPN, and iTEMP/FUS
was positively correlated with all five positive psychotic
symptoms.

Altered Couplings of dACC/dlPFC Associated With
Psychotic Symptoms. Next, we investigated the relevance
of couplings for psychotic symptoms. For this, we selected the
dACC/dlPFC network based on its appearance in the previous
analysis (see Figure 4A), as well as literature associating ACC
alterations with psychosis in 22q11DS (46). We included
coupling time of the dACC/dlPFC with iCAPs that had altered
couplings (anterior insula, auditory/sensorimotor network,
iTEMP/FUS, and AMY/HIP) (see Figure 3) and with iCAPs
whose duration was significantly correlated with psychotic
symptoms (FPN and iTEMP/FUS) (see Figure 4A).

A first PLSC analysis for anticoupling time between the
dACC/dlPFC and these networks resulted in one significant
CorrComp (p = .02) (see Figure 4B) showing an association
between higher positive symptoms and longer anticoupling of
the dACC/dlPFC with FPN and iTEMP/FUS.

A second PLSC analysis for positive coupling time between
dACC/dlPFC and these networks did not give any significant
CorrComp (p = .58).

Functional Signature of Anxiety

Finally, we conducted similar analyses to investigate dynamic
brain network alterations associated with anxiety, another
behavioral risk factor for psychosis in 22q11DS.

Altered iCAPs’ Duration Associated With Anxiety. We
performed PLSC analysis between Child Behavior Checklist/
Adult Behavior Checklist anxiety scores in 22q11DS and HC
subjects and iCAPs’ duration, again including the nine iCAPs
with altered duration (see Figure 2). There was one significant
CorrComp (p = .03) (see Figure 5A). In both HC subjects and
patients with 22q11DS, longer activation of iTEMP/FUS and
AMY/HIP and shorter activation of aDMN were associated with
higher anxiety.

Altered Couplings of AMY/HIP Associated With
Anxiety. To further investigate coupling effects related to
anxiety, we selected the AMY/HIP network because its dura-
tion was related to anxiety in the previous analysis (see
ctober 2019; 4:881–892 www.sobp.org/BPCNNI
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Figure 1. Spatial patterns of the 17 innovation-driven coactivation patterns (iCAPs) retrieved from all subjects, including both healthy control (HC) subjects
and patients with 22q11.2 deletion syndrome (22q11DS). Locations denote displayed slices in Montreal Neurological Institute coordinates. Blue values denote
the average consensus of each cluster, and purple values indicate the total number of innovation frames that were assigned to this cluster. aDMN, anterior
default mode network; aIN, anterior insula; AMY/HIP, amygdala/hippocampus; AUD/SM, auditory/sensorimotor; dACC/dlPFC, dorsal anterior cingulate cortex/
dorsolateral prefrontal cortex; FPN, frontoparietal network; iTEMP/FUS, inferior temporal/fusiform; LAN, language network; OFC, orbitofrontal cortex; pDMN,
posterior default mode network; PFC, prefrontal cortex; PREC/vDMN, precuneus/ventral default mode network; PrimVIS1, primary visual 1; PrimVIS2, primary
visual 2; SecVIS, secondary visual; SM, sensorimotor; VSN, visuospatial network.

Dynamic fMRI measures of Psychosis and Anxiety in 22q11DS
Biological
Psychiatry:
CNNI
Figure 5A) and because of the well-established involvement of
these brain regions in anxiety (65). We included coupling time
of AMY/HIP with iCAPs that had altered couplings (LAN,
dACC/dlPFC, precuneus/ventral DMN, and FPN) (see Figure 3)
and with iCAPs whose duration was significantly associated
with anxiety (aDMN and iTEMP/FUS) (see Figure 5A).
Biological Psychiatry: Cognitive Neuroscience and Neu
A first PLSC analysis for anticouplings between AMY/HIP
and these networks gave no significant CorrComp (p = .07).

A second PLSC analysis including positive couplings be-
tween AMY/HIP, and these networks gave one significant
CorrComp (p = .006) (see Figure 5B). Behavior weights were
only robust for patients with 22q11DS, indicating that the
roimaging October 2019; 4:881–892 www.sobp.org/BPCNNI 885
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Figure 2. Statistics of total temporal duration for each innovation-driven coactivation pattern. The p values are false discovery rate corrected for the 17
multiple comparisons, and age, gender, and motion were included as covariates. Significant group differences (p , .05) were marked with an asterisk. Error
bars indicate bootstrapping 5th to 95th percentiles. Single-subject duration measures were included as scatterplots. Corresponding test statistics (p values,
effect size) can be found in Supplemental Table S3. 22q11DS, 22q11.2 deletion syndrome; aDMN, anterior default mode network; aIN, anterior insula; AMY/
HIP, amygdala/hippocampus; AUD/SM, auditory/sensorimotor; dACC/dlPFC, dorsal anterior cingulate cortex/dorsolateral prefrontal cortex; FPN, frontopar-
ietal network; HC, healthy control; iTEMP/FUS, inferior temporal/fusiform; LAN, language network; OFC, orbitofrontal cortex; pDMN, posterior default mode
network; PFC, prefrontal cortex; PREC/vDMN, precuneus/ventral default mode network; PrimVIS1, primary visual 1; PrimVIS2, primary visual 2; SecVIS,
secondary visual; SM, sensorimotor; VSN, visuospatial network.
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corresponding pattern of correlation weights was specific for
patients. Longer positive coupling of AMY/HIP with LAN and
dACC/dlPFC was positively associated with anxiety, whereas
positive coupling with aDMN was negatively associated with
anxiety.

DISCUSSION

In this study, we investigated dynamic features of network
brain activity in patients with 22q11DS, with a particular focus
on the identification of functional signatures of prodromal
psychotic symptoms and anxiety, two behavioral risk factors
for the transition to psychosis. To the best of our knowledge,
this is the first study to investigate dynamics of large-scale
functional brain networks in 22q11DS. We used iCAPs to go
beyond static connectivity analysis and look into precise mo-
ments of brain network activation and interaction, which is
particularly promising to provide more sensitive imaging
markers in schizophrenia (26). We detected alterations of brain
networks’ duration and couplings in 22q11DS and associa-
tions between these patterns of alterations with positive psy-
chotic symptoms and anxiety.

Alterations in 22q11DS: Implication of Cognitive
and Emotional Brain Networks

Individuals with 22q11DS had a varied pattern of longer and
shorter network activations, suggesting that they “over-
engage” in certain brain states while “underengaging” in
others. In particular, we found shorter activation of the FPN,
DMN, and cingulo-prefrontal SN. According to the triple-
network hypothesis, the dynamic interaction among these
three networks, characterized by a shift between the internally
oriented DMN and externally oriented FPN mediated by the
salience-attributing SN, is central for higher cognitive functions
(66). Conversely, their dysfunction could account for several
psychiatric symptoms. Here, we observe reduced activation of
886 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging O
all three networks in 22q11DS, possibly suggesting a mal-
function of these basic brain dynamics, which speculatively
may underlie broad impairments in higher cognitive function
described in both 22q11DS and psychosis (1,67). In turn, there
was longer activation in networks comprising limbic regions
including the AMY, medial temporal, and orbitofrontal cortices.
While the dichotomy between the cognitive and emotional
brain is arguably artificial, longer activation in regions highly
involved in emotional processing such as the AMY and orbi-
tofrontal cortex could reflect higher emotional load during
scanning in patients with 22q11DS (68,69).

The pattern of activation was significantly, but oppositely,
related to age in both groups (see Supplementary Results and
Discussion), suggesting that the atypical activation pattern
observed in 22q11DS emerges with age, in accordance with
the neurodevelopmental model of schizophrenia (1,6).

Besides duration of activation, the iCAPs approach allowed
us to probe the pattern of aberrant coupling between networks,
which was characterized by predominantly longer anticouplings
in 22q11DS, accounting for more than half (13 of 25) of the al-
terations. Longer anticoupling is suggestive of increased
segregation between brain networks and is in agreement with
evidence of increased segregation and decreased integration of
structural and functional brain networks in both 22q11DS and
nonsyndromic psychosis (20,70–74). Network segregation is a
central feature of brain function that is important for cognition
and attention (75), and its alterations in 22q11DS may be
reflective of cognitive disabilities on a more global level than the
above-mentioned alterations in triple-network activation that
concentrates on three core networks.

Functional Signature of Psychosis Prodromal:
Aberrant SN Duration and Coupling

The presence of prodromal psychotic symptoms was associ-
ated with longer activation of the iTEMP/FUS, dACC/dlPFC,
ctober 2019; 4:881–892 www.sobp.org/BPCNNI
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Figure 3. Significant duration differences of positive couplings (red) and anticouplings (blue) between patients with 22q11.2 deletion syndrome (22q11DS)
and healthy control subjects. (A) Couplings with significantly longer duration in 22q11DS. (B) Couplings with significantly shorter duration in 22q11DS.
Couplings were measured in terms of percentage of total scanning time or in percentage of the joint activation time of the two respective innovation-driven
coactivation patterns (iCAPs) (Jaccard score). We here show only differences that were significant in both coupling measures. Underlying group comparison
statistics can be found in Supplemental Figure S4 and Supplemental Table S4. aDMN, anterior default mode network; aIN, anterior insula; AMY/HIP, amygdala/
hippocampus; AUD/SM, auditory/sensorimotor; dACC/dlPFC, dorsal anterior cingulate cortex/dorsolateral prefrontal cortex; FPN, frontoparietal network;
iTEMP/FUS, inferior temporal/fusiform; LAN, language network; OFC, orbitofrontal cortex; pDMN, posterior default mode network; PREC/vDMN, precuneus/
ventral default mode network; PrimVIS1, primary visual 1; PrimVIS2, primary visual 2; SecVIS, secondary visual; SM, sensorimotor; VSN, visuospatial network.
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and FPN. Increased activation of the iTEMP/FUS has been
previously reported in schizophrenia in terms of relative cere-
bral blood flow (76,77) and BOLD variability (78). Also in
22q11DS, we observed higher BOLD variability in the iTEMP/
FUS regions in a partially overlapping sample (44), suggesting
that increased BOLD variability might reflect longer network
activation. Further, prodromal psychotic symptoms were
associated with longer activation of dACC/dlPFC. The dACC is
considered a key node of the SN involved in attributing sub-
jective salience to internally and externally generated events
(66,79). Aberrant salience attribution has been proposed as
key mechanism in the emergence of positive psychotic
symptoms (47). Together with electroencephalogram studies in
psychosis and 22q11DS that consistently reported longer
representation of the electroencephalogram topography that
corresponds to SN (80–83), our findings support this
hypothesis.

However, while duration of both dACC/dlPFC and FPN was
positively correlated with psychotic symptoms, it was reduced
overall in 22q11DS compared with HC subjects. Converging
evidence from both structural and functional MRI points to-
ward altered connectivity of the ACC in individuals with
22q11DS and psychotic symptoms (38,45,71,84), reviewed in
Padula et al. (46). Hence, we suspected that the quality of the
activations, i.e., the coupling with other networks, might be
relevant for higher psychotic symptoms. Indeed, the analysis
of dACC/dlPFC couplings revealed a significant relationship
Biological Psychiatry: Cognitive Neuroscience and Neu
between higher psychotic symptoms and anticoupling with the
FPN and iTEMP/FUS. Taken together, these results suggest
that while activations of the dACC/dlPFC and FPN occur less
frequently in 22q11DS in general, they are more frequently
anticoupled with one another and with the iTEMP/FUS in pa-
tients with higher psychotic symptoms. The triple-network
model proposes that activation of the SN is instrumental in
reorienting attention by mediating the shifts between the DMN
and FPN (66). Our findings of longer anticoupling between SN
and FPN suggest that this functional role of the cingulo-
prefrontal SN is disrupted in individuals with higher psychotic
symptoms.

Altogether, the richness of our iCAPs approach permitted to
characterize a pattern reflecting SN activations that contribute
to the pathophysiology of psychotic symptoms, in terms of
both duration and quality. Our findings support the key role of
network dynamics in the ACC in higher psychosis vulnerability
(46) and point toward disrupted triple-network function
centered on the SN, which might reflect aberrant salience
processing in patients with psychotic symptoms (47,66).
Functional Signature of Anxiety: Aberrant AMY/HIP
Duration and Coupling

For both HC subjects and patients with 22q11DS, anxiety was
associated with a pattern of longer activation of the AMY/HIP
and iTEMP/FUS and shorter activation of the aDMN. Evidence
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Figure 4. Partial least squares correlation (PLSC) results for positive psychotic symptoms (five Structured Interview for Prodromal Symptoms items: P1:Del,
delusions; P2:Susp, suspiciousness; P3:Grand, grandiosity; P4:Hall, hallucinations; and P5:DisCom, disorganized communication) in patients with 22q11.2
deletion syndrome (22q). (A) Behavior weights and brain weights for PLSC including duration of nine innovation-driven coactivation patterns (iCAPs) with
altered duration in 22q. There is a positive correlation of positive psychotic symptoms with duration of the dorsal anterior cingulate cortex/dorsolateral
prefrontal cortex (dACC/dlPFC), frontoparietal network (FPN), and inferior temporal/fusiform (iTEMP/FUS). (B) Behavior weights and brain weights for PLSC
including anticouplings of the dACC/dlPFC that were altered in 22q. Longer anticoupling of the dACC/dlPFC with the FPN and iTEMP/FUS is associated with
higher positive symptoms. Error bars indicate bootstrapping fifth to 95th percentiles and robust results were indicated by yellow background. Exact values of
bootstrap mean and fifth to 95 percentiles are reported in Supplemental Table S5. PLSC results for positive couplings were not significant (p = .6) and are thus
not reported here. aDMN, anterior default mode network; AMY/HIP, amygdala/hippocampus; AUD, auditory; OFC, orbitofrontal cortex; pDMN, posterior
default mode network; PrimVIS2, primary visual 2; SM, sensorimotor.
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in animal models and humans has revealed a central role of the
amygdala in fear exposure, anticipation, and reaction
(65,68,85–88). Further, increased metabolic activity in the
AMY, HIP, and iTEMP cortex was found in rhesus monkeys
with anxious temperament (89,90), and cerebral blood flow in
the AMY and FUS cortex has been associated with trait anxiety
in humans (91). The iCAPs approach allowed us to quantify
moments of network activation and confirmed that hyperac-
tivity of the AMY/HIP and iTEMP/FUS at rest could indeed
represent trait markers of anxiety in both HC subjects and
22q11DS. Hyperactivity of the AMY/HIP and iTEMP/FUS
observed in 22q11DS could therefore account for increased
prevalence of anxiety disorders in this population.

Importantly, the AMY does not operate in isolation, but is
part of a complex circuit involved in regulating emotional re-
sponses (92). Indeed, in accord with the role in salience pro-
cessing mentioned above, the dACC and mPFC promote
amygdala activity and are critical in the appraisal and expres-
sion of fear behavior (92). Oppositely, the subgenual ACC and
ventral mPFC largely dampen amygdala activity and are
essential for fear extinction (92). This functional subdivision of
the frontal lobe is further supported by extensive literature on
fear circuitry in rodents, in which the dorsal prelimbic and
ventral infralimbic cortices are found to have opposing roles on
AMY activation and fear expression, and fear extinction,
888 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging O
respectively (85,92–98). Given these findings, we speculated
that the modulation of AMY/HIP activity, particularly by the
dACC/dlPFC and aDMN network, might play a crucial role in
the pathophysiology of anxiety. Indeed, we showed a signifi-
cant positive association between anxiety and coupling dura-
tion between the AMY/HIP and dACC/dlPFC and the LAN.
Coupling duration between the AMY/HIP and aDMN had an
opposite, protective role on anxiety in accordance with the
modulating role of mPFC-AMY projections on fear expression.
Of note, the effects of AMY coupling on anxiety appeared
specific to individuals with 22q11DS, which could suggest that
effects of amygdala modulation are nonlinear and relate only to
more severe anxiety observed in 22q11DS.

In conclusion, we observed a dynamic functional pattern
characterized both by longer AMY/HIP activations and atypical
prefrontal AMY/HIP modulation, which might constitute a trait
maker of anxiety and contribute vulnerability to psychosis in
22q11DS.
Methodological Aspects

iCAPs Framework. The present study is one of the first to
apply the iCAPs framework in a clinical population, and owing
to the flexibility of the framework, we were able to discover
distinct patterns of functional activation and interaction
ctober 2019; 4:881–892 www.sobp.org/BPCNNI
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Figure 5. Partial least squares correlation (PLSC) results for anxiety scores. (A) Behavior weights and brain weights for PLSC including duration of nine
altered innovation-driven coactivation patterns (iCAPs). There is a positive correlation of anxiety with duration of the inferior temporal/fusiform (iTEMP/FUS) and
amygdala/hippocampus (AMY/HIP) and a negative correlation with duration of the anterior default mode network (aDMN). (B) Behavior weights and brain
weights for PLSC including positive couplings of the AMY/HIP. Longer positive coupling of AMY/HIP with the language network (LAN) and dorsal anterior
cingulate cortex/dorsolateral prefrontal cortex (dACC/dlPFC), and shorter positive coupling with the aDMN are associated with higher anxiety only in patients
with 22q11.2 deletion syndrome (22q). Error bars indicate bootstrapping fifth to 95th percentiles, robust results were indicated by yellow background. Exact
values of bootstrap mean and fifth to 95th percentiles are reported in Supplemental Table S6. PLSC results for anticouplings were not significant (p = .07) and
are thus not reported here. ABCL, Adult Behavior Checklist; CBCL, Child Behavior Checklist; FPN, frontoparietal network; OFC, orbitofrontal cortex; pDMN,
posterior default mode network; PREC/vDMN, precuneus/ventral default mode network; PrimVIS2, primary visual 2; SM, sensorimotor.
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characteristic for prodromal psychotic symptoms and anxiety.
The framework is unique in its ability to detect spatially and
temporally overlapping networks (50,51), and the robustness
and richness of the presented results underlines its potential.
Of note, extracted spatial patterns were highly similar to pre-
viously observed iCAPs retrieved from HC subjects (50,51),
which reassures the framework’s performance in a clinical
population. Furthermore, the subdivision of classical resting-
state networks such as the DMN and SN into multiple sub-
networks confirms previously observed findings (50) and
suggests that different subnetworks have distinct dynamic
properties, which are difficult to detect by static approaches.

While iCAPs themselves were retrieved from a purely dy-
namic measure (i.e., the innovations), the measure of coupling
between networks is closely linked to static FC (see the
Supplementary Results and Discussion). Activation duration,
however, is a measure specific to each network, which cannot
be explained in terms of static connectivity.

BOLD Signal Analysis and Motion. In any fMRI study,
nonneural confounds are always a concern (99). We have
minimized the effects by taking several measures for motion
correction and through additional analysis of motion
Biological Psychiatry: Cognitive Neuroscience and Neu
(discussed in more detail in the Supplementary Results and
Discussion). However, as motion is strongly correlated with
symptoms severity, it remains a limitation of our study.

Conclusions

In summary, we presented here functional signatures of anxi-
ety and positive psychotic symptoms in 22q11DS in terms of
brain network activation and coupling. Our results confirm the
implication of SN activity and connectivity in the emergence of
psychotic symptoms. We further uncovered differential roles of
dACC and ventral ACC and mPFC coupling with the AMY that
are relevant for anxiety. Together, these findings shed light into
the pathophysiology of two clinical risk factors that might
represent relevant imaging markers for psychosis vulnerability.
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